期刊文献+
共找到187篇文章
< 1 2 10 >
每页显示 20 50 100
Hollow Metal-Organic Framework/MXene/Nanocellulose Composite Films for Giga/Terahertz Electromagnetic Shielding and Photothermal Conversion
1
作者 Tian Mai Lei Chen +2 位作者 Pei‑Lin Wang Qi Liu Ming‑Guo Ma 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期161-179,共19页
With the continuous advancement of communication technology,the escalating demand for electromagnetic shielding interference(EMI)materials with multifunctional and wideband EMI performance has become urgent.Controllin... With the continuous advancement of communication technology,the escalating demand for electromagnetic shielding interference(EMI)materials with multifunctional and wideband EMI performance has become urgent.Controlling the electrical and magnetic components and designing the EMI material structure have attracted extensive interest,but remain a huge challenge.Herein,we reported the alternating electromagnetic structure composite films composed of hollow metal-organic frameworks/layered MXene/nanocellulose(HMN)by alternating vacuum-assisted filtration process.The HMN composite films exhibit excellent EMI shielding effectiveness performance in the GHz frequency(66.8 dB at Kaband)and THz frequency(114.6 dB at 0.1-4.0 THz).Besides,the HMN composite films also exhibit a high reflection loss of 39.7 dB at 0.7 THz with an effective absorption bandwidth up to 2.1 THz.Moreover,HMN composite films show remarkable photothermal conversion performance,which can reach 104.6℃under 2.0 Sun and 235.4℃under 0.8 W cm^(−2),respectively.The unique micro-and macrostructural design structures will absorb more incident electromagnetic waves via interfacial polarization/multiple scattering and produce more heat energy via the local surface plasmon resonance effect.These features make the HMN composite film a promising candidate for advanced EMI devices for future 6G communication and the protection of electronic equipment in cold environments. 展开更多
关键词 Metal-organic frameworks MXene NANOCELLULOSE electromagnetic shielding Photothermal conversion
下载PDF
3D Printing of Periodic Porous Metamaterials for Tunable Electromagnetic Shielding Across Broad Frequencies
2
作者 Qinniu Lv Zilin Peng +5 位作者 Haoran Pei Xinxing Zhang Yinghong Chen Huarong Zhang Xu Zhu Shulong Wu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第12期533-552,共20页
The new-generation electronic components require a balance between electromagnetic interference shielding efficiency and open structure factors such as ventilation and heat dissipation.In addition,realizing the tunabl... The new-generation electronic components require a balance between electromagnetic interference shielding efficiency and open structure factors such as ventilation and heat dissipation.In addition,realizing the tunable shielding of porous shields over a wide range of wavelengths is even more challenging.In this study,the well-prepared thermoplastic polyurethane/carbon nanotubes composites were used to fabricate the novel periodic porous flexible metamaterials using fused deposition modeling 3D printing.Particularly,the investigation focuses on optimization of pore geometry,size,dislocation configuration and material thickness,thus establishing a clear correlation between structural parameters and shielding property.Both experimental and simulation results have validated the superior shielding performance of hexagon derived honeycomb structure over other designs,and proposed the failure shielding size(D_(f)≈λ/8-λ/5)and critical inclined angle(θf≈43°-48°),which could be used as new benchmarks for tunable electromagnetic shielding.In addition,the proper regulation of the material thickness could remarkably enhance the maximum shielding capability(85-95 dB)and absorption coefficient A(over 0.83).The final innovative design of the porous shielding box also exhibits good shielding effectiveness across a broad frequency range(over 2.4 GHz),opening up novel pathways for individualized and diversified shielding solutions. 展开更多
关键词 Polymeric component 3D printing Tunable electromagnetic shielding Periodic porous metamaterials Honeycomb pore structure
下载PDF
Multifunctional MXene/Carbon Nanotube Janus Film for Electromagnetic Shielding and Infrared Shielding/Detection in Harsh Environments
3
作者 Tufail Hassan Aamir Iqbal +14 位作者 Byungkwon Yoo Jun Young Jo Nilufer Cakmakci Shabbir Madad Naqvi Hyerim Kim Sungmin Jung Noushad Hussain Ujala Zafar Soo Yeong Cho Seunghwan Jeong Jaewoo Kim Jung Min Oh Sangwoon Park Youngjin Jeong Chong Min Koo 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第10期543-560,共18页
