Traditional studies on integrated statistical process control and engineering process control (SPC-EPC) are based on linear autoregressive integrated moving average (ARIMA) time series models to describe the dynamic n...Traditional studies on integrated statistical process control and engineering process control (SPC-EPC) are based on linear autoregressive integrated moving average (ARIMA) time series models to describe the dynamic noise of the system.However,linear models sometimes are unable to model complex nonlinear autocorrelation.To solve this problem,this paper presents an integrated SPC-EPC method based on smooth transition autoregressive (STAR) time series model,and builds a minimum mean squared error (MMSE) controller as well as an integrated SPC-EPC control system.The performance of this method for checking the trend and sustained shift is analyzed.The simulation results indicate that this integrated SPC-EPC control method based on STAR model is effective in controlling complex nonlinear systems.展开更多
Noise pollution is one of the most significant harmful physical factors in the industrial and occupational environments.Due to the high costs of exposure to excessive noise;continuous sound evaluation,propose and impl...Noise pollution is one of the most significant harmful physical factors in the industrial and occupational environments.Due to the high costs of exposure to excessive noise;continuous sound evaluation,propose and implement noise control plans in occupational environments is necessary.Thus,the present study aimed to review environmental sound measurements,drawing of noise maps,and prioritizing the engineering noise control methods using the Analytic Hierarchy Process(AHP).This study was a descriptive-analytical study that aimed to assess occupational noises and present a control plan in the City Gas Stations(CGSs)of Kerman,Iran in 2021.The present study was done in two phases.In the first phase,six CGSs were investigated to measure and evaluate the noise.In addition,the noise map of a CGS was drawn using the Surfer software.Finally,the AHP was used in the second phase of the research to prioritize the control measures.In this phase,four criteria and ten alternatives were identified.According to first phase results,the sound pressure level(SPL)of the stations varied from 76 to 98 dBA.Besides,the majority of the studied stations had a sound level higher than 85 dBA(danger zone).The second phase of the study showed that out of the four evaluated criteria,the executability criterion had the highest impact and the cost criterion had the lowest impact on the selection of control measures with a weight of 0.587 and 0.052,respectively.Based on the results of prioritization of the alternatives,using a silenced regulator(weight of 0.223)and increasing the thickness of the tube(weight of 0.023)had the highest and lowest priorities among the alternatives,respectively.The use of engineering noise control methods such as using silenced regulators was the best way to control the noises of CGSs.Additionally;it is noteworthy that AHP is a practical method for prioritizing alternatives to achieve the most accurate decision-making.The results of AHP can be of great help to health and safety experts and managers in choosing the sound engineering control measures more precisely.展开更多
Control systems contribute to every aspect of modem society.In our life control systems exist in almost everywhere such as toasters,VCRs and smart phones.In science and technology,control systems already have widespre...Control systems contribute to every aspect of modem society.In our life control systems exist in almost everywhere such as toasters,VCRs and smart phones.In science and technology,control systems already have widespread applications,for example,steering ships,guiding missiles and driving driverless cars in the near future.In all the control systems,systems are the key platform where control should be put into.It is at the system level that control shows its values.Extracting and formulating展开更多
Regulation of optical properties and electronic structure of two-dimensionM layered ReS2 materials has attracted much attention due to their potential in electronic devices. However, the identification of structure tr...Regulation of optical properties and electronic structure of two-dimensionM layered ReS2 materials has attracted much attention due to their potential in electronic devices. However, the identification of structure transformation of monolayer ReS2 induced by strain is greatly lacking. In this work, the Raman spectra of monolayer ReS2 with external strain are determined theoretically based on the density function theory. Due to the lower structural symmetry, deformation induced by external strain can only regulate the Raman mode intensity but cannot lead to Raman mode shifts. Our calculations suggest that structural deformation induced by external strain can be identified by Raman scattering.展开更多
The reduction of fuel consumption in engines is always considered of vital importance.Along these lines,in this work,this goal was attained by optimizing the heavy-duty commercial vehicle engine control strategy.More ...The reduction of fuel consumption in engines is always considered of vital importance.Along these lines,in this work,this goal was attained by optimizing the heavy-duty commercial vehicle engine control strategy.More specifically,at first,a general first principles model for heavy-duty commercial vehicles and a transient fuel consumptionmodel for heavy-duty commercial vehicles were developed and the parameters were adjusted to fit the empirical data.The accuracy of the proposed modelwas demonstrated fromthe stage and the final results.Next,the control optimization problem resulting in low fuel consumption in heavy commercial vehicles was described,with minimal fuel usage as the optimization goal and throttle opening as the control variable.Then,a time-continuous engine management approach was assessed.Next,the factors that influence low fuel consumption in heavy-duty commercial vehicles were systematically examined.To reduce the computing complexity,the control strategies related to the time constraints of the engine were parametrized using three different methods.The most effective solution was obtained by applying a global optimization strategy because the constrained optimization problem was nonlinear.Finally,the effectiveness of the low-fuel consumption engine control strategy was demonstrated by comparing the simulated and field test results.展开更多
