In this paper,we investigate a streamline diffusion finite element approxi- mation scheme for the constrained optimal control problem governed by linear con- vection dominated diffusion equations.We prove the existenc...In this paper,we investigate a streamline diffusion finite element approxi- mation scheme for the constrained optimal control problem governed by linear con- vection dominated diffusion equations.We prove the existence and uniqueness of the discretized scheme.Then a priori and a posteriori error estimates are derived for the state,the co-state and the control.Three numerical examples are presented to illustrate our theoretical results.展开更多
An H^1-Galerkin mixed finite element method is discussed for a class of second order SchrSdinger equation. Optimal error estimates of semidiscrete schemes are derived for problems in one space dimension. At the same t...An H^1-Galerkin mixed finite element method is discussed for a class of second order SchrSdinger equation. Optimal error estimates of semidiscrete schemes are derived for problems in one space dimension. At the same time, optimal error estimates are derived for fully discrete schemes. And it is showed that the H1-Galerkin mixed finite element approximations have the same rate of convergence as in the classical mixed finite element methods without requiring the LBB consistency condition.展开更多
The purpose of this paper is to investigate the convergence of the mixed finite element method for the initial-boundary value problem for the Sobolev equation Ut-div{aut + b1 u} = f based on the Raviart-Thomas space ...The purpose of this paper is to investigate the convergence of the mixed finite element method for the initial-boundary value problem for the Sobolev equation Ut-div{aut + b1 u} = f based on the Raviart-Thomas space Vh × Wh H(div; × L2(). Optimal order estimates are obtained for the approximation of u, ut, the associated velocity p and divp respectively in L(0,T;L2()), L(0,T;L2()), L(0,T;L2()2), and L2(0, T; L2()). Quasi-optimal order estimates are obtained for the approximations of u, ut in L(0, T; L()) and p in L(0,T; L()2).展开更多
In this article, we study the explicit expressions of the constants in the error estimate of the nonconforming finite element method. We explicitly obtain the approximation error estimate and the consistency error est...In this article, we study the explicit expressions of the constants in the error estimate of the nonconforming finite element method. We explicitly obtain the approximation error estimate and the consistency error estimate for the Wilson's element without the regular assumption, respectively, which implies the final finite element error estimate. Such explicit a priori error estimates can be used as computable error bounds.展开更多
Although the two-grid finite element decoupled scheme for mixed Navier-Stokes/ Darcy model in literatures has given the numerical results of optimal convergence order, the theoretical analysis only obtain the optimal ...Although the two-grid finite element decoupled scheme for mixed Navier-Stokes/ Darcy model in literatures has given the numerical results of optimal convergence order, the theoretical analysis only obtain the optimal error order for the porous media flow and a non-optimal error order for the fluid flow. In this article, we give a more rigorous of the error analysis for the fluid flow and obtain the optimal error estimates of the velocity and the pressure.展开更多
This paper deals with a-posteriori error estimates for piecewise linear finite element approximations of parabolic problems in two space dimensions. The analysis extends previous results for elliptic problems to the p...This paper deals with a-posteriori error estimates for piecewise linear finite element approximations of parabolic problems in two space dimensions. The analysis extends previous results for elliptic problems to the parabolic context.展开更多
The main aim of this paper is to have an accurate analysis on the famous Adini's element for the second order problems under to the anisotropic meshes. We firstly show that the interpolation of Adini's element satis...The main aim of this paper is to have an accurate analysis on the famous Adini's element for the second order problems under to the anisotropic meshes. We firstly show that the interpolation of Adini's element satisfy the anisotropic property. Then the optimal error estimate is obtained without the regularity assumption on the meshes.展开更多
H1-Galerkin mixed methods are proposed for viscoelasticity wave equation.Depending on the physical quantities of interest,two methods are discussed.The optimal error estimates and the proof of the existence and unique...H1-Galerkin mixed methods are proposed for viscoelasticity wave equation.Depending on the physical quantities of interest,two methods are discussed.The optimal error estimates and the proof of the existence and uniqueness of semidiscrete solutions are derived for problems in one space dimension.And the methods don't require the LBB condition.展开更多
<div style="text-align:justify;"> In this paper, we study the error estimates for direct discontinuous Galerkin methods based on the upwind-biased fluxes. We use a newly global projection to obtain the...<div style="text-align:justify;"> In this paper, we study the error estimates for direct discontinuous Galerkin methods based on the upwind-biased fluxes. We use a newly global projection to obtain the optimal error estimates. The numerical experiments imply that <em>L</em><sup>2 </sup>norms error estimates can reach to order <em>k</em> + 1 by using time discretization methods. </div>展开更多
An adaptive finite element procedure designed for specific computational goals is presented,using mesh refinement strategies based on optimal or nearly optimal a priori error estimates for the finite element method an...An adaptive finite element procedure designed for specific computational goals is presented,using mesh refinement strategies based on optimal or nearly optimal a priori error estimates for the finite element method and using estimators of the local regularity of the unknown exact solution derived from computed approximate solutions.The proposed procedure is analyzed in detail for a non-trivial class of corner problems and shown to be efficient in the sense that the method can generate the correct type of refinements and lead to the desired control under consideration.展开更多