Multifunctional,flexible,and robust thin films capable of operating in demanding harsh temperature environments are crucial for various cutting-edge applications.This study presents a multifunctional Janus film integr... Multifunctional,flexible,and robust thin films capable of operating in demanding harsh temperature environments are crucial for various cutting-edge applications.This study presents a multifunctional Janus film integrating highly-crystalline Ti_(3)C_(2)T_(x) MXene and mechanically-robust carbon nanotube(CNT)film through strong hydrogen bonding.The hybrid film not only exhibits high electrical conductivity(4250 S cm^(-1)),but also demonstrates robust mechanical strength and durability in both extremely low and high temperature environments,showing exceptional resistance to thermal shock.This hybrid Janus film of 15μm thickness reveals remarkable multifunctionality,including efficient electromagnetic shielding effectiveness of 72 dB in X band frequency range,excellent infrared(IR)shielding capability with an average emissivity of 0.09(a minimal value of 0.02),superior thermal camouflage performance over a wide temperature range(−1 to 300℃)achieving a notable reduction in the radiated temperature by 243℃ against a background temperature of 300℃,and outstanding IR detection capability characterized by a 44%increase in resistance when exposed to 250 W IR radiation.This multifunctional MXene/CNT Janus film offers a feasible solution for electromagnetic shielding and IR shielding/detection under challenging conditions. 展开更多
关键词 MXene/carbon nanotube Janus film electromagnetic interference shielding Infrared shielding Thermal camouflage Infrared detection
下载PDF
Preparation and electromagnetic shielding properties of PET/rGO/SWCNT composite fabric
4
作者 ZHANG Xu LIU Xuejiao YAN Yehai 《合成纤维工业》 CAS 2024年第5期58-62,68,共6页
Graphene oxide(GO)with excellent dispersion ability can assist the dispersion of single-walled carbon nanotube(SWCNT)and promote the formation of uniform and stable GO/SWCNT coating liquid.The highly conductive polyet... Graphene oxide(GO)with excellent dispersion ability can assist the dispersion of single-walled carbon nanotube(SWCNT)and promote the formation of uniform and stable GO/SWCNT coating liquid.The highly conductive polyethylene terephthalate/reduced graphene oxide/SWCNT(PET/rGO/SWCNT)electromagnetic shielding composite fabric was successfully prepared by anchoring rGO/SWCNT on PET fabric via dip-coating piror to low-temperature thermal reduction.The results showed that the carboxyl groups and hydroxyl groups formed of hydrophilic-treated PET were conducive to the formation of hydrogen bonds with that of GO,which enhanced the interaction between PET fabric and GO/SWCNT coating;the loading of GO/SWCNT increased with the number of dip-coating,the unit area loading of rGO/SWCNT in the final composite fabric was 2.7 mg/cm^(2) after 10 dip-coating cycles and thermal reduction;the PET/rGO/SWCNT composite fabric had a continuous and dense conductive network,with a conductivity of up to 41.6 S/m and the average electromagnetic interference shielding effectiveness in X-band was 22 dB;the flexible PET/rGO/SWCNT composite fabric was not only easy to process,but also exhibited excellent conductivity and shielding efficiency,showing great potential in the application of electromagnetic shielding fabrics. 展开更多
关键词 electromagnetic interference shielding graphene oxide single-walled carbon nanotubes conductive fabric thermal reduction
下载PDF
An analysis and preliminary experiment of the discharge characteristics of RF ion source with electromagnetic shielding 被引量:1
5
作者 王娜 刘智民 +6 位作者 谢亚红 韦江龙 蒋才超 刘伟 彭旭峰 苏国建 谢俊炜 《Plasma Science and Technology》 SCIE EI CAS CSCD 2023年第4期210-218,共9页
Combined with two-dimensional(2D)and three-dimensional(3D)finite element analysis and preliminary experimental tests,the effects of size and placement of the electromagnetic shield of the radio-frequency(RF)ion source... Combined with two-dimensional(2D)and three-dimensional(3D)finite element analysis and preliminary experimental tests,the effects of size and placement of the electromagnetic shield of the radio-frequency(RF)ion source with two drivers on plasma parameters and RF power transfer efficiency are analyzed.It is found that the same input direction of the current is better for the RF ion source with multiple drivers.The electromagnetic shield(EMS)should be placed symmetrically around the drivers,which is beneficial for the plasma to distribute uniformly and symmetrically in both drivers.Furthermore,the bigger the EMS shield radius is the better generating a higher electron density.These results will be of guiding significance to the design of electromagnetic shielding for RF ion sources with a multi-driver. 展开更多