Networked control system is new hot-point in control engineering. A new delayed model for networked control systems is presented, based on which an LQR controller is designed. A method of delays estimation online is a...Networked control system is new hot-point in control engineering. A new delayed model for networked control systems is presented, based on which an LQR controller is designed. A method of delays estimation online is also given. For the difficulty on implementation of LQR in NCSs with time-variant delays, the Mamdani intelligent logic with LQR controller is addressed. The stability of the networked control system is also given. Simulation results prove that the novel controller can make the system stable and robustly preserve the performance in terms of time-variant delays.展开更多
Deep-water jacket skirt pile grouting is a critical step in ocean platform construction. Because of the complexity of the skirt pile structure and grouting pipeline, the calculation of grouting pressure and the contro...Deep-water jacket skirt pile grouting is a critical step in ocean platform construction. Because of the complexity of the skirt pile structure and grouting pipeline, the calculation of grouting pressure and the control of output pressure are involved. Beginning with the jacket skirt pile grouting construction scheme, grouting pressure is estimated on the basis of engineering fluid mechanics theory and variable frequency control technique. Programmable logic controller is the center of grouting pressure control system, which accomplishes the flow control of cement buffer tank, water buffer tank, additive buffer tank, cement metering tank, water metering tank, additive metering tank, mixer and agitator. Based on PROFIBUS-DP network, the output pressure of the slurry pump is controlled by the inverter. This method has been applied successfully in JZ20-2 Nor. high spot jacket platform construction.展开更多
Today’s vehicles use electronic control units(ECU) to control engine/transmission, body and other amenities. All the vehicle performance depends on a lot of physical values and influence factors. This leads to a larg...Today’s vehicles use electronic control units(ECU) to control engine/transmission, body and other amenities. All the vehicle performance depends on a lot of physical values and influence factors. This leads to a large number of control and regulation parameters in the ECU software. The ultimate objective of calibration work is the optimum determination of these parameters. Qualitatively excellent results can only be achieved in a shorter time by using a highly efficient calibration system. This paper provided an overview of a new calibration tool based on KWP2000 and gave an example calibration with this tool.展开更多
By means of circuit simulation, hardware of electronic control unit (ECU) of high pressure common-rail electronic control fuel system for diesel engine is designed. According to the system requirements for hardware ...By means of circuit simulation, hardware of electronic control unit (ECU) of high pressure common-rail electronic control fuel system for diesel engine is designed. According to the system requirements for hardware of ECU, signal-processing circuit of variable reluctance (VR) sensor, filter circuit for input signal, high voltage power circuit and driver and protection circuit of solenoid are simulated as emphases. Difficulties of wide scope of VR sensor output signal, efficiency of high voltage power and reliable and swift driver of solenoid are solved. The results of simulation show that the hardware meets the requirement of the fuel system. At the same time, circuit simulation can greatly increase quality of the design, alleviate design labor and shorten design time.展开更多
A three-way catalyst comprised novel oxygen storage components for emission control in natural gas powered engines was prepared. The addition of novel oxygen storage components to the Pd/γ-Al2O3 catalysts resulted ...A three-way catalyst comprised novel oxygen storage components for emission control in natural gas powered engines was prepared. The addition of novel oxygen storage components to the Pd/γ-Al2O3 catalysts resulted in improved activities of the fresh and aged catalyst by lowering the light-off temperature for methane in natural gas engines exhaust.展开更多
The high working junction temperature of power component is the most common reason of its failure. So the thermal design is of vital importance in electronic control unit (ECU) design. By means of circuit simulation...The high working junction temperature of power component is the most common reason of its failure. So the thermal design is of vital importance in electronic control unit (ECU) design. By means of circuit simulation, the thermal design of ECU for electronic unit pump (EUP) fuel system is applied. The power dissipation model of each power component in the ECU is created and simulated. According to the analyses of simulation results, the factors which affect the power dissipation of components are analyzed. Then the ways for reducing the power dissipation of power components are carried out. The power dissipation of power components at different engine state is calculated and analyzed. The maximal power dissipation of each power component in all possible engine state is also carried out based on these simulations. A cooling system is designed based on these studies. The tests show that the maximum total power dissipation of ECU drops from 43.2 W to 33.84 W after these simulations and optimizations. These applications of simulations in thermal design of ECU can greatly increase the quality of the design, save the design cost and shorten design time展开更多
