In this paper,two lifting mechanism models with opposing placements,which use the same hydraulic hoist model and have the same angle of 50°,have been developed.The mechanical and hydraulic simulation models are e...In this paper,two lifting mechanism models with opposing placements,which use the same hydraulic hoist model and have the same angle of 50°,have been developed.The mechanical and hydraulic simulation models are established using MATLAB Simscape to analyze their kinetics and dynamics in the lifting and holding stages.The simulation findings are compared to the analytical calculation results in the steady state,and both methods show good agreement.In the early lifting stage,Model 1 produces greater force and discharges goods in the container faster than Model 2.Meanwhile,Model 2 reaches a higher force and ejects goods from the container cleaner than its counterpart at the end lifting stage.The established simulation models can consider the effects of dynamic loads due to inertial moments and forces generated during the system operation.It is crucial in studying,designing,and optimizing the structure of hydraulic-mechanical systems.展开更多
Artificial vegetation restoration is the main measure for vegetation restoration and soil and water conservation in alpine mine dumps on the Qinghai-Tibet Plateau,China.However,there are few reports on the dynamic cha...Artificial vegetation restoration is the main measure for vegetation restoration and soil and water conservation in alpine mine dumps on the Qinghai-Tibet Plateau,China.However,there are few reports on the dynamic changes and the influencing factors of the soil reinforcement effect of plant species after artificial vegetation restoration under different recovery periods.We selected dump areas of the Delni Copper Mine in Qinghai Province,China to study the relationship between the shear strength and the peak displacement of the root-soil composite on the slope during the recovery period,and the influence of the root traits and soil physical properties on the shear resistance characteristics of the root-soil composite via in situ direct shear tests.The results indicate that the shear strength and peak displacement of the rooted soil initially decreased and then increased with the increase of the recovery period.The shear strength of the rooted soil and the recovery period exhibited a quadratic function relationship.There is no significant function relationship between the peak displacement and the recovery period.Significant positive correlations(P<0.05)exists between the shear strength of the root-soil composite and the root biomass density,root volume density,and root area ratio,and they show significant linear correlations(P<0.05).There are no significant correlations(P>0.05)between the shear strength of the root-soil composite and the root length density,and the root volume ratio of the coarse roots to the fine roots.A significant negative linear correlation(P<0.05)exists between the peak displacement of the rooted soil and the coarse-grain content,but no significant correlations(P>0.05)with the root traits,other soil physical property indices(the moisture content and dry density of the soil),and slope gradient.The coarse-grain content is the main factor controlling the peak displacement of the rooted soil.展开更多
Landslide is the second largest natural disaster after earthquake. It is of significance to study the evolution laws and failure mechanism of landslides based on its surface 3D deformation information. Based on the ra...Landslide is the second largest natural disaster after earthquake. It is of significance to study the evolution laws and failure mechanism of landslides based on its surface 3D deformation information. Based on the rainfall-triggered waste dump instability model test, we studied the failure mechanisms of the waste dump by integrating surface deformation and internal slope stress and proposed novel parameters for identifying landslide stability. We developed a noncontact measurement device, which can obtain millimeter-level 3D deformation data for surface scene in physical model test;Then we developed the similar materials and established a test model for a waste dump. Based on the failure characteristics of slope surface, internal stress of slope body and displacement contours during the whole process, we divided the slope instability process in model test into four stages: rainfall infiltration and surface erosion, shallow sliding, deep sliding, and overall instability. Based on the obtained surface deformation data, we calculated the volume change during slope instability process and compared it with the point displacement on slope surface. The results showed that the volume change can not only reflect the slow-ultra acceleration process of slope failure, but also fully reflect the above four stages and reduce the fluctuations caused by random factors. Finally, this paper proposed two stability identification parameters: the volume change rate above the slip surface and the relative velocity of volume change rate. According to the calculation of these two parameters in model test, they can be used for study the deformation and failure mechanism of slope stability.展开更多