关键词 RF ion source electromagnetic shielding RF transfer efficiency
下载PDF
Green,Sustainable Architectural Bamboo with High Light Transmission and Excellent Electromagnetic Shielding as a Candidate for Energy-Saving Buildings 被引量:6
6
作者 Jing Wang Xinyu Wu +5 位作者 Yajing Wang Weiying Zhao Yue Zhao Ming Zhou Yan Wu Guangbin Ji 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第1期209-224,共16页
Currently,light-transmitting,energy-saving,and electromagnetic shielding materials are essential for reducing indoor energy consumption and improving the electromagnetic environment.Here,we developed a cellulose compo... Currently,light-transmitting,energy-saving,and electromagnetic shielding materials are essential for reducing indoor energy consumption and improving the electromagnetic environment.Here,we developed a cellulose composite with excellent optical transmittance that retained the natural shape and fiber structure of bamboo.The modified whole bamboo possessed an impressive optical transmittance of approximately 60%at 6.23 mm,illuminance of 1000 luminance(lux),water absorption stability(mass change rate less than 4%),longitudinal tensile strength(46.40 MPa),and surface properties(80.2 HD).These were attributed to not only the retention of the natural circular hollow structure of the bamboo rod on the macro,but also the complete bamboo fiber skeleton template impregnated with UV resin on the micro.Moreover,a multilayered device consisting of translucent whole bamboo,transparent bamboo sheets,and electromagnetic shielding film exhibited remarkable heat insulation and heat preservation performance as well as an electromagnetic shielding performance of 46.3 dB.The impressive optical transmittance,mechanical properties,thermal performance,and electromagnetic shielding abilities combined with the renewable and sustainable nature,as well as the fast and efficient manufacturing process,make this bamboo composite material suitable for effective application in transparent,energy-saving,and electromagnetic shielding buildings. 展开更多
关键词 electromagnetic interference shielding Biomass material TRANSMITTANCE ENERGY-SAVING BAMBOO
下载PDF
Preparation of electromagnetic shielding wood-metal composite by electroless nickel plating 被引量:12
7
作者 WANG Li-juan LI Jian LIU Yi-xing 《Journal of Forestry Research》 SCIE CAS CSCD 2006年第1期53-56,共4页
Electrical and electromagnetic shielding wood metal composite was prepared by using electroless nickel plating. The effects of solution amount, plating time and plating temperature on surface resistivity and electroma... Electrical and electromagnetic shielding wood metal composite was prepared by using electroless nickel plating. The effects of solution amount, plating time and plating temperature on surface resistivity and electromagnetic shielding effectiveness were investigated. And P content, microstructure and surface feature of layers obtained at different temperatures were analyzed by energy dispersion spectrometer (EDS), X-ray diffraction (XRI)) and scanning electron microscopy (SEM). The results showed that layers with higher electro-conductivity and electromagnetic shielding effectiveness were obtained under the optimum conditions that plating solution was 500 mL, plating time was 30 min and plating temperature was 62℃. The results showed by EDS analysis; that P content increased gradually in a small extent with plating temperature increased. It was showed by XRD and SEM analysis that layers plated at different temperatures were all microcrystalline structure and uniform and successive, which had noticeable metal luster. Those indicated that plating temperature had little influence on microstructure and surface feature under pH value invariable. 展开更多
关键词 Wood veneer Electroless plating COMPOSITE Surface resistivity electromagnetic shielding
下载PDF
Study on Electromagnetic Shielding Effectiveness of Ni-P-La Alloy Coatings 被引量:10
8
作者 宣天鹏 杨广舟 +1 位作者 杨礼林 琚正挺 《Journal of Rare Earths》 SCIE EI CAS CSCD 2006年第z2期389-392,共4页