In this paper, a posteriori error estimates for the generalized Schwartz method with Dirichlet boundary conditions on the interfaces for advection-diffusion equation with second order boundary value problems are prove...In this paper, a posteriori error estimates for the generalized Schwartz method with Dirichlet boundary conditions on the interfaces for advection-diffusion equation with second order boundary value problems are proved by using the Euler time scheme combined with Galerkin spatial method. Furthermore, an asymptotic behavior in Sobolev norm is de- duced using Benssoussau-Lions' algorithm. Finally, the results of some numerical experiments are presented to support the theory.展开更多
Allen and Liu (1995) introduced a new method for a time-dependent convection dominated diffusion problem, which combines the modified method of characteristics and method of streamline diffusion. But they ignored the ...Allen and Liu (1995) introduced a new method for a time-dependent convection dominated diffusion problem, which combines the modified method of characteristics and method of streamline diffusion. But they ignored the fact that the accuracy of time discretization decays at half an order when the characteristic line goes out of the domain. In present paper, the author shows that, as a remedy, a simple lumped scheme yields a full accuracy approximation. Forthermore, some local error bounds independent of the small viscosity axe derived for this scheme outside the boundary layers.展开更多
Residual based on a posteriori error estimates for conforming finite element solutions of incompressible Navier-Stokes equations with stream function form which were computed with seven recently proposed two-level met...Residual based on a posteriori error estimates for conforming finite element solutions of incompressible Navier-Stokes equations with stream function form which were computed with seven recently proposed two-level method were derived. The posteriori error estimates contained additional terms in comparison to the error estimates for the solution obtained by the standard finite element method. The importance of these additional terms in the error estimates was investigated by studying their asymptotic behavior. For optimal scaled meshes, these bounds are not of higher order than of convergence of discrete solution.展开更多
A Fourier spectral method for the generalized Korteweg-de Vries equation with periodic boundary conditions is analyzed, and a corresponding optimal error estimate in L^2-norm is obtained. It improves the result presen...A Fourier spectral method for the generalized Korteweg-de Vries equation with periodic boundary conditions is analyzed, and a corresponding optimal error estimate in L^2-norm is obtained. It improves the result presented by Maday and Quarteroni. A modified Fourier pseudospectral method is also presented, with the same convergence properties as the Fourier spectral method.展开更多
In the present paper, a new numerical method for solving initial-boundary value problems of evolutionary equations is proposed and studied, combining difference method with high accuracy with boundary integral equatio...In the present paper, a new numerical method for solving initial-boundary value problems of evolutionary equations is proposed and studied, combining difference method with high accuracy with boundary integral equation method. The numerical approximate schemes for both problems on a bounded or unbounded domain in R3 are proposed and their prior error estimates are obtained.展开更多
In this paper, a posteriori error estimates were derived for piecewise linear finite element approximations to parabolic obstacle problems. The instrumental ingredient was introduced as a new interpolation operator wh...In this paper, a posteriori error estimates were derived for piecewise linear finite element approximations to parabolic obstacle problems. The instrumental ingredient was introduced as a new interpolation operator which has optimal approximation properties and preserves positivity. With the help of the interpolation operator the upper and lower bounds were obtained.展开更多
In this paper, a spectral method to analyze the generalized Benjamin Bona Mahony equations is used. The existence and uniqueness of global smooth solution of these equations are proved. The large time error estimati...In this paper, a spectral method to analyze the generalized Benjamin Bona Mahony equations is used. The existence and uniqueness of global smooth solution of these equations are proved. The large time error estimation between the spectral approximate solution and the exact solution is obtained.展开更多
A posteriori error estimate of the discontinuous-streamline diffusion method for first-order hyperbolic equations was presented, which can be used to adjust space mesh reasonably. A numerical example is given to illus...A posteriori error estimate of the discontinuous-streamline diffusion method for first-order hyperbolic equations was presented, which can be used to adjust space mesh reasonably. A numerical example is given to illustrate the accuracy and feasibility of this method.展开更多
In this paper,the Fourier collocation method for solving the generalized Benjamin-Ono equation with periodic boundary conditions is analyzed.Stability of the semi-discrete scheme is proved and error estimate in H^(1/2...In this paper,the Fourier collocation method for solving the generalized Benjamin-Ono equation with periodic boundary conditions is analyzed.Stability of the semi-discrete scheme is proved and error estimate in H^(1/2)-norm is obtained.展开更多
The proper orthogonal decomposition (POD) is a model reduction technique for the simulation Of physical processes governed by partial differential equations (e.g., fluid flows). It has been successfully used in th...The proper orthogonal decomposition (POD) is a model reduction technique for the simulation Of physical processes governed by partial differential equations (e.g., fluid flows). It has been successfully used in the reduced-order modeling of complex systems. In this paper, the applications of the POD method are extended, i.e., the POD method is applied to a classical finite difference (FD) scheme for the non-stationary Stokes equation with a real practical applied background. A reduced FD scheme is established with lower dimensions and sufficiently high accuracy, and the error estimates are provided between the reduced and the classical FD solutions. Some numerical examples illustrate that the numerical results are consistent with theoretical conclusions. Moreover, it is shown that the reduced FD scheme based on the POD method is feasible and efficient in solving the FD scheme for the non-stationary Stokes equation.展开更多
基金supported by the National Basic Research Program under the Grant 2005CB321701the National Natural Science Foundation of China under the Grants 60474027 and 10771211.