The plug-in hybrid vehicles(PHEV)technology can effectively address the issues of poor dynamics and higher energy consumption commonly found in traditional mining dump trucks.Meanwhile,plug-in hybrid electric trucks c...The plug-in hybrid vehicles(PHEV)technology can effectively address the issues of poor dynamics and higher energy consumption commonly found in traditional mining dump trucks.Meanwhile,plug-in hybrid electric trucks can achieve excellent fuel economy through efficient energy management strategies(EMS).Therefore,a series hybrid system is constructed based on a 100-ton mining dump truck in this paper.And inspired by the dynamic programming(DP)algorithm,a predictive equivalent consumption minimization strategy(P-ECMS)based on the DP optimization result is proposed.Based on the optimal control manifold and the SOC reference trajectory obtained by the DP algorithm,the P-ECMS strategy performs real-time stage parameter optimization to obtain the optimal equivalent factor(EF).Finally,applying the equivalent consumption minimization strategy(ECMS)realizes real-time control.The simulation results show that the equivalent fuel consumption of the P-ECMS strategy under the experimentally collected mining cycle conditions is 150.8 L/100 km,which is 10.9%less than that of the common CDCS strategy(169.3 L/100 km),and achieves 99.47%of the fuel saving effect of the DP strategy(150 L/100 km).展开更多
The dump diffuser is an important component in advanced annular combustor, and its performance affects greatly the fluid field and pressure loss of the combustor. This paper presents the characteristics of the total p...The dump diffuser is an important component in advanced annular combustor, and its performance affects greatly the fluid field and pressure loss of the combustor. This paper presents the characteristics of the total pressure loss. Experiments and numerical simulations, keeping the inlet March number of prediffuser constant ( Ma =0 20), are carried out to obtain the regularity of the total pressure loss. It varies with the relative dump gap ( δ =1 2~3 0)by changing the position of prediffuser and combustor liner, respectively. Research shows that there exists the minimum total pressure loss ( σ *=1 6%~1 75%) when relative dump gap δ is about 1 8.展开更多
In recent decades, international trade has evolved into a complex system of trade barriers to ensure the protection of domestic industry and its workers interests. However as tariffs have fallen and international trad...In recent decades, international trade has evolved into a complex system of trade barriers to ensure the protection of domestic industry and its workers interests. However as tariffs have fallen and international trade tends to be free trade, countries have found another way of protecting domestic industries from foreign competition—non-tariff protection. Among them anti-dumping is the most controversial subject that is involved in the foreign trade. This theme will analyze the reason and effect of growing use anti-dumping measures by countries in recent decades and try to give some possible solutions.展开更多
Low grade dumped limestone sample having high silica of 8.1%, 36.8% CaO, and 3% Al2O3 has been studied with the aim to reduce the silica level to below 3% for its utilization in iron making. Beneficiation study of the...Low grade dumped limestone sample having high silica of 8.1%, 36.8% CaO, and 3% Al2O3 has been studied with the aim to reduce the silica level to below 3% for its utilization in iron making. Beneficiation study of the sample was initiated with desliming of the feed sample of -100 μm to remove the siliceous ultrafine particles and to improve the feed quality. Flotation study was carried out by column flotation technique varying the collector dosage, superficial air flow velocity and froth depth to assess their effect on silica reduction and CaO recovery. It was observed that increased collector dosage and superficial air velocity increases the recovery of CaO, and increase in the froth depth reduces the mass flow and silica content in the concentrate. The best result was found at 1.25 cm/sec superficial air velocity, 25 cm froth depth, 1.25 kgpt collector dosage and concentrate assayed 47.3% CaO, 2.8% silica with 72% CaO recovery.展开更多
The changes of vegetation compositions, plant species diversity, species important value and succession of plant community were studied on waste dumps in Haizhou opencast coalmine which is located in the west of Liaon...The changes of vegetation compositions, plant species diversity, species important value and succession of plant community were studied on waste dumps in Haizhou opencast coalmine which is located in the west of Liaoning Province, China (41°41(-42°56( N, 121°1(-122°56(E). Four kinds of terraces with different ages (5, 10, 20 and 40 years) were selected for investigation of plants. Total of 63 species of natural colonized plants were recorded on the waste dump and they belong to 23 families. The main families were Compositae (15 species), Fabaceae (11 species) and Leguminosae (8 species), which accounted for 54.0% of total species and play an important role in natural vegetation recovery in waste dump area. The dominant species on 5-, 10-, 20-, 40-year-old terraces were Tribulus terrestris + Echinochloa hispidula + Salsola collina, Echinochloa hispidula + Artemisia sieversiana + Artemisia scoparia, Echinochloa hispidula + Clinelymus dahuricus + Artemisia scoparia + Artemisia sieversiana + Melilotus officinalis, Clinelymus dahuricus+Phragmites communis + Echinochloa hispidula+ Setaria viridis, respectively. According to the important value of species calculated. It is determined that Tribulus terrestris can act as pioneer species on waste dump and Clinelymus dahuricus, Phragmites communis and Echinochloah hispidula are important dominant species in vegetation restoration in Haizhou opencast coalmine. The study results can provide scientific basis for selecting and disposing appropriately plant species and rehabilitating vegetation on waste dumps of coalmine.展开更多