Ni-P and Ni-P-La alloy coatings were prepared by electroplating. Electromagnetic shielding effectiveness under the different components of rare earth or the different operating conditions was tested by the network ana... Ni-P and Ni-P-La alloy coatings were prepared by electroplating. Electromagnetic shielding effectiveness under the different components of rare earth or the different operating conditions was tested by the network analyzer. The results show that electromagnetic shielding effectiveness of Ni-P-La alloy coating varies from 45 dB to 70 dB with the variety of the frequency from 10 MHz to 350 MHz. Corrosion of the salt fog impacts on the electromagnetic shielding effectiveness a little. A small amount of rare earth added to plating bath can not only enhance corrosion resistance of coating, but make electromagnetic shielding effectiveness increase by 1 ~ 5 dB. 展开更多
关键词 Ni-P-La alloys electromagnetic shielding shielding effectiveness ELECTROPLATING
下载PDF
A review on electromagnetic shielding magnesium alloys 被引量:8
9
作者 Lizi Liu Xianhua Chen Fusheng Pan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第6期1906-1921,共16页
Electromagnetic waves generated by electronic equipment are widely present in all living and working spaces because of the rapid development of electronic products and frequent use of digital systems.Electromagnetic s... Electromagnetic waves generated by electronic equipment are widely present in all living and working spaces because of the rapid development of electronic products and frequent use of digital systems.Electromagnetic shielding is an effective method of protection against these waves.Therefore,the demand for materials with high electromagnetic shielding properties has remarkably increased.Magnesium(Mg)alloys,as potential electromagnetic shielding materials,have sparked great interest worldwide.This review highlights the effects of grain size,texture,alloying elements and second phase on the shielding properties of Mg alloys.Recent progress on the shielding properties of Mg–Zn,Mg–Al,Mg–RE and other new shielding Mg alloys is then summarised,and the successful design of Mg alloys with superior electromagnetic shielding properties,such as Mg–Zn–Y–Ce–Zr,Mg–Sn–Zn–Ca–Ce,Mg–Gd–Y–Zn–Zr and Mg-based composite materials,is described.Finally,this review provides insights into the future development and applications of Mg alloys with superior shielding properties. 展开更多
关键词 Magnesium alloys electromagnetic shielding Mechanical properties MICROSTRUCTURE Influencing factors
下载PDF
Resonance suppression and electromagnetic shielding effectiveness improvement of an apertured rectangular cavity by using wall losses 被引量:6
10
作者 焦重庆 朱弘钊 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第8期404-409,共6页
The cavity-mode resonance effect could result in significant degradation of the shielding effectiveness (SE) of a shielding enclosure around its resonance frequencies. In this paper, the influence of coated wall los... The cavity-mode resonance effect could result in significant degradation of the shielding effectiveness (SE) of a shielding enclosure around its resonance frequencies. In this paper, the influence of coated wall loss on the suppression of the resonance effect is investigated. For this purpose, an equivalent circuit model is employed to analyze the SE of an apertured rectangular cavity coated with an inside layer of resistive material. The model is developed by extending Robinson's equivalent circuit model through incorporating the effect of the wall loss into both the propagation constant and the characteristic impedance of the waveguide. Calculation results show that the wall loss could lead to great improvement on the SE for frequencies near the resonance but almost no effect on the SE for frequencies far away from the resonance. 展开更多
关键词 electromagnetic shielding rectangular cavity wall losses resonance effect
下载PDF
Three-Dimensional Metacomposite Based on Different Ferromagnetic Microwire Spacing for Electromagnetic Shielding 被引量:4
11
作者 QIAO Ye JIANG Qian +2 位作者 UDDIN Azim QIN Faxiang WU Liwei 《Journal of Donghua University(English Edition)》 CAS 2022年第3期206-210,共5页
An electromagnetic shielding metacomposite based on the absorbing mechanism was prepared by weaving ferromagnetic microwires into the three-dimensional(3D)fabric.The influence of the ferromagnetic microwire spacing on... An electromagnetic shielding metacomposite based on the absorbing mechanism was prepared by weaving ferromagnetic microwires into the three-dimensional(3D)fabric.The influence of the ferromagnetic microwire spacing on electromagnetic shielding performance and the electromagnetic shielding mechanism of 3D metacomposites were studied.The total electromagnetic shielding performance increases with the increase of electromagnetic wave frequency.3D metacomposites based on the absorbing mechanism can avoid the secondary pollution of electromagnetic waves,and have great potential in military,civil,aerospace and other fields. 展开更多