文摘In this paper,we investigate a streamline diffusion finite element approxi- mation scheme for the constrained optimal control problem governed by linear con- vection dominated diffusion equations.We prove the existence and uniqueness of the discretized scheme.Then a priori and a posteriori error estimates are derived for the state,the co-state and the control.Three numerical examples are presented to illustrate our theoretical results.
基金Supported by the National Natural Science Foundation of China (10601022)Natural Science Foundation of Inner Mongolia Autonomous Region (200607010106)Youth Science Foundation of Inner Mongolia University(ND0702)
文摘An H^1-Galerkin mixed finite element method is discussed for a class of second order SchrSdinger equation. Optimal error estimates of semidiscrete schemes are derived for problems in one space dimension. At the same time, optimal error estimates are derived for fully discrete schemes. And it is showed that the H1-Galerkin mixed finite element approximations have the same rate of convergence as in the classical mixed finite element methods without requiring the LBB consistency condition.
文摘The purpose of this paper is to investigate the convergence of the mixed finite element method for the initial-boundary value problem for the Sobolev equation Ut-div{aut + b1 u} = f based on the Raviart-Thomas space Vh × Wh H(div; × L2(). Optimal order estimates are obtained for the approximation of u, ut, the associated velocity p and divp respectively in L(0,T;L2()), L(0,T;L2()), L(0,T;L2()2), and L2(0, T; L2()). Quasi-optimal order estimates are obtained for the approximations of u, ut in L(0, T; L()) and p in L(0,T; L()2).
基金supported by National Natural Science Foundation of China (11071226 11201122)
文摘In this article, we study the explicit expressions of the constants in the error estimate of the nonconforming finite element method. We explicitly obtain the approximation error estimate and the consistency error estimate for the Wilson's element without the regular assumption, respectively, which implies the final finite element error estimate. Such explicit a priori error estimates can be used as computable error bounds.
基金Subsidized by NSFC(11571274 and 11171269)the Ph.D.Programs Foundation of Ministry of Education of China(20110201110027)
文摘Although the two-grid finite element decoupled scheme for mixed Navier-Stokes/ Darcy model in literatures has given the numerical results of optimal convergence order, the theoretical analysis only obtain the optimal error order for the porous media flow and a non-optimal error order for the fluid flow. In this article, we give a more rigorous of the error analysis for the fluid flow and obtain the optimal error estimates of the velocity and the pressure.
文摘This paper deals with a-posteriori error estimates for piecewise linear finite element approximations of parabolic problems in two space dimensions. The analysis extends previous results for elliptic problems to the parabolic context.
基金the Henan Natural Science Foundation(072300410320)the Henan Education Department Foundational Study Foundation(200510460311)
文摘The main aim of this paper is to have an accurate analysis on the famous Adini's element for the second order problems under to the anisotropic meshes. We firstly show that the interpolation of Adini's element satisfy the anisotropic property. Then the optimal error estimate is obtained without the regularity assumption on the meshes.
基金Supported by NNSF(10601022,11061021)Supported by NSF of Inner Mongolia Au-tonomous Region(200607010106)Supported by SRP of Higher Schools of Inner Mongolia(NJ10006)
文摘H1-Galerkin mixed methods are proposed for viscoelasticity wave equation.Depending on the physical quantities of interest,two methods are discussed.The optimal error estimates and the proof of the existence and uniqueness of semidiscrete solutions are derived for problems in one space dimension.And the methods don't require the LBB condition.