This paper describes a research project that uses embedded systems design principles to construct and simulate an Engine Control Unit (ECU) for a hybrid car. The ECU is designed to select a fuel type based on the st...This paper describes a research project that uses embedded systems design principles to construct and simulate an Engine Control Unit (ECU) for a hybrid car. The ECU is designed to select a fuel type based on the stress level of the simulated engine. The primary goal of the project was to use a robotics kit, connected to sensors, to simulate a hybrid car under certain stress conditions such as hill climbing or full throttle. The project uses the LEGO~ Mindstorms~ NXT robotics kit combined with a Java-based firmware, a pressure sensor to simulate a gas pedal, and a tilt sensor to determine when the car is traveling uphill or downhill. The objective was to develop, through simulation, a framework for adjusting the ratios/proportions of fuel types and mixture under the stress conditions. The expected result was to establish a basis for determining the ideal/optimal fuel-mix-stress ratios on the hybrid car's performance. Using the NXT robotics kit abstracted the low level details of the embedded system design, which allowed a focus on the high level design details of the research. Also, using the NXJ Java-based firmware allowed the incorporation of object oriented design principles into the project. The paper outlines the evolution and the compromises made in the choice of hardware and software components, and describes the computations and methodologies used in the project.展开更多
A turbocharged diesel engine model was built with the GT-Power software,and experimentally verified.Then two different control variables for the control of the variable geometry turbocharger(VGT)were described,and t...A turbocharged diesel engine model was built with the GT-Power software,and experimentally verified.Then two different control variables for the control of the variable geometry turbocharger(VGT)were described,and their distinct effects on engine performance,i.e.NOxand soot emissions and fuel consumption,were simulated and compared on the basis of this model.The results showed that NOxemissions decreased obviously with the increase of exhaust gas recirculation(EGR)rate at constant boost pressure condition,but soot emissions and fuel consumption considerably increased.It was a good way to reduce NOxemissions without increasing fuel consumption and soot emissions when VGT was controlled to maintain the excess oxygen ratio unchanged as EGR rate increases.展开更多
The working principle of a kind of compositive emission control system is inquired into, which includes exhaust heater, secondary air supplement, exhaust gas recirculation (EGR), thermal reactor and catalytic conver...The working principle of a kind of compositive emission control system is inquired into, which includes exhaust heater, secondary air supplement, exhaust gas recirculation (EGR), thermal reactor and catalytic converter, etc. The purification effect of CO, HC and NOx emission of the gasoline spark ignite (S.I.) engine is studied. The entire vehicle driving cycle tests based on the national emission standard and a series of the gasoline engine-testing bench tests including full load characteristic experiment, load characteristic experiment and idle speed experiment are done. The results show that the system has a very good emission control effect to CO, HC and NOx of gasoline engine. The construction of the system is very simple and can be mounted on the exhaust pipe conveniently without any alteration of the vehicle-use gasoline engine.展开更多
Liquid bipropellant attitude control rocket engines are widely used in satellites,manned spaceships,deep space probes and other spacecraft.The performance of an attitude control engine is directly related to the lifet...Liquid bipropellant attitude control rocket engines are widely used in satellites,manned spaceships,deep space probes and other spacecraft.The performance of an attitude control engine is directly related to the lifetime,control precision and safety of a spacecraft.The study of flow characteristics of an engine transient process is important to improve its performance.In this paper,the transient flow test of a transparent test piece was carried out during the starting process of the attitude control engine.Then the transient process of the test piece was simulated and compared with the test results to verify the rationality of the simulation model.Transient flow simulation was carried out for the starting process of the real engine injector.The results show that the filling of the outer ring of the oxidant circuit is slower than that of the central collecting cavity,and the filling of the second layer of the outer ring is slower than that of the first layer.The filling process in the fuel path starts from the cooling hole near the inlet side and the fuel flows out in the circumferential direction.Installation direction has little influence on engine starting flow process in the ground state.The filling time of the engine in its vacuum state is longer than that in the ground state,the filling time of oxidizer is 31%longer than that in ground state,and the filling time of fuel is 57%longer than that in ground state.展开更多
Traditional centralized Proportional Integral(PI)controller design methods based on Equivalent Transfer Functions(ETFs)have poor decoupling effect in turboprop engines.In this paper,a centralized PI design method base...Traditional centralized Proportional Integral(PI)controller design methods based on Equivalent Transfer Functions(ETFs)have poor decoupling effect in turboprop engines.In this paper,a centralized PI design method based on dynamic imaginary matrix and equivalent transfer function is proposed.Firstly,a method for solving equivalent transfer functions based on the dynamic imaginary matrix is proposed,which adopts dynamic imaginary matrix to describe the dynamic characteristics of the system,and obtains the equivalent transfer function based on the dynamic imaginary matrix characteristics.Secondly,for the equivalent transfer function,a central-ized PI control gain is designed using the Taylor expansion method.Meanwhile,this paper further proves that the centralized PI design method proposed in this paper has integral stability.Consid-ering the impact of altitude and Mach number on turboprop engines,a linear feedforward control method based on the transfer function matrix is further proposed based on the centralized PI con-troller,and the stability of the entire comprehensive control method is proved.Finally,to ensure the safe and effective operation of the turboprop engine,a temperature and torque limiting protection controller is designed for the turboprop engine.Simulation results show that the centralized PI con-troller design method and linear feedforward control method proposed can effectively improve the control quality of turboprop engine control systems.展开更多
