The InGaAs/InAIAs/InP high electron mobility transistor (HEM:F) structures with lattice-matched and pseudo- morphic channels are grown by gas source molecular beam epitaxy. Effects of Si ^-doping condition and grow...The InGaAs/InAIAs/InP high electron mobility transistor (HEM:F) structures with lattice-matched and pseudo- morphic channels are grown by gas source molecular beam epitaxy. Effects of Si ^-doping condition and growth interruption on the electrical properties are investigated by changing the Si-cell temperature, doping time and growth process. It is found that the optimal Si ^-doping concentration (Nd) is about 5.0 x 1012 cm-2 and the use of growth interruption has a dramatic effect on the improvement of electrical properties. The material structure and crystal interface are analyzed by secondary ion mass spectroscopy and high resolution transmission elec- tron microscopy. An InGaAs/InAiAs/InP HEMT device with a gate length of lOOnm is fabricated. The device presents good pinch-off characteristics and the kink-effect of the device is trifling. In addition, the device exhibits fT = 249 GHa and fmax 〉 400 GHz.展开更多
Growth of In0.52Al0.48As epilayers on InP (100) substrates by molecular beam epitaxy at a wide range of substrate tempreatures (470~550℃) and at different Si doping levels has been carried out. Low temperature photol...Growth of In0.52Al0.48As epilayers on InP (100) substrates by molecular beam epitaxy at a wide range of substrate tempreatures (470~550℃) and at different Si doping levels has been carried out. Low temperature photoluminescence (PL) and double-axis X-ray diffraction (XRD) analyses shaw a strong dependence of the PL and XRD linewidths, XRD intensity ratio (Lepi/Isub), and lattice-mismatch on the substrate temperature. The X-ray diffraction peaks of samples grown at law temperatures show a composition of smaller peaks, indicating the presence of disorder due to alloy clustering. Raman scattering measurements of the same samples show an additional higher energy mode at 273 cm-1 in addition to the InAs-like and AlAs-like longitudinal-optic (LO) phonon modes. Samples doped with Si show an inverted S-shaped dependence of the PL peak energy variation with the temperature which weakens at high doping levels due to a possible reduction in the donor binding energy. Supported be observations of a reduction in both the AlAs-like and InAs-like LO phonon frequencies and a broadening of the LO phonon line shape as the doping level is increased, the PL intensity also shows in increasing degrees at higher doping levels, a temperature dependence which is characteristic of disordered and amorphous materials.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No 61434006
文摘The InGaAs/InAIAs/InP high electron mobility transistor (HEM:F) structures with lattice-matched and pseudo- morphic channels are grown by gas source molecular beam epitaxy. Effects of Si ^-doping condition and growth interruption on the electrical properties are investigated by changing the Si-cell temperature, doping time and growth process. It is found that the optimal Si ^-doping concentration (Nd) is about 5.0 x 1012 cm-2 and the use of growth interruption has a dramatic effect on the improvement of electrical properties. The material structure and crystal interface are analyzed by secondary ion mass spectroscopy and high resolution transmission elec- tron microscopy. An InGaAs/InAiAs/InP HEMT device with a gate length of lOOnm is fabricated. The device presents good pinch-off characteristics and the kink-effect of the device is trifling. In addition, the device exhibits fT = 249 GHa and fmax 〉 400 GHz.
文摘Growth of In0.52Al0.48As epilayers on InP (100) substrates by molecular beam epitaxy at a wide range of substrate tempreatures (470~550℃) and at different Si doping levels has been carried out. Low temperature photoluminescence (PL) and double-axis X-ray diffraction (XRD) analyses shaw a strong dependence of the PL and XRD linewidths, XRD intensity ratio (Lepi/Isub), and lattice-mismatch on the substrate temperature. The X-ray diffraction peaks of samples grown at law temperatures show a composition of smaller peaks, indicating the presence of disorder due to alloy clustering. Raman scattering measurements of the same samples show an additional higher energy mode at 273 cm-1 in addition to the InAs-like and AlAs-like longitudinal-optic (LO) phonon modes. Samples doped with Si show an inverted S-shaped dependence of the PL peak energy variation with the temperature which weakens at high doping levels due to a possible reduction in the donor binding energy. Supported be observations of a reduction in both the AlAs-like and InAs-like LO phonon frequencies and a broadening of the LO phonon line shape as the doping level is increased, the PL intensity also shows in increasing degrees at higher doping levels, a temperature dependence which is characteristic of disordered and amorphous materials.