For the first time, for different organic and inorganic compounds possessing the plastic crystalline phase, a new semiempirical equation describing dependence of their fusion enthalpies on such physico-chemical quanti...For the first time, for different organic and inorganic compounds possessing the plastic crystalline phase, a new semiempirical equation describing dependence of their fusion enthalpies on such physico-chemical quantities as normal melting temperature, surface tension, molar volume and critical molar volume is received on the base of the principle of corresponding states and the energy equipartition theorem. Moreover, the proposed equation allows one to take into account the particularities of one-particle molecular rotation in the plastic crystalline phase.展开更多
The density functional theory (DFT) is the most popular method for evaluating bond dis- sociation enthalpies (BDEs) of most molecules. Thus, we are committed to looking for alternative methods that can balance the...The density functional theory (DFT) is the most popular method for evaluating bond dis- sociation enthalpies (BDEs) of most molecules. Thus, we are committed to looking for alternative methods that can balance the computational cost and higher precision to the best for large systems. The performance of DFT, double-hybrid DFT, and high-level com- posite methods are examined. The tested sets contain monocyclic and polycyclic aromatic molecules, branched hydrocarbons, small inorganic molecules, etc. The results show that the mPW2PLYP and G4MP2 methods achieve reasonable agreement with the benchmark val- ues for most tested molecules, and the mean absolute deviations are 2.43 and 1.96 kcal/mol after excluding the BDEs of branched hydrocarbons. We recommend the G4MP2 is the most appropriate method for small systems (atoms number≤20); the double-hybrid DFT methods are advised for large aromatic molecules in medium size (20≤atoms number≤50), and the double-hybrid DFT methods with empirical dispersion correction are recommended for long-chain and branched hydrocarbons in the same size scope; the DFT methods are ad- vised to apply for large systems (atoms number〉50), and the M06-2X and B3P86 methods are also favorable. Moreover, the differences of optimized geometry of different methods are discussed and the effects of basis sets for various methods are investigated.展开更多
The atomic structural parameter P-i = (Z(i)*/n(i)*) (1 + n(i)*/n(i)) (1 + m(i)/Z) and the molecular structural parameter [GRAPHICS] are defined. The standard formation enthalpies (Delta(f)H(m)(phi)) of 74 species of r...The atomic structural parameter P-i = (Z(i)*/n(i)*) (1 + n(i)*/n(i)) (1 + m(i)/Z) and the molecular structural parameter [GRAPHICS] are defined. The standard formation enthalpies (Delta(f)H(m)(phi)) of 74 species of rare earth compounds were studied with P, and the correlation coefficient is R > 0.94. The structural factors and the properties of rare earth compounds are influenced by the Z(i)*, n(i)*, n(i), m(i), Z. This study has special referential value to predict the properties of rare earth compounds.展开更多
The topological index F* is defined and obtained by the method of a non-dimensional unit calculation in which three matrices multiply with each other. These matrices represent the connective cases of atoms in a molecu...The topological index F* is defined and obtained by the method of a non-dimensional unit calculation in which three matrices multiply with each other. These matrices represent the connective cases of atoms in a molecule, the structural features of atoms on top and the bonded cases of the adjacent atoms respectively. The standard formation enthalpies of ABn(g) molecules were correlated with F’* (A = C, Al, Si, Ti, Zr, B = F, Cl, Br, I, H, n=1 -4) and these correlation coefficients are all more than 0.96. Some molecules (e.g CH4, SiH4,etc. )can be preferably handled by F* but can not be dealt with by other topological indices. By contrast to traditional hydrogen suppressed graph, the contribution of hydrogen atoms to structures and properties of molecules is considered.展开更多