关键词 three-dimensional(3D)metacomposite ferromagnetic microwire spacing electromagnetic shielding MECHANISM
下载PDF
Silver Hollow Microspheres: Large-scale Synthesis, Characterization and Electromagnetic Shielding Property 被引量:1
12
作者 王一龙 章桥新 +1 位作者 邵寒梅 官建国 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2010年第4期555-564,共10页
A facile and large-scale synthesis method to fabricate silver hollow microspheres with controllable morphologies and shell thickness is described using low-cost glass microspheres as templates. The method mainly invol... A facile and large-scale synthesis method to fabricate silver hollow microspheres with controllable morphologies and shell thickness is described using low-cost glass microspheres as templates. The method mainly involves two steps of the preparation of silver-coated glass microsphere core–shell particles by a controllable liquid reduced reaction of Ag[(NH3)2]+ solution, which only produces silver nanoparticles anchored on the surface of the thiolated glass microsphere templates, and the removal of glass microspheres by wet chemical etching with HF solution. The products are well characterized by field emitted scanning electron microscopy (SEM), transmitted electron microscopy (TEM), X-ray photoelectron spectra (XPS), X-ray diffraction (XRD) and energy dispersive X-ray (EDX) etc. The as-prepared core-shell particles and hollow particles have even and compact silver shells. The electromagnetic shielding coatings based on the silver hollow microspheres are demonstrated to have high conductivity, excellent shielding effectiveness and long durability, suggesting that the silver hollow microspheres obtained here are a novel light-weight electromagnetic shielding filler and will have extensive applications in the electromagnetic compatibility fields. 展开更多
关键词 electroless plating core-shell particles silver hollow microsphere electromagnetic shielding
下载PDF
The Effective Surface Metallization of Hollow Glass Microspheres for Flexible Electromagnetic Shielding Film
13
作者 BU Fan SONG Pengcheng +5 位作者 LIU Yahui WANG Jun WU Xiyuan LIU Lei XU Chuanhua ZHAGN Jianfeng 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2022年第5期779-786,共8页
The surface of hollow glass microspheres (HGMs) was roughened by a HCl+NH_(4)F strategy,which achieved a broken ratio as 16.10%,and then metallized by electroless plating by Co nanoparticles up to 90 wt% (abbreviated ... The surface of hollow glass microspheres (HGMs) was roughened by a HCl+NH_(4)F strategy,which achieved a broken ratio as 16.10%,and then metallized by electroless plating by Co nanoparticles up to 90 wt% (abbreviated as Co-HGMs).The average grain size of Co was measured to range from 0.4 to 0.5 μm.Then Co-HGMs were mixed with liquid silicone rubber and xylene,and cured on a perspex plate applicable for flexible electromagnetic shielding.By attentive parameter optimization,a film about 0.836 mm in thickness was obtained with a density of 0.729 g/cm^(3),showing a shielding effectiveness of 15.2 dB in the X-band (8.2-12.4 GHz) at room temperature,which was ascribed to the formation of a conductive network of Co-HGMs inside the film.Simultaneously,the tensile strength of 0.89 MPa at an elongation ratio of 194.5% was also obtained,showing good mechanical properties and tensile strength. 展开更多
关键词 hollow glass microspheres(HGMs) electroless plating electromagnetic shielding film flexible film lightweight materials
下载PDF
3D-structured carbon nanotube fibers as ultra-robust fabrics for adaptive electromagnetic shielding
14
作者 Dongping Li Ping Wang +5 位作者 Yuanyuan Li Zhenzhong Yong Kunjie Wu Yan Zhang Jin Wang Dongmei Hu 《Nano Research》 SCIE EI CSCD 2024年第9期8521-8530,共10页
