An electroless ternary Ni-Sn-P transition layer with high corrosion resistance was applied for acid electroless nickel plating on magnesium alloys. The surface morphologies and microstructure of the traditional alkali...An electroless ternary Ni-Sn-P transition layer with high corrosion resistance was applied for acid electroless nickel plating on magnesium alloys. The surface morphologies and microstructure of the traditional alkaline electroless Ni-P and novel Ni-Sn-P transition layers were compared by SEM and XRD, and the bonding strengths between the transition layers and AZ31 magnesium alloys were tested. The corrosion resistance of the samples was analyzed by porosity test, potentiodynamic polarization, electrochemical impedance spectroscopy(EIS) in acid electroless solution at p H 4.5 and immersion test in 10% HCl. The results indicate that the transition layer is essential for acid electroless plating Ni-P coatings on magnesium alloys. Under the same thin thickness(-6 μm), the electroless Ni-Sn-P transition layer possesses superior properties to the traditional Ni-P transition layer, including high amorphization, smooth and dense surface without pores, enhanced bonding strength and corrosion resistance. Most importantly, acid electroless Ni-P coatings can be successfully deposited on magnesium alloys by using Ni-Sn-P transition layer.展开更多
After Sn/Pd activating, the SiCp/Al composite with 65% SiC (volume fraction) was coated by electroless Ni?P alloy plating. Surface morphology of the composite and its effect on the Ni?P alloy depositing process and bo...After Sn/Pd activating, the SiCp/Al composite with 65% SiC (volume fraction) was coated by electroless Ni?P alloy plating. Surface morphology of the composite and its effect on the Ni?P alloy depositing process and bonding action of Ni and P atoms in the Ni?P alloy were studied. The results show that inhomogeneous distribution of the Sn/Pd activating points results in preferential deposition of the Ni?P alloy particles on the Al alloy and rough SiC particle surfaces and in the etched caves. The Ni?P alloy film has an amorphous structure where chemical bonding between Ni and P atoms exists. After a continuous Ni?P alloy film formed, electroless Ni?P alloy plating is not affected by surface morphology and characteristics of the SiCp/Al composite any longer, but by the electroless plating process itself. The Ni?P alloy film follows linear growth kinetics with an activation energy of 68.44 kJ/mol.展开更多
In this article, a new type of Cu-Ti3SiC2 composite powder prepared using the electroless plating technique was introduced. The initial Ti3SiC2 particles are 11 μm in diameter on an average. The Cu plating was carrie...In this article, a new type of Cu-Ti3SiC2 composite powder prepared using the electroless plating technique was introduced. The initial Ti3SiC2 particles are 11 μm in diameter on an average. The Cu plating was carried out at middle temperature (62-65℃) with the application of ultrasonic agitation. The copper deposition rate was determined by measuring the weight gain of the powder after plating. It has been found that the pretreatment of Ti3SiC2 powder is very important to obtain copper nanoparticles on the surface of Ti3SiC2 The optimum procedure before plating aimed to add activated sites and the adjustment of the traditional composition of the electroless copper plating bath could decelerate the copper deposition rate to 0.8 gm/h. X-ray diffraction (XRD) indicates that the chemical composition of the plating layer is copper. SEM images show that the surface of the Ti3SiC2 particles is successfully coated with continuous copper layer. The wetting property between the copper matrix and Ti3SiC2 can be improved so as to increase the interfacial strength.展开更多
Photocatalytic water splitting is a promising method for hydrogen production.Numerous efficient photocatalysts have been synthesized and utilized.However,photocatalysts without a noble metal as the co-catalyst have be...Photocatalytic water splitting is a promising method for hydrogen production.Numerous efficient photocatalysts have been synthesized and utilized.However,photocatalysts without a noble metal as the co-catalyst have been rarely reported.Herein,a CoP co-catalyst-modified graphitic-C3N4(g-C3N4/CoP)is investigated for photocatalytic water splitting to produce H2.The g-C3N4/CoP composite is synthesized in two steps.The first step is related to thermal decomposition,and the second step involves an electroless plating technique.The photocatalytic activity for hydrogen evolution reactions of g-C3N4 is distinctly increased by loading the appropriate amount of CoP quantum dots(QDs).Among the as-synthesized samples,the optimized one(g-C3N4/CoP-4%)shows exceptional photocatalytic activity as compared with pristine g-C3N4,generating H2 at a rate of 936μmol g^-1 h^-1,even higher than that of g-C3N4 with 4 wt%Pt(665μmol g^-1 h^-1).The UV-visible and optical absorption behavior confirms that g-C3N4 has an absorption edge at 451 nm,but after being composited with CoP,g-C3N4/CoP-4%has an absorption edge at 497 nm.Furthermore,photoluminescence and photocurrent measurements confirm that loading CoP QDs to pristine g-C3N4 not only enhances the charge separation,but also improves the transfer of photogenerated e--h+pairs,thus improving the photocatalytic performance of the catalyst to generate H2.This work demonstrates a feasible strategy for the synthesis of highly efficient metal phosphide-loaded g-C3N4 for hydrogen generation.展开更多