118 kinds of Pt-Zr phases were established and investigated by considering various structures. Then the related physical properties, such as structural stability, lattice constants, formation enthalpies, elastic const...118 kinds of Pt-Zr phases were established and investigated by considering various structures. Then the related physical properties, such as structural stability, lattice constants, formation enthalpies, elastic constants and bulk moduli, are obtained by ab initio calculations. Based on the calculated results of formation enthalpies, the ground-state convex hull is derived for the Pt-Zr system. The calculated physical data would provide a basis for further thermodynamic calculations and atomistic simulations. For these Pt-Zr compounds, it is found there are a positive linear correlation between the formation enthalpies and atomic volumes, and a negative linear correlation between the bulk modules and atomic volumes.展开更多
The formation and breaking of Ni-L (L=N-heterocyclic carbene, tertiary phosphine etc.) bond is involved in many Ni-catalyzed/mediated reactions. The accurate prediction of Ni-L bond dissociation enthalpies (BDEs) ...The formation and breaking of Ni-L (L=N-heterocyclic carbene, tertiary phosphine etc.) bond is involved in many Ni-catalyzed/mediated reactions. The accurate prediction of Ni-L bond dissociation enthalpies (BDEs) is potentially important to understand these Ni-complex involving reactions. We assess the accuracy of diffierent DFT functionals (such as B3LYP, M06, MPWB1K, etc.) and diffierent basis sets, including both effective core potentials for Ni and the all electron basis sets for all other atoms in predicting the Ni-L BDE values reported recently by Nolan et al. [J. Am. Chem. Soc. 125, 10490 (2003) and Organometallics 27, 3181 (2008)]. It is found that the MPWB1K/LanL2DZ:6-31+G(d,p)//MPWB1K/LanL2DZ:6-31G(d) method gives the best correlations with the experimental results. Meanwhile, the solvent effect calculations (with CPCM, PCM, and SMD models) indicate that both CPCM and PCM perform well.展开更多
Balance solubility products and enthalpy of for- mation for NbC0.75, NbC0.85, NbC0.88, NbC and NbN in oriented silicon steels were calculated and compared quali- tatively. Meanwhile, the mixing enthalpies of these fiv...Balance solubility products and enthalpy of for- mation for NbC0.75, NbC0.85, NbC0.88, NbC and NbN in oriented silicon steels were calculated and compared quali- tatively. Meanwhile, the mixing enthalpies of these five Nb compounds were calculated based on Miedema Model. The results show that the solubility products of Nb compounds in ferrite and austenite meet the following relationship, NbC0.75 〉 NbC0.85 〉 NbC0.88 〉 NbC 〉 NbN and NbN has the minimum enthalpy of formation. It indicates that NbN easily precipitate out, but it is more difficult for NbC0.75.展开更多
The interaction potential index IPI(X) of 16 Br, C1, I, NO2, CN, CHO, COOH, CH3, CH: kinds of substituents X (X---OH, SH, NH2, :CH2, C-CH, Ph, COCH3, COOCH3) were proposed, which are derived from the experimenta...The interaction potential index IPI(X) of 16 Br, C1, I, NO2, CN, CHO, COOH, CH3, CH: kinds of substituents X (X---OH, SH, NH2, :CH2, C-CH, Ph, COCH3, COOCH3) were proposed, which are derived from the experimental enthalpies of formation △fHФ (g) values of monosubstituted straight-chain alkanes. Based on the IPI(X) and polarizability effect index, a simple and effective model was constructed to estimate the △fHФ (g) values of monosubstituted alkanes RX (including the branched derivatives). The present model takes into account not only the contributions of the alkyl R and the substituent X, but also the contribution of the interaction between R and X. Its stability and prediction ability was confirmed by the results of leave-one-out method. Compared with previous reported studies, the obtained equation can be used to estimate enthalpies of formation for much more kinds of monosubstituted alkanes with less parameters. Thus, it is recommended for the calculation of the △fHФ(g) for the RX.展开更多