Wireless communication technology is indispensable in our daily lives,but it also results in serious electromagnetic radiation pollution.Hence,developing smart electromagnetic interference shielding materials with adj... Wireless communication technology is indispensable in our daily lives,but it also results in serious electromagnetic radiation pollution.Hence,developing smart electromagnetic interference shielding materials with adjustable electromagnetic wave(EMW)responses holds significant promise for future electromagnetic shielding devices.In this study,we propose an electromagnetic shielding switch(ESS)characterized by tunable electromagnetic shielding performance achieved by fabricating a three-dimensional(3D)carbon nanotube-based spacer fabric(CNT-SF)and modifying CNT-SF with chemical vapor deposition(CCNT-SF).The CCNT-SF displays direction-dependent electrical conductivity by manipulating the warp and weft density,measuring 128 S/m transversely and 447 S/m vertically.This characteristic allows the CCNT-SF to transmit or shield EMW by adjusting the angle of EMW incidence through fabric rotation,resulting in anisotropic electromagnetic shielding performance(33 dB transversely and 87 dB vertically).This feature enables switchable shielding with an on/off ratio of 2.64.Furthermore,the unique 3D structure confers excellent mechanical properties on the fabric,with compressive strength reaching 120 kPa.As a flexible,lightweight,and mechanically robust ESS,the CCNT-SF holds promising prospects for mitigating the challenges of increasingly severe and intricate electromagnetic environments. 展开更多
关键词 carbon nanotube spacer fabric electromagnetic shielding impact resistance joule heating electromagnetic shielding switch
原文传递
Universal paradigm of ternary metacomposites with tunable epsilon-negative and epsilon-near-zero response for perfect electromagnetic shielding 被引量:1
15
作者 Yun-Peng Qu Yun-Lei Zhou +7 位作者 Yang Luo Yao Liu Jun-Fei Ding Yan-Li Chen Xiu Gong Jing-Liang Yang Qiong Peng Xiao-Si Qi 《Rare Metals》 SCIE EI CAS CSCD 2024年第2期796-809,共14页
CaCu_(3)Ti_(4)O_(12)(CCTO)ceramic nanocomposites incorporating graphene–carbon black(GRCB)fillers were fabricated by spark plasma sintering process.The percolative effects of conductive GRCB fillers on dielectric res... CaCu_(3)Ti_(4)O_(12)(CCTO)ceramic nanocomposites incorporating graphene–carbon black(GRCB)fillers were fabricated by spark plasma sintering process.The percolative effects of conductive GRCB fillers on dielectric response of GRCB/CCTO ternary metacomposites were systematically investigated.The weakly real permittivity(ε′)-negative response(ε′~−1×10^(2))was achieved which originated from weakly low-frequency plasmonic state of free carriers within constructed GRCB networks.With enhancing three-dimensional GRCB network,the plasma frequency of metacomposites increased while the damping factor decreased.Herein,theε′-negative values of metacomposites were tuned from−10^(2) to−10^(4) orders of magnitude andε′-near-zero(ENZ)frequencies from~142 to~340 MHz which substantially benefited from the moderate carrier concentration of GRCB dual fillers.The Drude model and equivalent circuit models were adopted to demonstrate dielectric and electrical characteristics.The obtained metacomposites show strong EM shielding effect along with enhanced plasmonic oscillation and even better achieving perfect EM shielding effect in ENZ media.This work achieves the tunableε′-negative andε′-near-zero response and more importantly clarifies its regulation mechanism in ceramic-based ternary metacomposites,which opens up the possibility of designing high-performance EM shielding materials based on metacomposites. 展开更多
关键词 Metacomposites Ceramic matrix composites Negative permittivity Epsilon-near-zero electromagnetic shielding
原文传递
Ultra-thin robust CNT@GC film integrating effective electromagnetic shielding and flexible Joule heating
16
作者 Ding Zhang Chunhui Wang +7 位作者 Meng Li Weixue Meng Shipeng Zhang Mengdan Yang Xinguang Huang Yingjiu Zhang Yuanyuan Shang Anyuan Cao 《Nano Research》 SCIE EI CSCD 2024年第5期3462-3471,共10页
The demand for lightweight,thin electromagnetic interference(EMI)shielding film materials with high shielding effectiveness(SE),excellent mechanical properties,and stability in complex environments is particularly pro... The demand for lightweight,thin electromagnetic interference(EMI)shielding film materials with high shielding effectiveness(SE),excellent mechanical properties,and stability in complex environments is particularly pronounced in the realm of flexible and portable electronic products.Here,we developed an ultra-thin film(CNT@GC)in which the glassy carbon(GC)layer wrapped around and welded carbon nanotubes(CNTs)to form a core-shell network structure,leading to exceptional tensile strength(327.2 MPa)and electrical conductivity(2.87×10^(5) S·m^(−1)).The CNT@GC film achieved EMI SE of 60 dB at a thickness of 2µm after post-acid treatment and high specific SE of 3.49×10^(5) dB·cm^(2)·g^(−1),with comprehensive properties surpassing those of the majority of previous shielding materials.Additionally,the CNT@GC film exhibited Joule heating capability,reaching a surface temperature of 135℃at 3 V with a fast thermal response of about 0.5 s,enabling anti-icing/de-icing functionality.This work presented a methodology for constructing a robust CNT@GC film with high EMI shielding performance and exceptional Joule heating capability,demonstrating immense potential in wearable devices,defense,and aerospace applications. 展开更多