The rare earths of ytterbium, lanthanum, praseodymium, neodymium and their binary mixtures were respectively added into the traditional electroless plating solution to prepare thin palladium film on the inner surface ...The rare earths of ytterbium, lanthanum, praseodymium, neodymium and their binary mixtures were respectively added into the traditional electroless plating solution to prepare thin palladium film on the inner surface of porous ceramic tube. The experimental results shows that the addition of rare earths increases palladium deposition rates and the binary mixtures are superior to the single rare earths and the mixture of ytterbium-lanthanum is the most efficient. Adding the mixture of ytterbium-lanthanum can also reduce the plating temperature by 10 ~ 20℃, shrink the metal crystal size and improve the film densification compared to those by traditional electroless plating. A thin palladium film with 5μm was prepared and the film made a highly pure hydrogen with a molar fraction of more than 99.97% from a H2-N2 gas mixture. More attentions were paid to analyze the physical and chemical behaviors of the rare earths in palladium film preparation.展开更多
The electroless deposition of Ni68-Fe10.5-P21.5 alloy has been investigated. The crystallization behavior of the deposit was comparatively studied by using differential scanning calorimetry and X-ray diffractometry. T...The electroless deposition of Ni68-Fe10.5-P21.5 alloy has been investigated. The crystallization behavior of the deposit was comparatively studied by using differential scanning calorimetry and X-ray diffractometry. The deposit transforms into a square Ni3P phase at 380. 0 ℃, then changes into a cubic FeNi3 phase at 490. 0 ℃. The microhardness, the size of the formed grains and the magnetic performance of the deposit increase with the increase of the heat treatment temperature below 500 ℃, then they decrease after this temperature. The effect of heat treatment time at 500 ℃ on the surface micromorphology, the structure and the magnetic performance of the deposit were also studied. The resuits show that with the increase of heat treatment time, the extent of crystallization of the deposit increases and the size of the formed grains becomes uniform. The results also show that the magnetic performance of the deposit under heat treatment for 40 min is maximal and then decreases with the increase of heat treatment time. The property change of the deposit is related to the crystal structure and the size of the formed grains of the deposit.展开更多
Molybdenum powders with a diameter of approximately 3 μn were coated with copper using the electroless plating technique in the pH 12.5-13 and temperature range of 55-75℃. The optimization of the electroless copper ...Molybdenum powders with a diameter of approximately 3 μn were coated with copper using the electroless plating technique in the pH 12.5-13 and temperature range of 55-75℃. The optimization of the electroless copper bath was evaluated through the combination of process parameters like pH and temperature. The optimized values ofpH and temperature were found to be 12.5 and 60℃, respectively, which attributes to the bright maroon color of the coating with an increase in weight of 46%. The uncoated and coated powders were subjected to microstructural studies using scanning electron microscope (SEM) and the phases were analyzed using X-my diffrction (XRD). An attempt was made to understand the growth mechanism of the coating. The diffusion-shrinkage autocatalytic model was suggested for copper growth on the molybdenum surface.展开更多
Ni-P coated diamond powder was fabricated successfully by using electroless plating.Effects of active solutions,plating time,reaction temperature,and the components of the plating bath on the Ni-P coating were investi...Ni-P coated diamond powder was fabricated successfully by using electroless plating.Effects of active solutions,plating time,reaction temperature,and the components of the plating bath on the Ni-P coating were investigated systematically.Moreover,a study on the thermal stability of Ni-P coated diamond under various atmospheres was performed.The results indicate that Pd atoms absorbed on the diamond surface as active sites can consequently enhance the deposition rate of Ni effectively.The optimized plating bath and reaction conditions improve both the plating speed and the coverage rate of Ni-P electroless plating on the diamond surface.Compared to the diamond substrate,the diamond coated with Ni-P films exhibits very high thermal stability and can be processed up to 900°C in air and 1300°C in protective atmosphere such as H2.展开更多
The scaling process of calcium carbonate on a low-energy heat transfer surface-electroless plating surface was investigated in a simulated cooling water system. Owing to the very low surface energy, the electroless p...The scaling process of calcium carbonate on a low-energy heat transfer surface-electroless plating surface was investigated in a simulated cooling water system. Owing to the very low surface energy, the electroless plating surface exhibited less scaling susceptibility. A longer induction period and a lower scaling rate were obtained on the low-energy surface compared to copper surface under identical conditions. The calcite particles obtained on the electroless plating surface during the induction period were larger in size than those on copper surface because fewer crystals formed and grew at the same time on the low-energy surface. With increasing surface temperature, the induction period reduced and the scaling rate increased for the low-energy surface. When initial surface temperature was fixed, an increase in fluid velocity would reduce the induction period and increase the scaling rate due to the diffusion effect. However, when the heat flux was fixed, an increase in fluid velocity would decrease the surfacetemperature, and lead to a longer induction period and a lower scaling rate. The removal experiments of calcium carbonate scale indicated that during post induction period, the detachment was not obvious, while during the induction period, apparent removal of crystal particles was obtained on the electroless plating surface owing to the weak adhesion force. The more frequently the transient high hydrodynamic force acted, the more the detached crystal particles were.展开更多