基金Ho Chi Minh City University of Technology(HCMUT)Vietnam National University Ho Chi Minh City(VNU-HCM)for supporting this study。
文摘In this paper,two lifting mechanism models with opposing placements,which use the same hydraulic hoist model and have the same angle of 50°,have been developed.The mechanical and hydraulic simulation models are established using MATLAB Simscape to analyze their kinetics and dynamics in the lifting and holding stages.The simulation findings are compared to the analytical calculation results in the steady state,and both methods show good agreement.In the early lifting stage,Model 1 produces greater force and discharges goods in the container faster than Model 2.Meanwhile,Model 2 reaches a higher force and ejects goods from the container cleaner than its counterpart at the end lifting stage.The established simulation models can consider the effects of dynamic loads due to inertial moments and forces generated during the system operation.It is crucial in studying,designing,and optimizing the structure of hydraulic-mechanical systems.
基金supported by the Project of Qinghai Science&Technology Department(Grant No.2021-ZJ-956Q).
文摘Artificial vegetation restoration is the main measure for vegetation restoration and soil and water conservation in alpine mine dumps on the Qinghai-Tibet Plateau,China.However,there are few reports on the dynamic changes and the influencing factors of the soil reinforcement effect of plant species after artificial vegetation restoration under different recovery periods.We selected dump areas of the Delni Copper Mine in Qinghai Province,China to study the relationship between the shear strength and the peak displacement of the root-soil composite on the slope during the recovery period,and the influence of the root traits and soil physical properties on the shear resistance characteristics of the root-soil composite via in situ direct shear tests.The results indicate that the shear strength and peak displacement of the rooted soil initially decreased and then increased with the increase of the recovery period.The shear strength of the rooted soil and the recovery period exhibited a quadratic function relationship.There is no significant function relationship between the peak displacement and the recovery period.Significant positive correlations(P<0.05)exists between the shear strength of the root-soil composite and the root biomass density,root volume density,and root area ratio,and they show significant linear correlations(P<0.05).There are no significant correlations(P>0.05)between the shear strength of the root-soil composite and the root length density,and the root volume ratio of the coarse roots to the fine roots.A significant negative linear correlation(P<0.05)exists between the peak displacement of the rooted soil and the coarse-grain content,but no significant correlations(P>0.05)with the root traits,other soil physical property indices(the moisture content and dry density of the soil),and slope gradient.The coarse-grain content is the main factor controlling the peak displacement of the rooted soil.
基金funded by the National Key R&D Program of China (Grant No. 2021YFB3901402)the Fundamental Research Funds for the Central Universities (Project No. 2022CDJKYJH037)。
文摘Landslide is the second largest natural disaster after earthquake. It is of significance to study the evolution laws and failure mechanism of landslides based on its surface 3D deformation information. Based on the rainfall-triggered waste dump instability model test, we studied the failure mechanisms of the waste dump by integrating surface deformation and internal slope stress and proposed novel parameters for identifying landslide stability. We developed a noncontact measurement device, which can obtain millimeter-level 3D deformation data for surface scene in physical model test;Then we developed the similar materials and established a test model for a waste dump. Based on the failure characteristics of slope surface, internal stress of slope body and displacement contours during the whole process, we divided the slope instability process in model test into four stages: rainfall infiltration and surface erosion, shallow sliding, deep sliding, and overall instability. Based on the obtained surface deformation data, we calculated the volume change during slope instability process and compared it with the point displacement on slope surface. The results showed that the volume change can not only reflect the slow-ultra acceleration process of slope failure, but also fully reflect the above four stages and reduce the fluctuations caused by random factors. Finally, this paper proposed two stability identification parameters: the volume change rate above the slip surface and the relative velocity of volume change rate. According to the calculation of these two parameters in model test, they can be used for study the deformation and failure mechanism of slope stability.