A thrust estimator with high precision and excellent real-time performance is needed to mitigate perfor- mance deterioration for future aero-engines. A weight least squares support vector regression is proposed using ...A thrust estimator with high precision and excellent real-time performance is needed to mitigate perfor- mance deterioration for future aero-engines. A weight least squares support vector regression is proposed using a novel weighting strategy. Then a thrust estimator based on the proposed regression is designed for the perfor- mance deterioration. Compared with the existing weighting strategy, the novel one not only satisfies the require- ment of precision but also enhances the real-time performance. Finally, numerical experiments demonstrate the effectiveness and feasibility of the proposed weighted least squares support vector regression for thrust estimator. Key words : intelligent engine control; least squares ; support vector machine ; performance deterioration展开更多
Interface engineering has gradually attracted substantial research interest in constructing active bifunctional catalysts toward urea electrolysis.The fundamental understanding of the crystallinity transition of the c...Interface engineering has gradually attracted substantial research interest in constructing active bifunctional catalysts toward urea electrolysis.The fundamental understanding of the crystallinity transition of the components on both sides of the interface is extremely significant for realizing controllable construction of catalysts through interface engineering,but it still remains a challenge.Herein,the Ni/NiO heterogenous nanoparticles are successfully fabricated on the porous N-doped carbon spheres by a facile hydrothermal and subsequent pyrolysis strategy.And for the first time we show the experimental observation that the Ni/NiO interface can be fine-tuned via simply tailoring the heating rate during pyrolysis process,in which the crystalline/amorphous or crystalline/crystalline Ni/NiO heterostructure is deliberately constructed on the porous N-doped carbon spheres(named as CA-Ni/NiO@NCS or CC-Ni/NiO@NCS,respectively).By taking advantage of the unique porous architecture and the synergistic effect between crystalline Ni and amorphous NiO,the well-designed CA-Ni/NiO@NCS displays more remarkable urea oxidation reaction(UOR)and hydrogen evolution reaction(HER)activity than its crystalline/crystalline counterpart of CC-Ni/NiO@NCS.Particularly,the whole assembled two-electrode electrolytic cell using the elaborate CANi/NiO@NCS both as the anode and cathode can realize the current density of 10 mA·cm^(−2)at a super low voltage of 1.475 V(264 mV less than that of pure water electrolysis),as well as remarkable prolonged stability over 63 h.Besides,the H_(2)evolution driven by an AA battery and a commercial solar cell is also studied to enlighten practical applications for the future.展开更多
Grouting is a major method used to prevent water and mud inrush in tunnels and underground engineering. In this paper, the current situation of control and prevention of water and mud inrush is summarized and recent a...Grouting is a major method used to prevent water and mud inrush in tunnels and underground engineering. In this paper, the current situation of control and prevention of water and mud inrush is summarized and recent advances in relevant theories, grout/equipment, and critical techniques are introduced. The time-variant equations of grout viscosity at different volumetric ratios were obtained based on the constitutive relation of typical fast curing grouts. A large-scale dynamic grouting model testing system (4000 mm × 2000 mm × 5 mm) was developed, and the diffusions of cement and fast curing grouts in dynamic water grouting were investigated. The results reveal that the diffusions of cement grouts and fast curing grouts are U-shaped and asymmetric elliptical, respectively. A multi-parameter real-time monitoring system (ϕ = 1.5 m, h = 1.2 m) was developed for the grouting process to study the diffusion and reinforcement mechanism of grouting in water-rich faulted zone. A high early strength cream-type reinforcing/plugging grout, a high permeability nano-scale silica gel grout, and a high-expansion filling grout were proposed for the control of water hazards in weak water-rich faulted zone rocks, water inrush in karst passages, and micro-crack water inrush, respectively. Complement technologies and equipment for industrial applications were also proposed. Additionally, a novel full-life periodic dynamic water grouting with the critical grouting borehole as the core was proposed. The key techniques for the control of water inrush in water-rich faulted zone, jointed fissures and karst passages, and micro-crack water inrush were developed.展开更多
基金Supported by National Natural Science Foundation of China (No. 70931004)
文摘Traditional studies on integrated statistical process control and engineering process control (SPC-EPC) are based on linear autoregressive integrated moving average (ARIMA) time series models to describe the dynamic noise of the system.However,linear models sometimes are unable to model complex nonlinear autocorrelation.To solve this problem,this paper presents an integrated SPC-EPC method based on smooth transition autoregressive (STAR) time series model,and builds a minimum mean squared error (MMSE) controller as well as an integrated SPC-EPC control system.The performance of this method for checking the trend and sustained shift is analyzed.The simulation results indicate that this integrated SPC-EPC control method based on STAR model is effective in controlling complex nonlinear systems.