The binary mixture of Yb2O3-La2O3 was used as an additive to improve the traditional electroless plating for Pd-Ag co-deposition on the inside surface of a porous ceramic tube. The main attention were paid to investig...The binary mixture of Yb2O3-La2O3 was used as an additive to improve the traditional electroless plating for Pd-Ag co-deposition on the inside surface of a porous ceramic tube. The main attention were paid to investigating the effects of Yb2O3-La2O3 on Pd-Ag co-deposition rate, plating temperature, Ag content in film and Pd/Ag reduction potentials. The experimental results show that the co-deposition rate is increased by 63 % , the plating temperature is decreased by 10 ~ 20℃for obtaining the same co-deposition rate and the Ag content in film basically remains unchangeable when Yb2O3-La2O3 is added into the traditional electroless plating solution. The experiment also shows that Pd/Ag reduction potentials basically remain unchangeable with the binary rare earths based on the electrochemical mathematical models An inorganic composite membrane with alloy film of 76.8(mol)% Pd-23.2(mol) % Ag and the thickness of 7.7μm on the porous ceramic tube was prepared and the permeation fluxes of hydrogen and nitrogen through the membrane are 8.65×10-3 and 1.92×10-6m3·m-2·s-1 at 350℃and 0.3 MPa respectively.展开更多
In order to improve the surface performance and increase the lifetime of P 110 oil casing tube steel during operation, electroless plating was conducted to form Ni-P coating onto its surface. The surface morphology/el...In order to improve the surface performance and increase the lifetime of P 110 oil casing tube steel during operation, electroless plating was conducted to form Ni-P coating onto its surface. The surface morphology/element distribution and phase constitution of the Ni-P coating were analyzed using scanning electron microscope (SEM) equipped with energy dispersive spectrometry (EDS) and X-ray diffraction (XRD). Tribological and electrochemical measurement tests were applied to investigate the wear and corrosion resistance of P110 steel and the Ni-P coating. The results showed that a uniform and compact, high phosphorous Ni-P coating was formed. The obtained Ni-P coating indicated certain friction-reduction effect and lower mass loss during friction-wear tests. The Ni-P coating also exhibited higher corrosion resistance in comparison with bared P 110 steel. The obtained N i-P coating has significantly improved the surface performance of P110 steel.展开更多
Bi_(0.5)Sb_(1.5)Te_3/Cu core/shell powders were prepared by electroless plating and hydrogen reduction, and then sintered into bulk by spark plasma sintering. After electroless plating, with increasing the Cu cont...Bi_(0.5)Sb_(1.5)Te_3/Cu core/shell powders were prepared by electroless plating and hydrogen reduction, and then sintered into bulk by spark plasma sintering. After electroless plating, with increasing the Cu content, the electrical conductivity keeps enhancing significantly. The highest electrical conductivity reaches 3341 S/cm at room temperature in Bi0.5Sb1.5Te3 with 0.67 wt% Cu bulk sample. Moreover, the lowest lattice thermal conductivity reaches 0.32 W/m·K at 572.2 K in Bi0.5Sb1.5Te3 with 0.67 wt% Cu bulk sample, which is caused by the scattering of the rich-copper particles with different dimensions and massive grain boundaries. According to the results, the ZT values of all Bi0.5Sb1.5Te3/Cu bulk samples have improved in a high temperature range. In Bi0.5Sb1.5Te3 with 0.15 wt% Cu bulk sample, the highest ZT value at 573.4 K is 0.81. When the Cu content increases to 0.67 wt%, the highest ZT value reaches 0.85 at 622.2 K. Meanwhile, the microhardness increases with increasing the Cu content.展开更多
Technology and properties of electroless composite RE-Ni-B-SiC coatings have been investigated.Results show that stabilizer plys a decisive role in electroless composite Ni-B-SiC,the addition of appropriate quantity o...Technology and properties of electroless composite RE-Ni-B-SiC coatings have been investigated.Results show that stabilizer plys a decisive role in electroless composite Ni-B-SiC,the addition of appropriate quantity of RE(rare earth) into the Ni-B-SiC bath not only increases SiC content in composite coatings,their hardness and wear resistance but also improves crystalline fineness,Wear resistance increases with the increase of SiC.Hardness and wear resistance of composite coatings reach peak values a fter heat treatment at 4OO and 500℃ for 1h respectively.展开更多
Co-SiC core-shell powders were prepared by electroless plating. Scanning electron microscopy (SEM) revealed that Co-SiC core-shell powders were of nearly sphere-like shape and were about 0.3 pan. X-ray powder diffra...Co-SiC core-shell powders were prepared by electroless plating. Scanning electron microscopy (SEM) revealed that Co-SiC core-shell powders were of nearly sphere-like shape and were about 0.3 pan. X-ray powder diffraction (XRD) patterns showed that the cobalt powder was hexagonal crystallite. The complex dielectric constant and the complex permeability of Co-SiC core-shell powders-paraffin wax composite were measured by the rectangle wavegnide method. It showed that the dielectric loss was less than 0.1 and the magnetic loss was about 0.2 in 8.2-12.4 GHz for prepared Co-SiC core-shell comoosite oowders.展开更多