The mixing enthalpies of 23 binary liquid alloys are calculated by molecular interaction volume model (MIVM), which is a two-parameter model with the partial molar infinite dilute mixing enthalpies. The predicted va...The mixing enthalpies of 23 binary liquid alloys are calculated by molecular interaction volume model (MIVM), which is a two-parameter model with the partial molar infinite dilute mixing enthalpies. The predicted values are in agreement with the experimental data and then indicate that the model is reliable and convenient.展开更多
The non-random two liquids (NRTL) equation together with the Pitzer/Curl Virial equation of state are used to investigate the simultaneous representation of excess enthalpies (h^E) and vapour-liquid equilibria (...The non-random two liquids (NRTL) equation together with the Pitzer/Curl Virial equation of state are used to investigate the simultaneous representation of excess enthalpies (h^E) and vapour-liquid equilibria (VLE) and the VLE prediction from h^E data. The calculation strategy for properly determining NRTL parameters and the effect of their temperature dependence on the simultaneous correlation of h^E and VLE data and the VLE extrapolation are analysed in detail.展开更多
The enthalpies of solution in water of complexes of RE(NO 3) 3 (RE=La~Nd, Sm~Lu, Y) with L α Histidine (His) were measured at 298.15 K. The standard enthalpies of formation of RE(His) 3+ (aq) were calculate...The enthalpies of solution in water of complexes of RE(NO 3) 3 (RE=La~Nd, Sm~Lu, Y) with L α Histidine (His) were measured at 298.15 K. The standard enthalpies of formation of RE(His) 3+ (aq) were calculated. The 'tetrad effect' regularity was observed from the curve, which is the enthalpies of solution plotted against the atomic numbers of the elements in lanthanide series.展开更多
Excess molar enthalpies,H^E,for the binary mixtures of 2-pentanol with n-alkanes(n-heptane,n-octane,and nnonane)have been determined at three different temperatures T=(293.15,298.15 and 303.15)K and normal atmospheric...Excess molar enthalpies,H^E,for the binary mixtures of 2-pentanol with n-alkanes(n-heptane,n-octane,and nnonane)have been determined at three different temperatures T=(293.15,298.15 and 303.15)K and normal atmospheric pressure over the entire composition range using a Calvet microcalorimeter.All mixtures show endothermic mixing with the maximum values of the excess enthalpies occurring in the n-alkane-rich region.The H^Edata are smoothed using Redlich–Kister equation.The applicability of the Treszczanowicz–Benson,ERAS,Renon–Prausnitz and Chen–Bagley models to correlate H^Eof studied mixtures is tested,and the agreement between experimental and theoretical results is satisfactory.Each model includes a self-association equilibrium constant that represents hydrogen bonding and an adjustable parameter that reflects physical interactions.展开更多
'White powdery tungstic acid' has been used for preparing various types of tungsten-containing compounds due to its high reactivity. The present paper covers the standard molar enthalpies of formation, △H0/f ...'White powdery tungstic acid' has been used for preparing various types of tungsten-containing compounds due to its high reactivity. The present paper covers the standard molar enthalpies of formation, △H0/f of three tungsten- containing acids. The values found for 'white powdery tungstic acid' WO3·1. 68H2O, 'yellow tungstic acid' WO3·1. 20H2O and dodecatungstophosphoric acid H3(PW12O40)·25H2O at 298. 15 K were-(1312±1), - (1192±1) and -(18150±13) kJ mol-1, respectively.展开更多
Four solid complexes of rare earth isothiocyanates with glycine were synthesized. They were characterized by chemical analysis, elemental analysis, Infrared spectra, X-ray powder diffraction and TO-DSC analysis. Their...Four solid complexes of rare earth isothiocyanates with glycine were synthesized. They were characterized by chemical analysis, elemental analysis, Infrared spectra, X-ray powder diffraction and TO-DSC analysis. Their chemical formulae were proved to be RE(NCS)2.Gly .H2O, where RE is La, Ce, Pr or Nd. The integral heats of solution of RE(NCS)3.3Gly. H2O in water, of RE(NCS)2. 7H2O in aqueous glycine solution and of glycine in water have been measured calorimetricaliy at 298. 15K. By means of a thermochemical cycle suggested in this paper, the standard molar enthalpies of formation for RE(NCS)2. 3Gly.H2O(c) were obtained and their lattice energies were calculated.展开更多