文摘Noise pollution is one of the most significant harmful physical factors in the industrial and occupational environments.Due to the high costs of exposure to excessive noise;continuous sound evaluation,propose and implement noise control plans in occupational environments is necessary.Thus,the present study aimed to review environmental sound measurements,drawing of noise maps,and prioritizing the engineering noise control methods using the Analytic Hierarchy Process(AHP).This study was a descriptive-analytical study that aimed to assess occupational noises and present a control plan in the City Gas Stations(CGSs)of Kerman,Iran in 2021.The present study was done in two phases.In the first phase,six CGSs were investigated to measure and evaluate the noise.In addition,the noise map of a CGS was drawn using the Surfer software.Finally,the AHP was used in the second phase of the research to prioritize the control measures.In this phase,four criteria and ten alternatives were identified.According to first phase results,the sound pressure level(SPL)of the stations varied from 76 to 98 dBA.Besides,the majority of the studied stations had a sound level higher than 85 dBA(danger zone).The second phase of the study showed that out of the four evaluated criteria,the executability criterion had the highest impact and the cost criterion had the lowest impact on the selection of control measures with a weight of 0.587 and 0.052,respectively.Based on the results of prioritization of the alternatives,using a silenced regulator(weight of 0.223)and increasing the thickness of the tube(weight of 0.023)had the highest and lowest priorities among the alternatives,respectively.The use of engineering noise control methods such as using silenced regulators was the best way to control the noises of CGSs.Additionally;it is noteworthy that AHP is a practical method for prioritizing alternatives to achieve the most accurate decision-making.The results of AHP can be of great help to health and safety experts and managers in choosing the sound engineering control measures more precisely.
文摘Control systems contribute to every aspect of modem society.In our life control systems exist in almost everywhere such as toasters,VCRs and smart phones.In science and technology,control systems already have widespread applications,for example,steering ships,guiding missiles and driving driverless cars in the near future.In all the control systems,systems are the key platform where control should be put into.It is at the system level that control shows its values.Extracting and formulating
基金Supported by the National Natural Science Foundation of China under Grant Nos 61264008,61574080 and 61505085
文摘Regulation of optical properties and electronic structure of two-dimensionM layered ReS2 materials has attracted much attention due to their potential in electronic devices. However, the identification of structure transformation of monolayer ReS2 induced by strain is greatly lacking. In this work, the Raman spectra of monolayer ReS2 with external strain are determined theoretically based on the density function theory. Due to the lower structural symmetry, deformation induced by external strain can only regulate the Raman mode intensity but cannot lead to Raman mode shifts. Our calculations suggest that structural deformation induced by external strain can be identified by Raman scattering.
基金This work was supported in part by the Science and Technology Major Project of Guangxi under Grant AA22068001in part by the Key Research and Development Program of Guangxi AB21196029+3 种基金in part by the Project of National Natural Science Foundation of China 51965012in part by the Scientific Research and TechnologyDevelopment in Liuzhou 2022AAA0102,2021AAA0104 and 2021AAA0112in part by Agricultural Science and Technology Innovation and Extension Special Project of Jiangsu Province NJ2021-21,in part by the Guangxi Key Laboratory of Manufacturing System and Advanced Manufacturing Technology,in part by the Guilin University of Electronic Technology 20-065-40-004Zin part by the Innovation Project of GUET Graduate Education 2022YCXS017.