The stability of composite palladium membranes is of key importance for their application in hydrogen energy systems. Most of these membranes are prepared by electroless plating, and beforehand the substrate surface i...The stability of composite palladium membranes is of key importance for their application in hydrogen energy systems. Most of these membranes are prepared by electroless plating, and beforehand the substrate surface is activated by a SnCl_2–PdCl_2 process, but this process leads to a residue of Sn, which has been reported to be harmful to the membrane stability. In this work, the Pd/Al_2O_3 membranes were prepared by electroless plating after the SnCl_2–PdCl_2 process. The amount of Sn residue was adjusted by the SnCl_2 concentration, activation times and additional Sn(OH)_2coating. The surface morphology, cross-sectional structure and elemental composition were analyzed by scanning electron microscopy(SEM), metallography and energy dispersive spectroscopy(EDS), respectively. Hydrogen permeation stability of the prepared palladium membranes were tested at450–600 °C for 400 h. It was found that the higher SnCl_2 concentration and activation times enlarged the Sn residue amount and led to a lower initial selectivity but a better membrane stability. Moreover, the additional Sn(OH)_2coating on the Al_2O_3 substrate surface also greatly improved the membrane selectivity and stability.Therefore, it can be concluded that the Sn residue from the SnCl_2–PdCl_2 process cannot be a main factor for the stability of the composite palladium membranes at high temperatures.展开更多
A new type elctroless plating bath for solar control glass with large area uniform plating was presented on the basis of the relative Reynolds numbers , the temperature distribution calculation and the relative struct...A new type elctroless plating bath for solar control glass with large area uniform plating was presented on the basis of the relative Reynolds numbers , the temperature distribution calculation and the relative structure design. The experimental data of the distribution and change of temperature indicate that the mass transfer of the fluid was steady laminar flow and the difference of the maximum temperature was less than 0 5℃ in glass dipping region of 1000×200×1000mm.展开更多
This research aims to use several kind of rare earth oxides, such as Nd2O3, Yb2O3, Ce2O3 and La2O3, to improve the electroless plating and electroplating processes for surface metallization of quartz optical fiber (si...This research aims to use several kind of rare earth oxides, such as Nd2O3, Yb2O3, Ce2O3 and La2O3, to improve the electroless plating and electroplating processes for surface metallization of quartz optical fiber (silicon fiber) for its practical uses. The effects of the rare earth oxides on the deposition rate of Ni-P-B, the stability of the plating solution and the surface property of the film were investigated and the comparisons of their behaviours were made. The effects of rare earth oxide of La2O3 on the hardness and surface property of the Ni film prepared by electroplating process were studied. The surface morphonogies, compositions and hardness of the Ni-P-B and Ni films were characterized and analyzed by SEM, MSM, ICP and DIMHM, respectively. The experimental results showed that Ce2O3 with the concentration of 4 mg·L-1 was the best one among the four rare earth oxides with suitable concentrations in increasing the deposition rate, enhancing the stability of the electroless plating solution and improving the surface property of the Ni-P-B film. The improvements of the hardness and surface property of the Ni film prepared by electroplating with adding La2O3 were discovered. No obvious influences of Ce2O3 and La2O3 on the compositions of Ni-P-B and Ce free in the Ni-P-B film were found because of its much more nagative deposition potential than those of the used reducing agents in this experiment. The total diameter of the quartz optical fiber with deposited Ni-P-B film and Ni film was about 1.7 mm, which could be satisfactorily for the practical uses of quartz optical fiber in many fields.展开更多
A simple chemical method was employed to coat carbon nanotubes with a layer of copper. Due to the hydrophobic nature, large surface curvature, small diameter and large aspect ratio, it is difficult to gain continuous ...A simple chemical method was employed to coat carbon nanotubes with a layer of copper. Due to the hydrophobic nature, large surface curvature, small diameter and large aspect ratio, it is difficult to gain continuous electroless plating layer on the surface of carbon nanotubes. In this paper, a series methods (oxidization, sensitization and activation) are used to add active sites before electroless plating, and the adjustment of the traditional composition of copper electroless plating bath and operating condition can decelerate electroless plating rate. The samples before and after coating were analyzed using transmission electron microscopy and energy-dispersive X-ray spectroscopy. The results showed that the surface of carbon nanotubes was successfully coated with continuous layer of copper, which lays a good foundation for applying carbon nanotubes in composites.展开更多
Pd/Ag/α-Al2O3 composite membranes were prepared by sequential electroless plating technique. The prepared membranes were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy disper...Pd/Ag/α-Al2O3 composite membranes were prepared by sequential electroless plating technique. The prepared membranes were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy, and inductively coupled plasma atomic emission spectroscopy techniques (ICP-AES). Effects of annealing time, Ag content, and air treatment on the hydrogen permeation flux and morphology of the alloys were investigated. The results of the investigation showed that the prepared type of tube had a good potential as substrate for membrane preparation. In addition, a uniform defect-free alloy was prepared by annealing at 550 ℃ in H2 atmosphere. The permeation results showed an increase in H2 permeation flux by increasing the Ag content and the annealing time. In addition, the air treatment of the prepared membranes at 400 ℃ for 1 h changed the morphology of the alloy and substantially enhanced the hydrogen flux.展开更多