The integral heat of solution of REBr 3·3Gly·3H 2O(RE=La, Pr, Nd, Sm, Eu, Gd, Tb, Dy and Y; Gly is glycine) in water, REBr 3· n H 2O(RE=La, Ce and Pr, n =7; RE=Nd, Sm, Eu, Gd, Tb, Dy and Y, n...The integral heat of solution of REBr 3·3Gly·3H 2O(RE=La, Pr, Nd, Sm, Eu, Gd, Tb, Dy and Y; Gly is glycine) in water, REBr 3· n H 2O(RE=La, Ce and Pr, n =7; RE=Nd, Sm, Eu, Gd, Tb, Dy and Y, n =6) in aqueous glycine solution and glycine in water have been measured calorimetrically at 298 15±0 15 K. By means of a thermochemical cycle suggested in this paper, the standard molar enthalpies of formation of REBr 3·3Gly·3H 2O have been obtained and their lattice energies have been calculated.展开更多
The parameters of embedded atom method for elements Ce, Th and Yb were determined by fitting the lattice constants, the cohesive energy, the monovacancy formation energy and the bulk modulus of elements. The alloy pot...The parameters of embedded atom method for elements Ce, Th and Yb were determined by fitting the lattice constants, the cohesive energy, the monovacancy formation energy and the bulk modulus of elements. The alloy potential was taken as the form of Johnson′s. The formation enthalpies of Th-Ce, Th-Yb and Ce-Yb binary alloys systems and Ce-Th-Yb ternary alloy were calculated with the present embedded atom potentials. The calculations for binary alloys are in good agreement with the results calculated with Miedema′s theory. As for the ternary alloy, the calculated formation enthalpies are in good agreement with those extrapolated from the formation enthalpies of constitutive binary alloys by Toop′s model.展开更多
Chemical stability and reactivity of organic pollutants is dependent to their formation enthalpies. The main objective of this study is to provide simple straightforward strategy for prediction of the formation enthal...Chemical stability and reactivity of organic pollutants is dependent to their formation enthalpies. The main objective of this study is to provide simple straightforward strategy for prediction of the formation enthalpies of wide range organic pollutants only from their structural functional groups. Using such an extended dataset cornprising 1694 organic chemicals from 77 diverse material classes benefits the generalizability and reliability of the study. The new suggested collection of 12 functional groups and a simple linear regression lead to promising statis- tics of R2= 0.958, Q2 =0.956, and AEE= 57 kJ.mo1-1 for the whole dataset. Moreover, unknown experimental formation enthalpies for 27 organic pollutants are estimated by the presented approach. The resultant model needs no technical software/calculations, and thus can be easily applied by a non-specialist user.展开更多
The combustion energies of fourteen solid complexes of lanthanide nitrate with alanine were determined. The standard enthalpies of combustion, Δ c,coor(s) H °, and standard enthalpies of formation, Δ ...The combustion energies of fourteen solid complexes of lanthanide nitrate with alanine were determined. The standard enthalpies of combustion, Δ c,coor(s) H °, and standard enthalpies of formation, Δ f,coor(s) H °, were calculated for these complexes. The relationship of Δ c,coor(s) H ° and Δ f,coor(s) H ° with the atomic numbers of the elements in the lanthanide series were examined. The results show that a certain amount of covalence is present in the chemical bond between the lanthanide cations and alanine.展开更多
文摘For the first time, for different organic and inorganic compounds possessing the plastic crystalline phase, a new semiempirical equation describing dependence of their fusion enthalpies on such physico-chemical quantities as normal melting temperature, surface tension, molar volume and critical molar volume is received on the base of the principle of corresponding states and the energy equipartition theorem. Moreover, the proposed equation allows one to take into account the particularities of one-particle molecular rotation in the plastic crystalline phase.
