The dynamic deformation of harmonic vibration is used as the shape functions of the finite annular plate element, and sonic integration difficulties related to the Bessel's functions are solved in this paper. Then...The dynamic deformation of harmonic vibration is used as the shape functions of the finite annular plate element, and sonic integration difficulties related to the Bessel's functions are solved in this paper. Then the dynamic stiffness matrix of the finite annular plate element is established in closed form and checked by the direct stiffness method. The paper has given wide convcrage for decomposing the dynamic matrix into the power series of frequency square. By utilizing the axial symmetry of annular elements, the modes with different numbers of nodal diameters at s separately treated. Thus some terse and complete results are obtained as the foundation of structural characteristic analysis and dynamic response compulation.展开更多
Element stiffness equation is very important in structural analysis, and directly influences the accuracy of the results. At present, derivation method of element stiffness equation is relatively mature under ambient ...Element stiffness equation is very important in structural analysis, and directly influences the accuracy of the results. At present, derivation method of element stiffness equation is relatively mature under ambient temperature, and the elastic phrase of material stress-strain curve is generally adopted as physical equation in derivation. However, the material stress-strain relationship is very complicated at elevated temperature, and its form is not unique, which brings great difficulty to the derivation of element stiffness equation. Referring to the derivation method of element stiffness equation at ambient temperature, by using the continuous function of stress-strain-temperature at elevated temperature, and based on the principle of virtual work, the stiffness equation of space beam element and the formulas of stiffness matrix are derived in this paper, which provide basis for finite element analysis on structures at elevated temperature.展开更多
The factors influencing mechanical performances of viscoelastic material are studied.The proper finite element model for dynamical calculating the passive control of wind-earthquake resistance is constructed.A combine...The factors influencing mechanical performances of viscoelastic material are studied.The proper finite element model for dynamical calculating the passive control of wind-earthquake resistance is constructed.A combined element stiffness matrix of damper-brace system is deduced.At last,the theoretical deduction is verified by comparing the theoretical results with experimental ones.展开更多
文摘The dynamic deformation of harmonic vibration is used as the shape functions of the finite annular plate element, and sonic integration difficulties related to the Bessel's functions are solved in this paper. Then the dynamic stiffness matrix of the finite annular plate element is established in closed form and checked by the direct stiffness method. The paper has given wide convcrage for decomposing the dynamic matrix into the power series of frequency square. By utilizing the axial symmetry of annular elements, the modes with different numbers of nodal diameters at s separately treated. Thus some terse and complete results are obtained as the foundation of structural characteristic analysis and dynamic response compulation.
基金the National Natural Science Foundation of China(No.50578093)
文摘Element stiffness equation is very important in structural analysis, and directly influences the accuracy of the results. At present, derivation method of element stiffness equation is relatively mature under ambient temperature, and the elastic phrase of material stress-strain curve is generally adopted as physical equation in derivation. However, the material stress-strain relationship is very complicated at elevated temperature, and its form is not unique, which brings great difficulty to the derivation of element stiffness equation. Referring to the derivation method of element stiffness equation at ambient temperature, by using the continuous function of stress-strain-temperature at elevated temperature, and based on the principle of virtual work, the stiffness equation of space beam element and the formulas of stiffness matrix are derived in this paper, which provide basis for finite element analysis on structures at elevated temperature.
文摘The factors influencing mechanical performances of viscoelastic material are studied.The proper finite element model for dynamical calculating the passive control of wind-earthquake resistance is constructed.A combined element stiffness matrix of damper-brace system is deduced.At last,the theoretical deduction is verified by comparing the theoretical results with experimental ones.