An electroless plating nickel treatment was processed to improve the active behaviors and discharge capacities of Zr based AB 2 alloys. The effects of the nickel coating on the surface appearance, the structure of the...An electroless plating nickel treatment was processed to improve the active behaviors and discharge capacities of Zr based AB 2 alloys. The effects of the nickel coating on the surface appearance, the structure of the alloy powders and the electrode characteristics were investigated. It is found that the Ni rich layer formed through electroless plating nickel treatment plays an important role on the initial activation property and the discharge capacity of Zr based alloy. The optimal content of electroless plating nickel is about 15%, and the discharge capacity of the electrode can be increased to 400?mA·h·g -1 after 6 cycles. Although coated nickel is beneficial for quick activation and discharge capacity, excessive electroless plating nickel can result in a decreased discharge capacity.展开更多
基金Project(20120407)supported by the Science and Technology Key Development Plan of Jilin Province,China
文摘An electroless ternary Ni-Sn-P transition layer with high corrosion resistance was applied for acid electroless nickel plating on magnesium alloys. The surface morphologies and microstructure of the traditional alkaline electroless Ni-P and novel Ni-Sn-P transition layers were compared by SEM and XRD, and the bonding strengths between the transition layers and AZ31 magnesium alloys were tested. The corrosion resistance of the samples was analyzed by porosity test, potentiodynamic polarization, electrochemical impedance spectroscopy(EIS) in acid electroless solution at p H 4.5 and immersion test in 10% HCl. The results indicate that the transition layer is essential for acid electroless plating Ni-P coatings on magnesium alloys. Under the same thin thickness(-6 μm), the electroless Ni-Sn-P transition layer possesses superior properties to the traditional Ni-P transition layer, including high amorphization, smooth and dense surface without pores, enhanced bonding strength and corrosion resistance. Most importantly, acid electroless Ni-P coatings can be successfully deposited on magnesium alloys by using Ni-Sn-P transition layer.
基金Project(2014DFA50860)supported by International Science&Technology Cooperation Program of China
文摘After Sn/Pd activating, the SiCp/Al composite with 65% SiC (volume fraction) was coated by electroless Ni?P alloy plating. Surface morphology of the composite and its effect on the Ni?P alloy depositing process and bonding action of Ni and P atoms in the Ni?P alloy were studied. The results show that inhomogeneous distribution of the Sn/Pd activating points results in preferential deposition of the Ni?P alloy particles on the Al alloy and rough SiC particle surfaces and in the etched caves. The Ni?P alloy film has an amorphous structure where chemical bonding between Ni and P atoms exists. After a continuous Ni?P alloy film formed, electroless Ni?P alloy plating is not affected by surface morphology and characteristics of the SiCp/Al composite any longer, but by the electroless plating process itself. The Ni?P alloy film follows linear growth kinetics with an activation energy of 68.44 kJ/mol.
文摘In this article, a new type of Cu-Ti3SiC2 composite powder prepared using the electroless plating technique was introduced. The initial Ti3SiC2 particles are 11 μm in diameter on an average. The Cu plating was carried out at middle temperature (62-65℃) with the application of ultrasonic agitation. The copper deposition rate was determined by measuring the weight gain of the powder after plating. It has been found that the pretreatment of Ti3SiC2 powder is very important to obtain copper nanoparticles on the surface of Ti3SiC2 The optimum procedure before plating aimed to add activated sites and the adjustment of the traditional composition of the electroless copper plating bath could decelerate the copper deposition rate to 0.8 gm/h. X-ray diffraction (XRD) indicates that the chemical composition of the plating layer is copper. SEM images show that the surface of the Ti3SiC2 particles is successfully coated with continuous copper layer. The wetting property between the copper matrix and Ti3SiC2 can be improved so as to increase the interfacial strength.
基金supported by the National Natural Science Foundation of China(51602207)the Doctoral Scientific Research Foundation of Liaoning Province(20170520011)+3 种基金the Program for Liaoning Excellent Talents in Universities(LR2017074)the Open Project Program of the State Key Laboratory of Photocatalysis on Energy and Environment(SKLPEE-201810)Fuzhou University,the Scientific Research Project of the Educational Department of Liaoning Province(LQN201712)Shenyang Excellent Talents in Universities(RC180211)~~
文摘Photocatalytic water splitting is a promising method for hydrogen production.Numerous efficient photocatalysts have been synthesized and utilized.However,photocatalysts without a noble metal as the co-catalyst have been rarely reported.Herein,a CoP co-catalyst-modified graphitic-C3N4(g-C3N4/CoP)is investigated for photocatalytic water splitting to produce H2.The g-C3N4/CoP composite is synthesized in two steps.The first step is related to thermal decomposition,and the second step involves an electroless plating technique.The photocatalytic activity for hydrogen evolution reactions of g-C3N4 is distinctly increased by loading the appropriate amount of CoP quantum dots(QDs).Among the as-synthesized samples,the optimized one(g-C3N4/CoP-4%)shows exceptional photocatalytic activity as compared with pristine g-C3N4,generating H2 at a rate of 936μmol g^-1 h^-1,even higher than that of g-C3N4 with 4 wt%Pt(665μmol g^-1 h^-1).The UV-visible and optical absorption behavior confirms that g-C3N4 has an absorption edge at 451 nm,but after being composited with CoP,g-C3N4/CoP-4%has an absorption edge at 497 nm.Furthermore,photoluminescence and photocurrent measurements confirm that loading CoP QDs to pristine g-C3N4 not only enhances the charge separation,but also improves the transfer of photogenerated e--h+pairs,thus improving the photocatalytic performance of the catalyst to generate H2.This work demonstrates a feasible strategy for the synthesis of highly efficient metal phosphide-loaded g-C3N4 for hydrogen generation.