文摘The reduction of fuel consumption in engines is always considered of vital importance.Along these lines,in this work,this goal was attained by optimizing the heavy-duty commercial vehicle engine control strategy.More specifically,at first,a general first principles model for heavy-duty commercial vehicles and a transient fuel consumptionmodel for heavy-duty commercial vehicles were developed and the parameters were adjusted to fit the empirical data.The accuracy of the proposed modelwas demonstrated fromthe stage and the final results.Next,the control optimization problem resulting in low fuel consumption in heavy commercial vehicles was described,with minimal fuel usage as the optimization goal and throttle opening as the control variable.Then,a time-continuous engine management approach was assessed.Next,the factors that influence low fuel consumption in heavy-duty commercial vehicles were systematically examined.To reduce the computing complexity,the control strategies related to the time constraints of the engine were parametrized using three different methods.The most effective solution was obtained by applying a global optimization strategy because the constrained optimization problem was nonlinear.Finally,the effectiveness of the low-fuel consumption engine control strategy was demonstrated by comparing the simulated and field test results.
文摘Networked control system is new hot-point in control engineering. A new delayed model for networked control systems is presented, based on which an LQR controller is designed. A method of delays estimation online is also given. For the difficulty on implementation of LQR in NCSs with time-variant delays, the Mamdani intelligent logic with LQR controller is addressed. The stability of the networked control system is also given. Simulation results prove that the novel controller can make the system stable and robustly preserve the performance in terms of time-variant delays.
基金Supported by Key Research Project of China Offshore Oil Engineering Co,Ltd.
文摘Deep-water jacket skirt pile grouting is a critical step in ocean platform construction. Because of the complexity of the skirt pile structure and grouting pipeline, the calculation of grouting pressure and the control of output pressure are involved. Beginning with the jacket skirt pile grouting construction scheme, grouting pressure is estimated on the basis of engineering fluid mechanics theory and variable frequency control technique. Programmable logic controller is the center of grouting pressure control system, which accomplishes the flow control of cement buffer tank, water buffer tank, additive buffer tank, cement metering tank, water metering tank, additive metering tank, mixer and agitator. Based on PROFIBUS-DP network, the output pressure of the slurry pump is controlled by the inverter. This method has been applied successfully in JZ20-2 Nor. high spot jacket platform construction.
文摘Today’s vehicles use electronic control units(ECU) to control engine/transmission, body and other amenities. All the vehicle performance depends on a lot of physical values and influence factors. This leads to a large number of control and regulation parameters in the ECU software. The ultimate objective of calibration work is the optimum determination of these parameters. Qualitatively excellent results can only be achieved in a shorter time by using a highly efficient calibration system. This paper provided an overview of a new calibration tool based on KWP2000 and gave an example calibration with this tool.
文摘By means of circuit simulation, hardware of electronic control unit (ECU) of high pressure common-rail electronic control fuel system for diesel engine is designed. According to the system requirements for hardware of ECU, signal-processing circuit of variable reluctance (VR) sensor, filter circuit for input signal, high voltage power circuit and driver and protection circuit of solenoid are simulated as emphases. Difficulties of wide scope of VR sensor output signal, efficiency of high voltage power and reliable and swift driver of solenoid are solved. The results of simulation show that the hardware meets the requirement of the fuel system. At the same time, circuit simulation can greatly increase quality of the design, alleviate design labor and shorten design time.
基金the National Natural Science Foundation of China(No:20273043)the Ministry of Education of China for providing financial support for this project
文摘A three-way catalyst comprised novel oxygen storage components for emission control in natural gas powered engines was prepared. The addition of novel oxygen storage components to the Pd/γ-Al2O3 catalysts resulted in improved activities of the fresh and aged catalyst by lowering the light-off temperature for methane in natural gas engines exhaust.