文摘The plug-in hybrid vehicles(PHEV)technology can effectively address the issues of poor dynamics and higher energy consumption commonly found in traditional mining dump trucks.Meanwhile,plug-in hybrid electric trucks can achieve excellent fuel economy through efficient energy management strategies(EMS).Therefore,a series hybrid system is constructed based on a 100-ton mining dump truck in this paper.And inspired by the dynamic programming(DP)algorithm,a predictive equivalent consumption minimization strategy(P-ECMS)based on the DP optimization result is proposed.Based on the optimal control manifold and the SOC reference trajectory obtained by the DP algorithm,the P-ECMS strategy performs real-time stage parameter optimization to obtain the optimal equivalent factor(EF).Finally,applying the equivalent consumption minimization strategy(ECMS)realizes real-time control.The simulation results show that the equivalent fuel consumption of the P-ECMS strategy under the experimentally collected mining cycle conditions is 150.8 L/100 km,which is 10.9%less than that of the common CDCS strategy(169.3 L/100 km),and achieves 99.47%of the fuel saving effect of the DP strategy(150 L/100 km).
文摘The dump diffuser is an important component in advanced annular combustor, and its performance affects greatly the fluid field and pressure loss of the combustor. This paper presents the characteristics of the total pressure loss. Experiments and numerical simulations, keeping the inlet March number of prediffuser constant ( Ma =0 20), are carried out to obtain the regularity of the total pressure loss. It varies with the relative dump gap ( δ =1 2~3 0)by changing the position of prediffuser and combustor liner, respectively. Research shows that there exists the minimum total pressure loss ( σ *=1 6%~1 75%) when relative dump gap δ is about 1 8.
文摘In recent decades, international trade has evolved into a complex system of trade barriers to ensure the protection of domestic industry and its workers interests. However as tariffs have fallen and international trade tends to be free trade, countries have found another way of protecting domestic industries from foreign competition—non-tariff protection. Among them anti-dumping is the most controversial subject that is involved in the foreign trade. This theme will analyze the reason and effect of growing use anti-dumping measures by countries in recent decades and try to give some possible solutions.
文摘Low grade dumped limestone sample having high silica of 8.1%, 36.8% CaO, and 3% Al2O3 has been studied with the aim to reduce the silica level to below 3% for its utilization in iron making. Beneficiation study of the sample was initiated with desliming of the feed sample of -100 μm to remove the siliceous ultrafine particles and to improve the feed quality. Flotation study was carried out by column flotation technique varying the collector dosage, superficial air flow velocity and froth depth to assess their effect on silica reduction and CaO recovery. It was observed that increased collector dosage and superficial air velocity increases the recovery of CaO, and increase in the froth depth reduces the mass flow and silica content in the concentrate. The best result was found at 1.25 cm/sec superficial air velocity, 25 cm froth depth, 1.25 kgpt collector dosage and concentrate assayed 47.3% CaO, 2.8% silica with 72% CaO recovery.
文摘The changes of vegetation compositions, plant species diversity, species important value and succession of plant community were studied on waste dumps in Haizhou opencast coalmine which is located in the west of Liaoning Province, China (41°41(-42°56( N, 121°1(-122°56(E). Four kinds of terraces with different ages (5, 10, 20 and 40 years) were selected for investigation of plants. Total of 63 species of natural colonized plants were recorded on the waste dump and they belong to 23 families. The main families were Compositae (15 species), Fabaceae (11 species) and Leguminosae (8 species), which accounted for 54.0% of total species and play an important role in natural vegetation recovery in waste dump area. The dominant species on 5-, 10-, 20-, 40-year-old terraces were Tribulus terrestris + Echinochloa hispidula + Salsola collina, Echinochloa hispidula + Artemisia sieversiana + Artemisia scoparia, Echinochloa hispidula + Clinelymus dahuricus + Artemisia scoparia + Artemisia sieversiana + Melilotus officinalis, Clinelymus dahuricus+Phragmites communis + Echinochloa hispidula+ Setaria viridis, respectively. According to the important value of species calculated. It is determined that Tribulus terrestris can act as pioneer species on waste dump and Clinelymus dahuricus, Phragmites communis and Echinochloah hispidula are important dominant species in vegetation restoration in Haizhou opencast coalmine. The study results can provide scientific basis for selecting and disposing appropriately plant species and rehabilitating vegetation on waste dumps of coalmine.