关键词 core-shell structure ultra-thin lightweight film robust film electromagnetic shielding Joule heating
原文传递
3D‑Printed Carbon‑Based Conformal Electromagnetic Interference Shielding Module for Integrated Electronics 被引量:3
17
作者 Shaohong Shi Yuheng Jiang +5 位作者 Hao Ren Siwen Deng Jianping Sun Fangchao Cheng Jingjing Jing Yinghong Chen 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第5期87-101,共15页
Electromagnetic interference shielding(EMI SE)modules are the core com-ponent of modern electronics.However,the tra-ditional metal-based SE modules always take up indispensable three-dimensional space inside electroni... Electromagnetic interference shielding(EMI SE)modules are the core com-ponent of modern electronics.However,the tra-ditional metal-based SE modules always take up indispensable three-dimensional space inside electronics,posing a major obstacle to the integra-tion of electronics.The innovation of integrating 3D-printed conformal shielding(c-SE)modules with packaging materials onto core electronics offers infinite possibilities to satisfy ideal SE func-tion without occupying additional space.Herein,the 3D printable carbon-based inks with various proportions of graphene and carbon nanotube nanoparticles are well-formulated by manipulating their rheological peculiarity.Accordingly,the free-constructed architectures with arbitrarily-customized structure and multifunctionality are created via 3D printing.In particular,the SE performance of 3D-printed frame is up to 61.4 dB,simultaneously accompanied with an ultralight architecture of 0.076 g cm^(-3) and a superhigh specific shielding of 802.4 dB cm3 g^(-1).Moreover,as a proof-of-concept,the 3D-printed c-SE module is in situ integrated into core electronics,successfully replacing the traditional metal-based module to afford multiple functions for electromagnetic compatibility and thermal dissipa-tion.Thus,this scientific innovation completely makes up the blank for assembling carbon-based c-SE modules and sheds a brilliant light on developing the next generation of high-performance shielding materials with arbitrarily-customized structure for integrated electronics. 展开更多
关键词 3D printing Carbon-based nanoparticles Conformal electromagnetic interference shielding Integrated electronics
下载PDF
Self‑Assembly of Binderless MXene Aerogel for Multiple‑Scenario and Responsive Phase Change Composites with Ultrahigh Thermal Energy Storage Density and Exceptional Electromagnetic Interference Shielding 被引量:1
18
作者 Chuanbiao Zhu Yurong Hao +8 位作者 Hao Wu Mengni Chen Bingqing Quan Shuang Liu Xinpeng Hu Shilong Liu Qinghong Ji Xiang Lu Jinping Qu 《Nano-Micro Letters》 SCIE EI CSCD 2024年第3期367-382,共16页
The severe dependence of traditional phase change materials(PCMs)on the temperature-response and lattice deficiencies in versatility cannot satisfy demand for using such materials in complex application scenarios.Here... The severe dependence of traditional phase change materials(PCMs)on the temperature-response and lattice deficiencies in versatility cannot satisfy demand for using such materials in complex application scenarios.Here,we introduced metal ions to induce the self-assembly of MXene nanosheets and achieve their ordered arrangement by combining suction filtration and rapid freezing.Subsequently,a series of MXene/K^(+)/paraffin wax(PW)phase change composites(PCCs)were obtained via vacuum impregnation in molten PW.The prepared MXene-based PCCs showed versatile applications from macroscale technologies,successfully transforming solar,electric,and magnetic energy into thermal energy stored as latent heat in the PCCs.Moreover,due to the absence of binder in the MXene-based aerogel,MK3@PW exhibits a prime solar-thermal conversion efficiency(98.4%).Notably,MK3@PW can further convert the collected heat energy into electric energy through thermoelectric equipment and realize favorable solar-thermal-electric conversion(producing 206 mV of voltage with light radiation intensity of 200 mw