In India most part receives 4 - 7 kWh of solar radiation per square meter per day with 200 - 250 sunny days in a year. Tamilnadu state also receives the highest annual radiation in India. In this paper, the grid conne...In India most part receives 4 - 7 kWh of solar radiation per square meter per day with 200 - 250 sunny days in a year. Tamilnadu state also receives the highest annual radiation in India. In this paper, the grid connected photovoltaic plant has a peak power of 80 KWp supplies electricity requirement of GRT IET campus during day time (7 hrs) and reduces load demand and generates useful data for future implementation of such PV plant projects in the Tamilnadu region. Photovoltaic plant was installed in April 2015, monitored during 6 months, and the performance ratio and the various power losses (power electronics, temperature, soiling, internal, network, grid availability and interconnection) were calculated. The PV plant supplied 64,182.86 KWh to the grid from April to September 2015, ranging from 11,510.900 to 10,200.9 kWh. The final yield ranged from 143.886 (h/d) to 127.51 (y/d), reference yield ranged from 201.6 (h/d) to 155.31 (h/d) and performance ratio ranged from 71.3% to 82.1%, for a duration of six months, it had given a performance ratio of 83.82%, system efficiency was 4.16% and the capacity factor of GRT IET Campus for six months was 18.26%. Payback period in years = 9 years 4 months, energy saving per year = 204,400 KWh, cost reduction per year = 1,737,400, Indian rupee = 26,197.30 USD and total CO<sub>2</sub> reductions per year = 102,200 tons CO<sub>2</sub>/year.展开更多
Mono-crystalline silicon solar cells with a passivated emitter rear contact(PERC)configuration have attracted extensive attention from both industry and scientific communities.A record efficiency of 24.06%on p-type si...Mono-crystalline silicon solar cells with a passivated emitter rear contact(PERC)configuration have attracted extensive attention from both industry and scientific communities.A record efficiency of 24.06%on p-type silicon wafer and mass production efficiency around 22%have been demonstrated,mainly due to its superior rear side passivation.In this work,the PERC solar cells with a p-type silicon wafer were numerically studied in terms of the surface passivation,quality of silicon wafer and metal electrodes.A rational way to achieve a 24%mass-production efficiency was proposed.Free energy loss analyses were adopted to address the loss sources with respect to the limit efficiency of 29%,which provides a guideline for the design and manufacture of a high-efficiency PERC solar cell.展开更多
文摘In India most part receives 4 - 7 kWh of solar radiation per square meter per day with 200 - 250 sunny days in a year. Tamilnadu state also receives the highest annual radiation in India. In this paper, the grid connected photovoltaic plant has a peak power of 80 KWp supplies electricity requirement of GRT IET campus during day time (7 hrs) and reduces load demand and generates useful data for future implementation of such PV plant projects in the Tamilnadu region. Photovoltaic plant was installed in April 2015, monitored during 6 months, and the performance ratio and the various power losses (power electronics, temperature, soiling, internal, network, grid availability and interconnection) were calculated. The PV plant supplied 64,182.86 KWh to the grid from April to September 2015, ranging from 11,510.900 to 10,200.9 kWh. The final yield ranged from 143.886 (h/d) to 127.51 (y/d), reference yield ranged from 201.6 (h/d) to 155.31 (h/d) and performance ratio ranged from 71.3% to 82.1%, for a duration of six months, it had given a performance ratio of 83.82%, system efficiency was 4.16% and the capacity factor of GRT IET Campus for six months was 18.26%. Payback period in years = 9 years 4 months, energy saving per year = 204,400 KWh, cost reduction per year = 1,737,400, Indian rupee = 26,197.30 USD and total CO<sub>2</sub> reductions per year = 102,200 tons CO<sub>2</sub>/year.
基金supported by the National Natural Science Foundation of China(No.61504155)。
文摘Mono-crystalline silicon solar cells with a passivated emitter rear contact(PERC)configuration have attracted extensive attention from both industry and scientific communities.A record efficiency of 24.06%on p-type silicon wafer and mass production efficiency around 22%have been demonstrated,mainly due to its superior rear side passivation.In this work,the PERC solar cells with a p-type silicon wafer were numerically studied in terms of the surface passivation,quality of silicon wafer and metal electrodes.A rational way to achieve a 24%mass-production efficiency was proposed.Free energy loss analyses were adopted to address the loss sources with respect to the limit efficiency of 29%,which provides a guideline for the design and manufacture of a high-efficiency PERC solar cell.