文摘The density functional theory (DFT) is the most popular method for evaluating bond dis- sociation enthalpies (BDEs) of most molecules. Thus, we are committed to looking for alternative methods that can balance the computational cost and higher precision to the best for large systems. The performance of DFT, double-hybrid DFT, and high-level com- posite methods are examined. The tested sets contain monocyclic and polycyclic aromatic molecules, branched hydrocarbons, small inorganic molecules, etc. The results show that the mPW2PLYP and G4MP2 methods achieve reasonable agreement with the benchmark val- ues for most tested molecules, and the mean absolute deviations are 2.43 and 1.96 kcal/mol after excluding the BDEs of branched hydrocarbons. We recommend the G4MP2 is the most appropriate method for small systems (atoms number≤20); the double-hybrid DFT methods are advised for large aromatic molecules in medium size (20≤atoms number≤50), and the double-hybrid DFT methods with empirical dispersion correction are recommended for long-chain and branched hydrocarbons in the same size scope; the DFT methods are ad- vised to apply for large systems (atoms number〉50), and the M06-2X and B3P86 methods are also favorable. Moreover, the differences of optimized geometry of different methods are discussed and the effects of basis sets for various methods are investigated.
文摘The atomic structural parameter P-i = (Z(i)*/n(i)*) (1 + n(i)*/n(i)) (1 + m(i)/Z) and the molecular structural parameter [GRAPHICS] are defined. The standard formation enthalpies (Delta(f)H(m)(phi)) of 74 species of rare earth compounds were studied with P, and the correlation coefficient is R > 0.94. The structural factors and the properties of rare earth compounds are influenced by the Z(i)*, n(i)*, n(i), m(i), Z. This study has special referential value to predict the properties of rare earth compounds.
基金Funded by the Nature Science Foundation of China (No. 29773033)
文摘The topological index F* is defined and obtained by the method of a non-dimensional unit calculation in which three matrices multiply with each other. These matrices represent the connective cases of atoms in a molecule, the structural features of atoms on top and the bonded cases of the adjacent atoms respectively. The standard formation enthalpies of ABn(g) molecules were correlated with F’* (A = C, Al, Si, Ti, Zr, B = F, Cl, Br, I, H, n=1 -4) and these correlation coefficients are all more than 0.96. Some molecules (e.g CH4, SiH4,etc. )can be preferably handled by F* but can not be dealt with by other topological indices. By contrast to traditional hydrogen suppressed graph, the contribution of hydrogen atoms to structures and properties of molecules is considered.
基金Projects (50971072,51131003) support by the National Natural Science Foundation of ChinaProjects (2011CB606301,2012CB825700) supported by the Ministry of Science and Technology of ChinaProject supported by the Administration of Tsinghua University
文摘118 kinds of Pt-Zr phases were established and investigated by considering various structures. Then the related physical properties, such as structural stability, lattice constants, formation enthalpies, elastic constants and bulk moduli, are obtained by ab initio calculations. Based on the calculated results of formation enthalpies, the ground-state convex hull is derived for the Pt-Zr system. The calculated physical data would provide a basis for further thermodynamic calculations and atomistic simulations. For these Pt-Zr compounds, it is found there are a positive linear correlation between the formation enthalpies and atomic volumes, and a negative linear correlation between the bulk modules and atomic volumes.
基金This work was supported by the National Nature Science Foundation of China (No.21325208, No.21172209, No.21202006, No.21361140372), the Anhui Provincial Natural Science Foundation (No.1308085QB38), the Specialized Research Fund for the Doctoral Program of Higher Education (No.20123402110051), the Financial Resources Federal Credit Union (No.WK2060190025, No.FRF-TP-13-023A), the Science Foundation of the Chinese Academy of Sciences (No.JCX2-EW-J02), the Fok Ying Tung Education Foundation, the ChinaGrid project funded by MOE of China and the supercom- puter center of Shanghai and USTC.
文摘The formation and breaking of Ni-L (L=N-heterocyclic carbene, tertiary phosphine etc.) bond is involved in many Ni-catalyzed/mediated reactions. The accurate prediction of Ni-L bond dissociation enthalpies (BDEs) is potentially important to understand these Ni-complex involving reactions. We assess the accuracy of diffierent DFT functionals (such as B3LYP, M06, MPWB1K, etc.) and diffierent basis sets, including both effective core potentials for Ni and the all electron basis sets for all other atoms in predicting the Ni-L BDE values reported recently by Nolan et al. [J. Am. Chem. Soc. 125, 10490 (2003) and Organometallics 27, 3181 (2008)]. It is found that the MPWB1K/LanL2DZ:6-31+G(d,p)//MPWB1K/LanL2DZ:6-31G(d) method gives the best correlations with the experimental results. Meanwhile, the solvent effect calculations (with CPCM, PCM, and SMD models) indicate that both CPCM and PCM perform well.
