Mg ion-exchanged samples were prepared with acid-washed Shengli lignite.The chemical composition of the ash of the raw sample was determined by X-ray fluorescence.The equilibrium adsorption water contents of samples w...Mg ion-exchanged samples were prepared with acid-washed Shengli lignite.The chemical composition of the ash of the raw sample was determined by X-ray fluorescence.The equilibrium adsorption water contents of samples were determined in a range of relative humidity.The ion-exchange process was characterized by FT-IR,ash content,and p H value.A possible mechanism is proposed for equilibrium adsorption water of ion-exchanged samples at different humidities.The extent of ion-exchange reaction between Mg2+and lignite is controlled by the concentration of Mg2+in Mg SO4solution.The effect of Mg2+on equilibrium adsorption water content varies with relative humidity and content of Mg2+.The factor that controls equilibrium adsorption water content at low relative humidity is water interactions with sorption sites,which are Mg2+–carboxyl group complex.At middle relative humidity capillary force between Mg2+–water clusters Mg+(H2O)nand capillary is more important.At high relative humidity,free water–free water interactions are more significant.展开更多
Extraction of methane hydrate from subseafloor reservoir may potentially trigger seabed slides and induce subsidence.To address the problems,it is crucial to properly characterize the phase equilibrium condition of po...Extraction of methane hydrate from subseafloor reservoir may potentially trigger seabed slides and induce subsidence.To address the problems,it is crucial to properly characterize the phase equilibrium condition of pore hydrate and the shear strength of the soil.As one of the key constitutive components,the phase equilibrium condition enforces a constraint over pore gas pressure,temperature and unhydrated water content.Such a constraint,however,has been traditionally ignored in analyzing the mechanical behavior of hydrate-bearing soil.In this paper,a series of stepwise hydrate dissociation tests was performed,and the phase equilibrium condition of pore hydrate was determined,providing an effective way to evaluate the unhydrated water content during hydrate dissociation.Meanwhile,a series of direct shear tests was also conducted to explore the shear strength characteristics of the soil.It is shown that the shear strength of the hydrate-bearing soil can be significantly influenced by pore gas pressure,unhydrated water content,hydrate saturation and several other factors.In particular,the measured shear strength depends upon the initial water content of the sample,pointing to a potential problem that the shear strength could be wrongly determined if not properly interpreted.A shear strength criterion,which enforces the equilibrium condition of pore hydrate,is developed for hydrate-bearing soil,establishing a link between the equilibrium condition and the shear strength.The proposed equation describes well the shear strength characteristics of hydrate-bearing soils,remarkably unifying the effects of pore pressure,temperature,water content and hydrate saturation.展开更多
A Raman spectroscopic study on the hydrogen\|bond defect of water in 2\|hydroxyethyl (meth)acrylate hydrogels crosslinked by ethylene glycol dimethacrylate (EGDMA) and polyethylene glycol dimethacrylates were undertak...A Raman spectroscopic study on the hydrogen\|bond defect of water in 2\|hydroxyethyl (meth)acrylate hydrogels crosslinked by ethylene glycol dimethacrylate (EGDMA) and polyethylene glycol dimethacrylates were undertaken.It was found that PEGDMA 16 possessed a different behavior on the hydrogen\|bond defect from EGDMA and PEGDMA 9.That is,the extents of hydrogen\|bond defect for EGDMA and PEGDMA 9 decreased with the increase of crosslinking density,whereas for PEGDMA 16,as the crosslinking density is bigger than a certain value,the hydrogenbond defect is increased with the increase of crosslinking density.This is caused by the weaker effect of —CH 2OCH 2— in the PEGDMA 16 to the hydrogen\|bond defect of water than that of —OH in HEA and HEMA.展开更多
基金Supported by the National Basic Research Program of China(2012CB214900)the National Natural Science Foundation of China(51274197)+1 种基金the 111 Project(B12030)the Fundamental Research Funds for the Central Universities(2014XT05)
文摘Mg ion-exchanged samples were prepared with acid-washed Shengli lignite.The chemical composition of the ash of the raw sample was determined by X-ray fluorescence.The equilibrium adsorption water contents of samples were determined in a range of relative humidity.The ion-exchange process was characterized by FT-IR,ash content,and p H value.A possible mechanism is proposed for equilibrium adsorption water of ion-exchanged samples at different humidities.The extent of ion-exchange reaction between Mg2+and lignite is controlled by the concentration of Mg2+in Mg SO4solution.The effect of Mg2+on equilibrium adsorption water content varies with relative humidity and content of Mg2+.The factor that controls equilibrium adsorption water content at low relative humidity is water interactions with sorption sites,which are Mg2+–carboxyl group complex.At middle relative humidity capillary force between Mg2+–water clusters Mg+(H2O)nand capillary is more important.At high relative humidity,free water–free water interactions are more significant.
基金This research was funded by the National Science Foundation of China(NSFC)(Grant Nos.51939011 and 42171135)Youth Innovation Promotion Association,Chinese Academy of Sciences(CAS)(Grant No.2020326),which are gratefully acknowledged.
文摘Extraction of methane hydrate from subseafloor reservoir may potentially trigger seabed slides and induce subsidence.To address the problems,it is crucial to properly characterize the phase equilibrium condition of pore hydrate and the shear strength of the soil.As one of the key constitutive components,the phase equilibrium condition enforces a constraint over pore gas pressure,temperature and unhydrated water content.Such a constraint,however,has been traditionally ignored in analyzing the mechanical behavior of hydrate-bearing soil.In this paper,a series of stepwise hydrate dissociation tests was performed,and the phase equilibrium condition of pore hydrate was determined,providing an effective way to evaluate the unhydrated water content during hydrate dissociation.Meanwhile,a series of direct shear tests was also conducted to explore the shear strength characteristics of the soil.It is shown that the shear strength of the hydrate-bearing soil can be significantly influenced by pore gas pressure,unhydrated water content,hydrate saturation and several other factors.In particular,the measured shear strength depends upon the initial water content of the sample,pointing to a potential problem that the shear strength could be wrongly determined if not properly interpreted.A shear strength criterion,which enforces the equilibrium condition of pore hydrate,is developed for hydrate-bearing soil,establishing a link between the equilibrium condition and the shear strength.The proposed equation describes well the shear strength characteristics of hydrate-bearing soils,remarkably unifying the effects of pore pressure,temperature,water content and hydrate saturation.
文摘A Raman spectroscopic study on the hydrogen\|bond defect of water in 2\|hydroxyethyl (meth)acrylate hydrogels crosslinked by ethylene glycol dimethacrylate (EGDMA) and polyethylene glycol dimethacrylates were undertaken.It was found that PEGDMA 16 possessed a different behavior on the hydrogen\|bond defect from EGDMA and PEGDMA 9.That is,the extents of hydrogen\|bond defect for EGDMA and PEGDMA 9 decreased with the increase of crosslinking density,whereas for PEGDMA 16,as the crosslinking density is bigger than a certain value,the hydrogenbond defect is increased with the increase of crosslinking density.This is caused by the weaker effect of —CH 2OCH 2— in the PEGDMA 16 to the hydrogen\|bond defect of water than that of —OH in HEA and HEMA.