基金Project supported by Science and Technology Committee of Jiangxi Province
文摘The rare earths of ytterbium, lanthanum, praseodymium, neodymium and their binary mixtures were respectively added into the traditional electroless plating solution to prepare thin palladium film on the inner surface of porous ceramic tube. The experimental results shows that the addition of rare earths increases palladium deposition rates and the binary mixtures are superior to the single rare earths and the mixture of ytterbium-lanthanum is the most efficient. Adding the mixture of ytterbium-lanthanum can also reduce the plating temperature by 10 ~ 20℃, shrink the metal crystal size and improve the film densification compared to those by traditional electroless plating. A thin palladium film with 5μm was prepared and the film made a highly pure hydrogen with a molar fraction of more than 99.97% from a H2-N2 gas mixture. More attentions were paid to analyze the physical and chemical behaviors of the rare earths in palladium film preparation.
文摘The electroless deposition of Ni68-Fe10.5-P21.5 alloy has been investigated. The crystallization behavior of the deposit was comparatively studied by using differential scanning calorimetry and X-ray diffractometry. The deposit transforms into a square Ni3P phase at 380. 0 ℃, then changes into a cubic FeNi3 phase at 490. 0 ℃. The microhardness, the size of the formed grains and the magnetic performance of the deposit increase with the increase of the heat treatment temperature below 500 ℃, then they decrease after this temperature. The effect of heat treatment time at 500 ℃ on the surface micromorphology, the structure and the magnetic performance of the deposit were also studied. The resuits show that with the increase of heat treatment time, the extent of crystallization of the deposit increases and the size of the formed grains becomes uniform. The results also show that the magnetic performance of the deposit under heat treatment for 40 min is maximal and then decreases with the increase of heat treatment time. The property change of the deposit is related to the crystal structure and the size of the formed grains of the deposit.
文摘Molybdenum powders with a diameter of approximately 3 μn were coated with copper using the electroless plating technique in the pH 12.5-13 and temperature range of 55-75℃. The optimization of the electroless copper bath was evaluated through the combination of process parameters like pH and temperature. The optimized values ofpH and temperature were found to be 12.5 and 60℃, respectively, which attributes to the bright maroon color of the coating with an increase in weight of 46%. The uncoated and coated powders were subjected to microstructural studies using scanning electron microscope (SEM) and the phases were analyzed using X-my diffrction (XRD). An attempt was made to understand the growth mechanism of the coating. The diffusion-shrinkage autocatalytic model was suggested for copper growth on the molybdenum surface.
基金supported by the National Natural Science Foundation of China (No.50774005)
文摘Ni-P coated diamond powder was fabricated successfully by using electroless plating.Effects of active solutions,plating time,reaction temperature,and the components of the plating bath on the Ni-P coating were investigated systematically.Moreover,a study on the thermal stability of Ni-P coated diamond under various atmospheres was performed.The results indicate that Pd atoms absorbed on the diamond surface as active sites can consequently enhance the deposition rate of Ni effectively.The optimized plating bath and reaction conditions improve both the plating speed and the coverage rate of Ni-P electroless plating on the diamond surface.Compared to the diamond substrate,the diamond coated with Ni-P films exhibits very high thermal stability and can be processed up to 900°C in air and 1300°C in protective atmosphere such as H2.
基金the National Natural Science Foundation of China (No. 29776008)
文摘The scaling process of calcium carbonate on a low-energy heat transfer surface-electroless plating surface was investigated in a simulated cooling water system. Owing to the very low surface energy, the electroless plating surface exhibited less scaling susceptibility. A longer induction period and a lower scaling rate were obtained on the low-energy surface compared to copper surface under identical conditions. The calcite particles obtained on the electroless plating surface during the induction period were larger in size than those on copper surface because fewer crystals formed and grew at the same time on the low-energy surface. With increasing surface temperature, the induction period reduced and the scaling rate increased for the low-energy surface. When initial surface temperature was fixed, an increase in fluid velocity would reduce the induction period and increase the scaling rate due to the diffusion effect. However, when the heat flux was fixed, an increase in fluid velocity would decrease the surfacetemperature, and lead to a longer induction period and a lower scaling rate. The removal experiments of calcium carbonate scale indicated that during post induction period, the detachment was not obvious, while during the induction period, apparent removal of crystal particles was obtained on the electroless plating surface owing to the weak adhesion force. The more frequently the transient high hydrodynamic force acted, the more the detached crystal particles were.