基金financially supported by the National Natural Science Foundation of China (Nos. 51274083 and 51074062)
文摘Balance solubility products and enthalpy of for- mation for NbC0.75, NbC0.85, NbC0.88, NbC and NbN in oriented silicon steels were calculated and compared quali- tatively. Meanwhile, the mixing enthalpies of these five Nb compounds were calculated based on Miedema Model. The results show that the solubility products of Nb compounds in ferrite and austenite meet the following relationship, NbC0.75 〉 NbC0.85 〉 NbC0.88 〉 NbC 〉 NbN and NbN has the minimum enthalpy of formation. It indicates that NbN easily precipitate out, but it is more difficult for NbC0.75.
基金This work was supported by the National Natural Science Foundation of China (No.21072053 and No.20772028) and the Scientific Research Fund of Hunan Provincial Education Department (No.10K025 and No.09C386).
文摘The interaction potential index IPI(X) of 16 Br, C1, I, NO2, CN, CHO, COOH, CH3, CH: kinds of substituents X (X---OH, SH, NH2, :CH2, C-CH, Ph, COCH3, COOCH3) were proposed, which are derived from the experimental enthalpies of formation △fHФ (g) values of monosubstituted straight-chain alkanes. Based on the IPI(X) and polarizability effect index, a simple and effective model was constructed to estimate the △fHФ (g) values of monosubstituted alkanes RX (including the branched derivatives). The present model takes into account not only the contributions of the alkyl R and the substituent X, but also the contribution of the interaction between R and X. Its stability and prediction ability was confirmed by the results of leave-one-out method. Compared with previous reported studies, the obtained equation can be used to estimate enthalpies of formation for much more kinds of monosubstituted alkanes with less parameters. Thus, it is recommended for the calculation of the △fHФ(g) for the RX.
基金the National Natural Science Foundation ofChina (No.50764006)Young Foundation of Kunming University of Science and Tech-nology (No.KKZ200727021)the Applied Fundamental Research Foundation ofYunnan Province (Nos.2007E039M and 2006E0021M).
文摘The mixing enthalpies of 23 binary liquid alloys are calculated by molecular interaction volume model (MIVM), which is a two-parameter model with the partial molar infinite dilute mixing enthalpies. The predicted values are in agreement with the experimental data and then indicate that the model is reliable and convenient.
基金Supported by Deutsche Forschungsgemeinschaft(DFG) (LE 886/4-1)
文摘The non-random two liquids (NRTL) equation together with the Pitzer/Curl Virial equation of state are used to investigate the simultaneous representation of excess enthalpies (h^E) and vapour-liquid equilibria (VLE) and the VLE prediction from h^E data. The calculation strategy for properly determining NRTL parameters and the effect of their temperature dependence on the simultaneous correlation of h^E and VLE data and the VLE extrapolation are analysed in detail.
文摘The enthalpies of solution in water of complexes of RE(NO 3) 3 (RE=La~Nd, Sm~Lu, Y) with L α Histidine (His) were measured at 298.15 K. The standard enthalpies of formation of RE(His) 3+ (aq) were calculated. The 'tetrad effect' regularity was observed from the curve, which is the enthalpies of solution plotted against the atomic numbers of the elements in lanthanide series.
文摘Excess molar enthalpies,H^E,for the binary mixtures of 2-pentanol with n-alkanes(n-heptane,n-octane,and nnonane)have been determined at three different temperatures T=(293.15,298.15 and 303.15)K and normal atmospheric pressure over the entire composition range using a Calvet microcalorimeter.All mixtures show endothermic mixing with the maximum values of the excess enthalpies occurring in the n-alkane-rich region.The H^Edata are smoothed using Redlich–Kister equation.The applicability of the Treszczanowicz–Benson,ERAS,Renon–Prausnitz and Chen–Bagley models to correlate H^Eof studied mixtures is tested,and the agreement between experimental and theoretical results is satisfactory.Each model includes a self-association equilibrium constant that represents hydrogen bonding and an adjustable parameter that reflects physical interactions.