文摘<div style="text-align:justify;"> In this paper, we study the error estimates for direct discontinuous Galerkin methods based on the upwind-biased fluxes. We use a newly global projection to obtain the optimal error estimates. The numerical experiments imply that <em>L</em><sup>2 </sup>norms error estimates can reach to order <em>k</em> + 1 by using time discretization methods. </div>
文摘An adaptive finite element procedure designed for specific computational goals is presented,using mesh refinement strategies based on optimal or nearly optimal a priori error estimates for the finite element method and using estimators of the local regularity of the unknown exact solution derived from computed approximate solutions.The proposed procedure is analyzed in detail for a non-trivial class of corner problems and shown to be efficient in the sense that the method can generate the correct type of refinements and lead to the desired control under consideration.
文摘In this paper, a posteriori error estimates for the generalized Schwartz method with Dirichlet boundary conditions on the interfaces for advection-diffusion equation with second order boundary value problems are proved by using the Euler time scheme combined with Galerkin spatial method. Furthermore, an asymptotic behavior in Sobolev norm is de- duced using Benssoussau-Lions' algorithm. Finally, the results of some numerical experiments are presented to support the theory.
文摘Allen and Liu (1995) introduced a new method for a time-dependent convection dominated diffusion problem, which combines the modified method of characteristics and method of streamline diffusion. But they ignored the fact that the accuracy of time discretization decays at half an order when the characteristic line goes out of the domain. In present paper, the author shows that, as a remedy, a simple lumped scheme yields a full accuracy approximation. Forthermore, some local error bounds independent of the small viscosity axe derived for this scheme outside the boundary layers.
文摘Residual based on a posteriori error estimates for conforming finite element solutions of incompressible Navier-Stokes equations with stream function form which were computed with seven recently proposed two-level method were derived. The posteriori error estimates contained additional terms in comparison to the error estimates for the solution obtained by the standard finite element method. The importance of these additional terms in the error estimates was investigated by studying their asymptotic behavior. For optimal scaled meshes, these bounds are not of higher order than of convergence of discrete solution.
基金Project supported by the National Natural Science Foundation of China (No. 60874039)Shanghai Leading Academic Discipline Project (No. J50101)
文摘A Fourier spectral method for the generalized Korteweg-de Vries equation with periodic boundary conditions is analyzed, and a corresponding optimal error estimate in L^2-norm is obtained. It improves the result presented by Maday and Quarteroni. A modified Fourier pseudospectral method is also presented, with the same convergence properties as the Fourier spectral method.
基金This research was supported by the National Natural Science Foundation of China
文摘In the present paper, a new numerical method for solving initial-boundary value problems of evolutionary equations is proposed and studied, combining difference method with high accuracy with boundary integral equation method. The numerical approximate schemes for both problems on a bounded or unbounded domain in R3 are proposed and their prior error estimates are obtained.
基金Project supported by National Natural Science Foundation ofChina (Grant No .10471089)
文摘In this paper, a posteriori error estimates were derived for piecewise linear finite element approximations to parabolic obstacle problems. The instrumental ingredient was introduced as a new interpolation operator which has optimal approximation properties and preserves positivity. With the help of the interpolation operator the upper and lower bounds were obtained.
文摘In this paper, a spectral method to analyze the generalized Benjamin Bona Mahony equations is used. The existence and uniqueness of global smooth solution of these equations are proved. The large time error estimation between the spectral approximate solution and the exact solution is obtained.
文摘A posteriori error estimate of the discontinuous-streamline diffusion method for first-order hyperbolic equations was presented, which can be used to adjust space mesh reasonably. A numerical example is given to illustrate the accuracy and feasibility of this method.
基金supported by NSF of China(60874039)Leading Academic Discipline Project of Shanghai Municipal Education Commission(J50101)
文摘In this paper,the Fourier collocation method for solving the generalized Benjamin-Ono equation with periodic boundary conditions is analyzed.Stability of the semi-discrete scheme is proved and error estimate in H^(1/2)-norm is obtained.
基金Project supported by the National Natural Science Foundation of China (Nos. 10871022, 11061009, and 40821092)the National Basic Research Program of China (973 Program) (Nos. 2010CB428403, 2009CB421407, and 2010CB951001)the Natural Science Foundation of Hebei Province of China (No. A2010001663)
文摘The proper orthogonal decomposition (POD) is a model reduction technique for the simulation Of physical processes governed by partial differential equations (e.g., fluid flows). It has been successfully used in the reduced-order modeling of complex systems. In this paper, the applications of the POD method are extended, i.e., the POD method is applied to a classical finite difference (FD) scheme for the non-stationary Stokes equation with a real practical applied background. A reduced FD scheme is established with lower dimensions and sufficiently high accuracy, and the error estimates are provided between the reduced and the classical FD solutions. Some numerical examples illustrate that the numerical results are consistent with theoretical conclusions. Moreover, it is shown that the reduced FD scheme based on the POD method is feasible and efficient in solving the FD scheme for the non-stationary Stokes equation.