文摘The high working junction temperature of power component is the most common reason of its failure. So the thermal design is of vital importance in electronic control unit (ECU) design. By means of circuit simulation, the thermal design of ECU for electronic unit pump (EUP) fuel system is applied. The power dissipation model of each power component in the ECU is created and simulated. According to the analyses of simulation results, the factors which affect the power dissipation of components are analyzed. Then the ways for reducing the power dissipation of power components are carried out. The power dissipation of power components at different engine state is calculated and analyzed. The maximal power dissipation of each power component in all possible engine state is also carried out based on these simulations. A cooling system is designed based on these studies. The tests show that the maximum total power dissipation of ECU drops from 43.2 W to 33.84 W after these simulations and optimizations. These applications of simulations in thermal design of ECU can greatly increase the quality of the design, save the design cost and shorten design time
文摘This paper describes a research project that uses embedded systems design principles to construct and simulate an Engine Control Unit (ECU) for a hybrid car. The ECU is designed to select a fuel type based on the stress level of the simulated engine. The primary goal of the project was to use a robotics kit, connected to sensors, to simulate a hybrid car under certain stress conditions such as hill climbing or full throttle. The project uses the LEGO~ Mindstorms~ NXT robotics kit combined with a Java-based firmware, a pressure sensor to simulate a gas pedal, and a tilt sensor to determine when the car is traveling uphill or downhill. The objective was to develop, through simulation, a framework for adjusting the ratios/proportions of fuel types and mixture under the stress conditions. The expected result was to establish a basis for determining the ideal/optimal fuel-mix-stress ratios on the hybrid car's performance. Using the NXT robotics kit abstracted the low level details of the embedded system design, which allowed a focus on the high level design details of the research. Also, using the NXJ Java-based firmware allowed the incorporation of object oriented design principles into the project. The paper outlines the evolution and the compromises made in the choice of hardware and software components, and describes the computations and methodologies used in the project.
基金Supported by Diesel Engine Development Program of MIIT(DEDP-1004)Natural Science Foundation of BIT(3030012211428)
文摘A turbocharged diesel engine model was built with the GT-Power software,and experimentally verified.Then two different control variables for the control of the variable geometry turbocharger(VGT)were described,and their distinct effects on engine performance,i.e.NOxand soot emissions and fuel consumption,were simulated and compared on the basis of this model.The results showed that NOxemissions decreased obviously with the increase of exhaust gas recirculation(EGR)rate at constant boost pressure condition,but soot emissions and fuel consumption considerably increased.It was a good way to reduce NOxemissions without increasing fuel consumption and soot emissions when VGT was controlled to maintain the excess oxygen ratio unchanged as EGR rate increases.
基金This project is supported by Provincial Natural Science Foundation of Guangdong, China and Provincial Environmental Protection Science Foundation of Guangdong, China(No.320-D38000).
文摘The working principle of a kind of compositive emission control system is inquired into, which includes exhaust heater, secondary air supplement, exhaust gas recirculation (EGR), thermal reactor and catalytic converter, etc. The purification effect of CO, HC and NOx emission of the gasoline spark ignite (S.I.) engine is studied. The entire vehicle driving cycle tests based on the national emission standard and a series of the gasoline engine-testing bench tests including full load characteristic experiment, load characteristic experiment and idle speed experiment are done. The results show that the system has a very good emission control effect to CO, HC and NOx of gasoline engine. The construction of the system is very simple and can be mounted on the exhaust pipe conveniently without any alteration of the vehicle-use gasoline engine.
文摘Liquid bipropellant attitude control rocket engines are widely used in satellites,manned spaceships,deep space probes and other spacecraft.The performance of an attitude control engine is directly related to the lifetime,control precision and safety of a spacecraft.The study of flow characteristics of an engine transient process is important to improve its performance.In this paper,the transient flow test of a transparent test piece was carried out during the starting process of the attitude control engine.Then the transient process of the test piece was simulated and compared with the test results to verify the rationality of the simulation model.Transient flow simulation was carried out for the starting process of the real engine injector.The results show that the filling of the outer ring of the oxidant circuit is slower than that of the central collecting cavity,and the filling of the second layer of the outer ring is slower than that of the first layer.The filling process in the fuel path starts from the cooling hole near the inlet side and the fuel flows out in the circumferential direction.Installation direction has little influence on engine starting flow process in the ground state.The filling time of the engine in its vacuum state is longer than that in the ground state,the filling time of oxidizer is 31%longer than that in ground state,and the filling time of fuel is 57%longer than that in ground state.
基金support by the National Natural Science Foundation of China (No.52202474)China Postdoctoral Science Foundation (No.2023M731655)+3 种基金Major Projects of National Science and Technology,China (No.J2019-I-0020-0019)Advanced Aviation Power Innovation Workstation Project,China (No.HKCX2022-01-026-03)Basic Research Business Fees for Central Universities,China (No.NT2023004)Nanjing University of Aeronautics and Astronautics Forward-looking Layout Research Project,China (No.1002-ILA22037-1A22).
