Passive binocular measurement systems are being increasingly utilized in the in-situ industries of automobiles,aviation,and aerospace,etc.due to their excellent qualities of accuracy,efficiency,and cost performance.Wh...Passive binocular measurement systems are being increasingly utilized in the in-situ industries of automobiles,aviation,and aerospace,etc.due to their excellent qualities of accuracy,efficiency,and cost performance.Whereas the barrier of evaluating the accuracy of measured objects resulted from the unequal equivalent focal length and quantization of pixels,has limited their further development and application of high requirements for in-situ machining,e.g.,the measurement of machining reference points for the positioning of robotic drilling in aerospace manufacturing.In this paper,an accuracy evaluation method is proposed to address the problem.Firstly,the unequal equivalent focal length is considered to improve the accuracy of 3D reconstruction.Next,the credibility probability model is developed to calculate the probability of the observed error in the public view of the binocular measurement system and indicates the direction of improvement.Finally,the in-situ experiment is carried out to validate the method within the effective public view range of 300 mm×300 mm.The experiment results show that the RMSs of observed errors are superior to 0.035 mm,and the credibility probabilities are all higher than 0.91;the maximum 3D reconstruction accuracy improvement is 60.3%,with the error reduced from 0.078 mm to 0.031 mm.展开更多
Path determination is a fundamental problem of operations research. Current solutions mainly focus on the shortest and longest paths. We consider a more generalized problem; specifically, we consider the path problem ...Path determination is a fundamental problem of operations research. Current solutions mainly focus on the shortest and longest paths. We consider a more generalized problem; specifically, we consider the path problem with desired bounded lengths (DBL path problem). This problem has extensive applications; however, this problem is much harder, especially for large-scale problems. An effective approach to this problem is equivalent simplification. We focus on simplifying the problem in acyclic networks and creating a path length model that simplifies relationships between various path lengths. Based on this model, we design polynomial algorithms to compute the shortest, longest, second shortest, and second longest paths that traverse any arc. Furthermore, we design a polynomial algorithm for the equivalent simplification of the is O(m), where m is the number of arcs. DBL path problem. The complexity of the algorithm展开更多
There are many types of cyclone dust collectors for separating the fine solid and dust particles from gases in the various industries and also in the home used purposes. For estimating the power loss and the collectio...There are many types of cyclone dust collectors for separating the fine solid and dust particles from gases in the various industries and also in the home used purposes. For estimating the power loss and the collection efficiency, one of the most important factors is the maximum tangential velocity V0m in the vortex core region in the cyclone body. In order to determine V0~ by the simple method, it is useful to apply the mechanical balance of the angular momentum fluxes under the assumption of Ogawa combined vortex model which is composed of the quasi-forced vortex in the vortex core region and also the quasi-free vortex surrounded the vortex core region and also under the assumption of the introduction of equivalent length Heq corresponding to the cone spaces of the cyclone body and the dust bunker. On the other hand, the mean rotational velocity Voi near the concave wall surface is also estimated by the mechanical balance of angular momentum fluxes with the moment of viscous friction force. For confirming the general applications of the obtained equations, the returned flow types cyclones changed the throat diameter D3 are designed. The material of the cyclone is the transparent acrylic resin. Therefore the inner surface of the cyclone body can be regarded as smooth surface. The comparisons of the measured velocities V~ and Voi by a cylindrical Pitot tube are shown in good agreement with those of the proposed equations. The above stated results are described in detail.展开更多
基金co-supported by the Key Technologies Research and Development Plan of China(No.2018YFA0703304)the National Science Fund for Distinguished Young Scholars,China(No.52125504)the Liaoning Revitalization Talents Program,China(Nos.XLYC1801008 and XLYC1807086)。
文摘Passive binocular measurement systems are being increasingly utilized in the in-situ industries of automobiles,aviation,and aerospace,etc.due to their excellent qualities of accuracy,efficiency,and cost performance.Whereas the barrier of evaluating the accuracy of measured objects resulted from the unequal equivalent focal length and quantization of pixels,has limited their further development and application of high requirements for in-situ machining,e.g.,the measurement of machining reference points for the positioning of robotic drilling in aerospace manufacturing.In this paper,an accuracy evaluation method is proposed to address the problem.Firstly,the unequal equivalent focal length is considered to improve the accuracy of 3D reconstruction.Next,the credibility probability model is developed to calculate the probability of the observed error in the public view of the binocular measurement system and indicates the direction of improvement.Finally,the in-situ experiment is carried out to validate the method within the effective public view range of 300 mm×300 mm.The experiment results show that the RMSs of observed errors are superior to 0.035 mm,and the credibility probabilities are all higher than 0.91;the maximum 3D reconstruction accuracy improvement is 60.3%,with the error reduced from 0.078 mm to 0.031 mm.
基金Natural Science Foundation of China(No. 71171079 and 71271081)the Natural Science Foundation of Jiangxi Provincial Department of Science and Technology in China(No. 20151BAB211015)the Jiangxi Research Center of Soft Science for Water Security& Sustainable Development for financially supporting this work
文摘Path determination is a fundamental problem of operations research. Current solutions mainly focus on the shortest and longest paths. We consider a more generalized problem; specifically, we consider the path problem with desired bounded lengths (DBL path problem). This problem has extensive applications; however, this problem is much harder, especially for large-scale problems. An effective approach to this problem is equivalent simplification. We focus on simplifying the problem in acyclic networks and creating a path length model that simplifies relationships between various path lengths. Based on this model, we design polynomial algorithms to compute the shortest, longest, second shortest, and second longest paths that traverse any arc. Furthermore, we design a polynomial algorithm for the equivalent simplification of the is O(m), where m is the number of arcs. DBL path problem. The complexity of the algorithm
文摘There are many types of cyclone dust collectors for separating the fine solid and dust particles from gases in the various industries and also in the home used purposes. For estimating the power loss and the collection efficiency, one of the most important factors is the maximum tangential velocity V0m in the vortex core region in the cyclone body. In order to determine V0~ by the simple method, it is useful to apply the mechanical balance of the angular momentum fluxes under the assumption of Ogawa combined vortex model which is composed of the quasi-forced vortex in the vortex core region and also the quasi-free vortex surrounded the vortex core region and also under the assumption of the introduction of equivalent length Heq corresponding to the cone spaces of the cyclone body and the dust bunker. On the other hand, the mean rotational velocity Voi near the concave wall surface is also estimated by the mechanical balance of angular momentum fluxes with the moment of viscous friction force. For confirming the general applications of the obtained equations, the returned flow types cyclones changed the throat diameter D3 are designed. The material of the cyclone is the transparent acrylic resin. Therefore the inner surface of the cyclone body can be regarded as smooth surface. The comparisons of the measured velocities V~ and Voi by a cylindrical Pitot tube are shown in good agreement with those of the proposed equations. The above stated results are described in detail.