文摘'White powdery tungstic acid' has been used for preparing various types of tungsten-containing compounds due to its high reactivity. The present paper covers the standard molar enthalpies of formation, △H0/f of three tungsten- containing acids. The values found for 'white powdery tungstic acid' WO3·1. 68H2O, 'yellow tungstic acid' WO3·1. 20H2O and dodecatungstophosphoric acid H3(PW12O40)·25H2O at 298. 15 K were-(1312±1), - (1192±1) and -(18150±13) kJ mol-1, respectively.
基金Projects supported by the National Natural Science Foundation of China.
文摘Four solid complexes of rare earth isothiocyanates with glycine were synthesized. They were characterized by chemical analysis, elemental analysis, Infrared spectra, X-ray powder diffraction and TO-DSC analysis. Their chemical formulae were proved to be RE(NCS)2.Gly .H2O, where RE is La, Ce, Pr or Nd. The integral heats of solution of RE(NCS)3.3Gly. H2O in water, of RE(NCS)2. 7H2O in aqueous glycine solution and of glycine in water have been measured calorimetricaliy at 298. 15K. By means of a thermochemical cycle suggested in this paper, the standard molar enthalpies of formation for RE(NCS)2. 3Gly.H2O(c) were obtained and their lattice energies were calculated.
文摘The integral heat of solution of REBr 3·3Gly·3H 2O(RE=La, Pr, Nd, Sm, Eu, Gd, Tb, Dy and Y; Gly is glycine) in water, REBr 3· n H 2O(RE=La, Ce and Pr, n =7; RE=Nd, Sm, Eu, Gd, Tb, Dy and Y, n =6) in aqueous glycine solution and glycine in water have been measured calorimetrically at 298 15±0 15 K. By means of a thermochemical cycle suggested in this paper, the standard molar enthalpies of formation of REBr 3·3Gly·3H 2O have been obtained and their lattice energies have been calculated.
文摘The parameters of embedded atom method for elements Ce, Th and Yb were determined by fitting the lattice constants, the cohesive energy, the monovacancy formation energy and the bulk modulus of elements. The alloy potential was taken as the form of Johnson′s. The formation enthalpies of Th-Ce, Th-Yb and Ce-Yb binary alloys systems and Ce-Th-Yb ternary alloy were calculated with the present embedded atom potentials. The calculations for binary alloys are in good agreement with the results calculated with Miedema′s theory. As for the ternary alloy, the calculated formation enthalpies are in good agreement with those extrapolated from the formation enthalpies of constitutive binary alloys by Toop′s model.
基金Supported by the "Tehran Naftoon Arya Eng. Co." research committee of Iran
文摘Chemical stability and reactivity of organic pollutants is dependent to their formation enthalpies. The main objective of this study is to provide simple straightforward strategy for prediction of the formation enthalpies of wide range organic pollutants only from their structural functional groups. Using such an extended dataset cornprising 1694 organic chemicals from 77 diverse material classes benefits the generalizability and reliability of the study. The new suggested collection of 12 functional groups and a simple linear regression lead to promising statis- tics of R2= 0.958, Q2 =0.956, and AEE= 57 kJ.mo1-1 for the whole dataset. Moreover, unknown experimental formation enthalpies for 27 organic pollutants are estimated by the presented approach. The resultant model needs no technical software/calculations, and thus can be easily applied by a non-specialist user.
文摘The combustion energies of fourteen solid complexes of lanthanide nitrate with alanine were determined. The standard enthalpies of combustion, Δ c,coor(s) H °, and standard enthalpies of formation, Δ f,coor(s) H °, were calculated for these complexes. The relationship of Δ c,coor(s) H ° and Δ f,coor(s) H ° with the atomic numbers of the elements in the lanthanide series were examined. The results show that a certain amount of covalence is present in the chemical bond between the lanthanide cations and alanine.