文摘Traditional centralized Proportional Integral(PI)controller design methods based on Equivalent Transfer Functions(ETFs)have poor decoupling effect in turboprop engines.In this paper,a centralized PI design method based on dynamic imaginary matrix and equivalent transfer function is proposed.Firstly,a method for solving equivalent transfer functions based on the dynamic imaginary matrix is proposed,which adopts dynamic imaginary matrix to describe the dynamic characteristics of the system,and obtains the equivalent transfer function based on the dynamic imaginary matrix characteristics.Secondly,for the equivalent transfer function,a central-ized PI control gain is designed using the Taylor expansion method.Meanwhile,this paper further proves that the centralized PI design method proposed in this paper has integral stability.Consid-ering the impact of altitude and Mach number on turboprop engines,a linear feedforward control method based on the transfer function matrix is further proposed based on the centralized PI con-troller,and the stability of the entire comprehensive control method is proved.Finally,to ensure the safe and effective operation of the turboprop engine,a temperature and torque limiting protection controller is designed for the turboprop engine.Simulation results show that the centralized PI con-troller design method and linear feedforward control method proposed can effectively improve the control quality of turboprop engine control systems.
基金Supported by the National Natural Science Foundation of China(51006052)the Nanjing University of Science and Technology Outstanding Scholar Supporting Program~~
文摘A thrust estimator with high precision and excellent real-time performance is needed to mitigate perfor- mance deterioration for future aero-engines. A weight least squares support vector regression is proposed using a novel weighting strategy. Then a thrust estimator based on the proposed regression is designed for the perfor- mance deterioration. Compared with the existing weighting strategy, the novel one not only satisfies the require- ment of precision but also enhances the real-time performance. Finally, numerical experiments demonstrate the effectiveness and feasibility of the proposed weighted least squares support vector regression for thrust estimator. Key words : intelligent engine control; least squares ; support vector machine ; performance deterioration
基金the National Natural Science Foundation of China(No.21775142)the Natural Science Foundation of Shandong Province(No.ZR2020ZD10)the Deputyship for Research&Innovation,Ministry of Education in Saudi Arabia(project number 510).
文摘Interface engineering has gradually attracted substantial research interest in constructing active bifunctional catalysts toward urea electrolysis.The fundamental understanding of the crystallinity transition of the components on both sides of the interface is extremely significant for realizing controllable construction of catalysts through interface engineering,but it still remains a challenge.Herein,the Ni/NiO heterogenous nanoparticles are successfully fabricated on the porous N-doped carbon spheres by a facile hydrothermal and subsequent pyrolysis strategy.And for the first time we show the experimental observation that the Ni/NiO interface can be fine-tuned via simply tailoring the heating rate during pyrolysis process,in which the crystalline/amorphous or crystalline/crystalline Ni/NiO heterostructure is deliberately constructed on the porous N-doped carbon spheres(named as CA-Ni/NiO@NCS or CC-Ni/NiO@NCS,respectively).By taking advantage of the unique porous architecture and the synergistic effect between crystalline Ni and amorphous NiO,the well-designed CA-Ni/NiO@NCS displays more remarkable urea oxidation reaction(UOR)and hydrogen evolution reaction(HER)activity than its crystalline/crystalline counterpart of CC-Ni/NiO@NCS.Particularly,the whole assembled two-electrode electrolytic cell using the elaborate CANi/NiO@NCS both as the anode and cathode can realize the current density of 10 mA·cm^(−2)at a super low voltage of 1.475 V(264 mV less than that of pure water electrolysis),as well as remarkable prolonged stability over 63 h.Besides,the H_(2)evolution driven by an AA battery and a commercial solar cell is also studied to enlighten practical applications for the future.
文摘Grouting is a major method used to prevent water and mud inrush in tunnels and underground engineering. In this paper, the current situation of control and prevention of water and mud inrush is summarized and recent advances in relevant theories, grout/equipment, and critical techniques are introduced. The time-variant equations of grout viscosity at different volumetric ratios were obtained based on the constitutive relation of typical fast curing grouts. A large-scale dynamic grouting model testing system (4000 mm × 2000 mm × 5 mm) was developed, and the diffusions of cement and fast curing grouts in dynamic water grouting were investigated. The results reveal that the diffusions of cement grouts and fast curing grouts are U-shaped and asymmetric elliptical, respectively. A multi-parameter real-time monitoring system (ϕ = 1.5 m, h = 1.2 m) was developed for the grouting process to study the diffusion and reinforcement mechanism of grouting in water-rich faulted zone. A high early strength cream-type reinforcing/plugging grout, a high permeability nano-scale silica gel grout, and a high-expansion filling grout were proposed for the control of water hazards in weak water-rich faulted zone rocks, water inrush in karst passages, and micro-crack water inrush, respectively. Complement technologies and equipment for industrial applications were also proposed. Additionally, a novel full-life periodic dynamic water grouting with the critical grouting borehole as the core was proposed. The key techniques for the control of water inrush in water-rich faulted zone, jointed fissures and karst passages, and micro-crack water inrush were developed.