基金Project supported by Science and Technology Committee of Jiangxi Province
文摘The binary mixture of Yb2O3-La2O3 was used as an additive to improve the traditional electroless plating for Pd-Ag co-deposition on the inside surface of a porous ceramic tube. The main attention were paid to investigating the effects of Yb2O3-La2O3 on Pd-Ag co-deposition rate, plating temperature, Ag content in film and Pd/Ag reduction potentials. The experimental results show that the co-deposition rate is increased by 63 % , the plating temperature is decreased by 10 ~ 20℃for obtaining the same co-deposition rate and the Ag content in film basically remains unchangeable when Yb2O3-La2O3 is added into the traditional electroless plating solution. The experiment also shows that Pd/Ag reduction potentials basically remain unchangeable with the binary rare earths based on the electrochemical mathematical models An inorganic composite membrane with alloy film of 76.8(mol)% Pd-23.2(mol) % Ag and the thickness of 7.7μm on the porous ceramic tube was prepared and the permeation fluxes of hydrogen and nitrogen through the membrane are 8.65×10-3 and 1.92×10-6m3·m-2·s-1 at 350℃and 0.3 MPa respectively.
基金Funded by the China Postdoctoral Science Foundation(No.2012M520604)the Natural Science Foundation for Young Scientists of Shanxi Province(No.2013021013-2)
文摘In order to improve the surface performance and increase the lifetime of P 110 oil casing tube steel during operation, electroless plating was conducted to form Ni-P coating onto its surface. The surface morphology/element distribution and phase constitution of the Ni-P coating were analyzed using scanning electron microscope (SEM) equipped with energy dispersive spectrometry (EDS) and X-ray diffraction (XRD). Tribological and electrochemical measurement tests were applied to investigate the wear and corrosion resistance of P110 steel and the Ni-P coating. The results showed that a uniform and compact, high phosphorous Ni-P coating was formed. The obtained Ni-P coating indicated certain friction-reduction effect and lower mass loss during friction-wear tests. The Ni-P coating also exhibited higher corrosion resistance in comparison with bared P 110 steel. The obtained N i-P coating has significantly improved the surface performance of P110 steel.
基金the National Natural Science Foundation of China(No.51371073)
文摘Bi_(0.5)Sb_(1.5)Te_3/Cu core/shell powders were prepared by electroless plating and hydrogen reduction, and then sintered into bulk by spark plasma sintering. After electroless plating, with increasing the Cu content, the electrical conductivity keeps enhancing significantly. The highest electrical conductivity reaches 3341 S/cm at room temperature in Bi0.5Sb1.5Te3 with 0.67 wt% Cu bulk sample. Moreover, the lowest lattice thermal conductivity reaches 0.32 W/m·K at 572.2 K in Bi0.5Sb1.5Te3 with 0.67 wt% Cu bulk sample, which is caused by the scattering of the rich-copper particles with different dimensions and massive grain boundaries. According to the results, the ZT values of all Bi0.5Sb1.5Te3/Cu bulk samples have improved in a high temperature range. In Bi0.5Sb1.5Te3 with 0.15 wt% Cu bulk sample, the highest ZT value at 573.4 K is 0.81. When the Cu content increases to 0.67 wt%, the highest ZT value reaches 0.85 at 622.2 K. Meanwhile, the microhardness increases with increasing the Cu content.
文摘Technology and properties of electroless composite RE-Ni-B-SiC coatings have been investigated.Results show that stabilizer plys a decisive role in electroless composite Ni-B-SiC,the addition of appropriate quantity of RE(rare earth) into the Ni-B-SiC bath not only increases SiC content in composite coatings,their hardness and wear resistance but also improves crystalline fineness,Wear resistance increases with the increase of SiC.Hardness and wear resistance of composite coatings reach peak values a fter heat treatment at 4OO and 500℃ for 1h respectively.
基金This work was financially supported by the Science Fund for Distinguished Young Scholars of Henan Province, China (No. 0512002400)
文摘Co-SiC core-shell powders were prepared by electroless plating. Scanning electron microscopy (SEM) revealed that Co-SiC core-shell powders were of nearly sphere-like shape and were about 0.3 pan. X-ray powder diffraction (XRD) patterns showed that the cobalt powder was hexagonal crystallite. The complex dielectric constant and the complex permeability of Co-SiC core-shell powders-paraffin wax composite were measured by the rectangle wavegnide method. It showed that the dielectric loss was less than 0.1 and the magnetic loss was about 0.2 in 8.2-12.4 GHz for prepared Co-SiC core-shell comoosite oowders.