cm^(−2)).An excellent Joule heat performance(reaching 105℃with an input voltage of 2.5 V)and responsive magnetic-thermal conversion behavior(a charging time of 11.8 s can achieve a thermal insulation effect of 285 s)for contactless thermotherapy were also demonstrated by the MK3@PW.Specifically,as a result of the ordered arrangement of MXene nanosheet self-assembly induced by potassium ions,MK3@PW PCC exhibits a higher electromagnetic shielding efficiency value(57.7 dB)than pure MXene aerogel/PW PCC(29.8 dB)with the same MXene mass.This work presents an opportunity for the multi-scene response and practical application of PCMs that satisfy demand of next-generation multifunctional PCCs. 展开更多
关键词 Self-assembly Multiple-scenario Phase change composites Thermal energy storage electromagnetic interference shielding
下载PDF
Layered Structural PBAT Composite Foams for Efficient Electromagnetic Interference Shielding 被引量:1
19
作者 Jianming Yang Hu Wang +2 位作者 Yali Zhang Hexin Zhang Junwei Gu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第2期273-286,共14页
The utilization of eco-friendly,lightweight,high-efficiency and high-absorbing electromagnetic interference(EMI)shielding composites is imperative in light of the worldwide promotion of sustainable manufacturing.In th... The utilization of eco-friendly,lightweight,high-efficiency and high-absorbing electromagnetic interference(EMI)shielding composites is imperative in light of the worldwide promotion of sustainable manufacturing.In this work,magnetic poly(butyleneadipate-coterephthalate)(PBAT)microspheres were firstly synthesized via phase separation method,then PBAT composite foams with layered structure was constructed through the supercritical carbon dioxide foaming and scraping techniques.The merits of integrating ferroferric oxideloaded multi-walled carbon nanotubes(Fe3O4@MWCNTs)nanoparticles,a microcellular framework,and a highly conductive silver layer have been judiciously orchestrated within this distinctive layered configuration.Microwaves are consumed throughout the process of“absorption-reflection-reabsorption”as much as possible,which greatly declines the secondary radiation pollution.The biodegradable PBAT composite foams achieved an EMI shielding effectiveness of up to 68 dB and an absorptivity of 77%,and authenticated favorable stabilization after the tape adhesion experiment. 展开更多
关键词 electromagnetic interference shielding Layered structure Supercritical carbon dioxide foaming Poly(butyleneadipateco-terephthalate) MICROCELLULAR
下载PDF
Flexible, Transparent and Conductive Metal Mesh Films with Ultra‑High FoM for Stretchable Heating and Electromagnetic Interference Shielding 被引量:1
20
作者 Zibo Chen Shaodian Yang +9 位作者 Junhua Huang Yifan Gu Weibo Huang Shaoyong Liu Zhiqiang Lin Zhiping Zeng Yougen Hu Zimin Chen Boru Yang Xuchun Gui 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第5期201-213,共13页
Despite the growing demand for transparent conductive films in smart and wearable electronics for electromagnetic interference(EMI)shielding,achieving a flexible EMI shielding film,while maintaining a high transmittan... Despite the growing demand for transparent conductive films in smart and wearable electronics for electromagnetic interference(EMI)shielding,achieving a flexible EMI shielding film,while maintaining a high transmittance remains a significant challenge.Herein,a flexible,transparent,and conductive copper(Cu)metal mesh film for EMI shielding is fabricated by self-forming crackle template method and electroplating technique.The Cu mesh film shows an ultra-low sheet resistance(0.18Ω□^(-1)),high transmittance(85.8%@550 nm),and ultra-high figure of merit(>13,000).It also has satisfactory stretchability and mechanical stability,with a resistance increases of only 1.3%after 1,000 bending cycles.As a stretchable heater(ε>30%),the saturation temperature of the film can reach over 110°C within 60 s at 1.00 V applied voltage.Moreover,the metal mesh film exhibits outstanding average EMI shielding effectiveness of 40.4 dB in the X-band at the thickness of 2.5μm.As a demonstration,it is used as a transparent window for shielding the wireless communication electromagnetic waves.Therefore,the flexible and transparent conductive Cu mesh film proposed in this work provides a promising candidate for the next-generation EMI shielding applications. 展开更多
关键词 Metal mesh Transparent conductive film Stretchable heater electromagnetic interference shielding
下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部