基金Supported by the National High Technology Research and Development Program of China(863 Program,2009AA05ZI03)the Natural Science Foundation of Jiangsu Province(BK 20130940,BK 20130916)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘The stability of composite palladium membranes is of key importance for their application in hydrogen energy systems. Most of these membranes are prepared by electroless plating, and beforehand the substrate surface is activated by a SnCl_2–PdCl_2 process, but this process leads to a residue of Sn, which has been reported to be harmful to the membrane stability. In this work, the Pd/Al_2O_3 membranes were prepared by electroless plating after the SnCl_2–PdCl_2 process. The amount of Sn residue was adjusted by the SnCl_2 concentration, activation times and additional Sn(OH)_2coating. The surface morphology, cross-sectional structure and elemental composition were analyzed by scanning electron microscopy(SEM), metallography and energy dispersive spectroscopy(EDS), respectively. Hydrogen permeation stability of the prepared palladium membranes were tested at450–600 °C for 400 h. It was found that the higher SnCl_2 concentration and activation times enlarged the Sn residue amount and led to a lower initial selectivity but a better membrane stability. Moreover, the additional Sn(OH)_2coating on the Al_2O_3 substrate surface also greatly improved the membrane selectivity and stability.Therefore, it can be concluded that the Sn residue from the SnCl_2–PdCl_2 process cannot be a main factor for the stability of the composite palladium membranes at high temperatures.
文摘A new type elctroless plating bath for solar control glass with large area uniform plating was presented on the basis of the relative Reynolds numbers , the temperature distribution calculation and the relative structure design. The experimental data of the distribution and change of temperature indicate that the mass transfer of the fluid was steady laminar flow and the difference of the maximum temperature was less than 0 5℃ in glass dipping region of 1000×200×1000mm.
基金the State Special Programs for 973 Key Foundamental Pre-Research (2005cca04300)
文摘This research aims to use several kind of rare earth oxides, such as Nd2O3, Yb2O3, Ce2O3 and La2O3, to improve the electroless plating and electroplating processes for surface metallization of quartz optical fiber (silicon fiber) for its practical uses. The effects of the rare earth oxides on the deposition rate of Ni-P-B, the stability of the plating solution and the surface property of the film were investigated and the comparisons of their behaviours were made. The effects of rare earth oxide of La2O3 on the hardness and surface property of the Ni film prepared by electroplating process were studied. The surface morphonogies, compositions and hardness of the Ni-P-B and Ni films were characterized and analyzed by SEM, MSM, ICP and DIMHM, respectively. The experimental results showed that Ce2O3 with the concentration of 4 mg·L-1 was the best one among the four rare earth oxides with suitable concentrations in increasing the deposition rate, enhancing the stability of the electroless plating solution and improving the surface property of the Ni-P-B film. The improvements of the hardness and surface property of the Ni film prepared by electroplating with adding La2O3 were discovered. No obvious influences of Ce2O3 and La2O3 on the compositions of Ni-P-B and Ce free in the Ni-P-B film were found because of its much more nagative deposition potential than those of the used reducing agents in this experiment. The total diameter of the quartz optical fiber with deposited Ni-P-B film and Ni film was about 1.7 mm, which could be satisfactorily for the practical uses of quartz optical fiber in many fields.
文摘A simple chemical method was employed to coat carbon nanotubes with a layer of copper. Due to the hydrophobic nature, large surface curvature, small diameter and large aspect ratio, it is difficult to gain continuous electroless plating layer on the surface of carbon nanotubes. In this paper, a series methods (oxidization, sensitization and activation) are used to add active sites before electroless plating, and the adjustment of the traditional composition of copper electroless plating bath and operating condition can decelerate electroless plating rate. The samples before and after coating were analyzed using transmission electron microscopy and energy-dispersive X-ray spectroscopy. The results showed that the surface of carbon nanotubes was successfully coated with continuous layer of copper, which lays a good foundation for applying carbon nanotubes in composites.
文摘Pd/Ag/α-Al2O3 composite membranes were prepared by sequential electroless plating technique. The prepared membranes were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy, and inductively coupled plasma atomic emission spectroscopy techniques (ICP-AES). Effects of annealing time, Ag content, and air treatment on the hydrogen permeation flux and morphology of the alloys were investigated. The results of the investigation showed that the prepared type of tube had a good potential as substrate for membrane preparation. In addition, a uniform defect-free alloy was prepared by annealing at 550 ℃ in H2 atmosphere. The permeation results showed an increase in H2 permeation flux by increasing the Ag content and the annealing time. In addition, the air treatment of the prepared membranes at 400 ℃ for 1 h changed the morphology of the alloy and substantially enhanced the hydrogen flux.
文摘An electroless plating nickel treatment was processed to improve the active behaviors and discharge capacities of Zr based AB 2 alloys. The effects of the nickel coating on the surface appearance, the structure of the alloy powders and the electrode characteristics were investigated. It is found that the Ni rich layer formed through electroless plating nickel treatment plays an important role on the initial activation property and the discharge capacity of Zr based alloy. The optimal content of electroless plating nickel is about 15%, and the discharge capacity of the electrode can be increased to 400?mA·h·g -1 after 6 cycles. Although coated nickel is beneficial for quick activation and discharge capacity, excessive electroless plating nickel can result in a decreased discharge capacity.