期刊文献+
共找到425篇文章
< 1 2 22 >
每页显示 20 50 100
Short Term Forecasting Performances of Classical VAR and Sims-Zha Bayesian VAR Models for Time Series with Collinear Variables and Correlated Error Terms
1
作者 M. O. Adenomon V. A. Michael O. P. Evans 《Open Journal of Statistics》 2015年第7期742-753,共12页
Forecasts can either be short term, medium term or long term. In this work we considered short term forecast because of the problem of limited data or time series data that is often encounter in time series analysis. ... Forecasts can either be short term, medium term or long term. In this work we considered short term forecast because of the problem of limited data or time series data that is often encounter in time series analysis. This simulation study considered the performances of the classical VAR and Sims-Zha Bayesian VAR for short term series at different levels of collinearity and correlated error terms. The results from 10,000 iteration revealed that the BVAR models are excellent for time series length of T=8 for all levels of collinearity while the classical VAR is effective for time series length of T=16 for all collinearity levels except when ρ = -0.9 and ρ = -0.95. We therefore recommended that for effective short term forecasting, the time series length, forecasting horizon and the collinearity level should be considered. 展开更多
关键词 Short term Forecasting Vector Autoregressive (VAR) BAYESIAN VAR (BVAR) Sims-Zha Prior COLLINEARITY error terms
下载PDF
Tong-type identity and the mean square of the error term for an extended Selberg class 被引量:1
2
作者 CAO XiaoDong TANIGAWA Yoshio ZHAI WenGuang 《Science China Mathematics》 SCIE CSCD 2016年第11期2103-2144,共42页
In 1956, Tong established an asymptotic formula for the mean square of the error term of the summatory function of the Piltz divisor function d3(n). The aim of this paper is to generalize Tong's method to a class o... In 1956, Tong established an asymptotic formula for the mean square of the error term of the summatory function of the Piltz divisor function d3(n). The aim of this paper is to generalize Tong's method to a class of Dirichlet series L(s) which satisfies a functional equation. Let a(n) be an arithmetical function related f t to a Dirichlet series L(s), and let E(x) be the error term of ∑'n≤x a(n). In this paper, after introducing a class of Diriclet series with a general functional equation (which contains the well-known Selberg class), we establish a Tong-type identity and a Tong-type truncated formula for the error term of the Riesz mean of the coefficients of this Dirichlet series L(s). This kind of Tong-type truncated formula could be used to study the mean square of E(x) under a certain assumption. In other words, we reduce the mean square of E(x) to the problem of finding a suitable constant σ* which is related to the mean square estimate of L(s). We shall represent some results of functions in the Selberg class of degrees 2 -4. 展开更多
关键词 Selberg class functional equation Tong-type identity Voronoi's formula mean square error term cusp form Maass form
原文传递
Error term concerning number of subgroups of group Z_(m)×Z_(n) with m^(2)+n^(2)≤x
3
作者 Yankun SUI Dan LIU 《Frontiers of Mathematics in China》 SCIE CSCD 2022年第5期987-999,共13页
Let Zm be the additive group of residue classes modulo m.Let s(m,n)denote the number of subgroups of the group Z_(m)×Z_(n),where m and n are arbitrary positive integers.For any x≥1,we consider the asymptotic beh... Let Zm be the additive group of residue classes modulo m.Let s(m,n)denote the number of subgroups of the group Z_(m)×Z_(n),where m and n are arbitrary positive integers.For any x≥1,we consider the asymptotic behavior of D_(s)(x):=∑m^(2)+n^(2)≤xS(M,n)and obtain an asymptotic formula by using the elementary method. 展开更多
关键词 Number of subgroups asymptotic formula error term exponential sums
原文传递
The error term in Nevanlinna' s inequality
4
作者 陈怀惠 叶专 《Science China Mathematics》 SCIE 2000年第10期1060-1066,共7页
An upper bound is given for the error termS(r, |a j |,f) in Nevanlinna’s inequality. For given positive increasing functions p and $ with ∫ 1 ∞ dr/p(r) = ∫ 1 ∞ dr/r ?(r) = ∞, setP(r) = ∫ 1 r dt/p,Ψ(r) = ∫ 1 r... An upper bound is given for the error termS(r, |a j |,f) in Nevanlinna’s inequality. For given positive increasing functions p and $ with ∫ 1 ∞ dr/p(r) = ∫ 1 ∞ dr/r ?(r) = ∞, setP(r) = ∫ 1 r dt/p,Ψ(r) = ∫ 1 r dt/t ?(t) We prove that $$S(r, \left\{ {a_j } \right\}, f) \leqslant \log \frac{{T(r, f)\phi (T(r, f))}}{{p(r)}} + O(1)$$ holds, with a small exceptional set of r, for any finite set of points |a j | in the extended plane and any meromorphic function f such thatΨ(T(r, f)) =O(P(r)). This improves the known results of A. Hinkkanen and Y. F. Wang. The sharpness of the estimate is also considered. 展开更多
关键词 MEROMORPHIC FUNCTION Nevanlinna’s INEQUALITY error term.
原文传递
On the error term in Weyl’s law for the Heisenberg manifolds (Ⅱ)
5
作者 ZHAI WenGuang School of Mathematical Sciences, Shandong Normal University, Jinan 250014, China 《Science China Mathematics》 SCIE 2009年第5期857-874,共18页
In this paper we study the mean square of the error term in the Weyl's law of an irrational (2l + 1)-dimensional Heisenberg manifold. An asymptotic formula is established.
关键词 HEISENBERG MANIFOLD Weyl’s LAW error term mean SQUARE
原文传递
ADS-B Reception Error Correction Based on the LSTM Neural-Network Model
6
作者 Jamal Habibi Markani Syed Ibtehaj Raza Rizvi +2 位作者 Abdessamad Amrhar Jean-Marc Gagné René Jr. Landry 《Communications and Network》 2023年第2期25-42,共18页
Standard automatic dependent surveillance broadcast (ADS-B) reception algorithms offer considerable performance at high signal-to-noise ratios (SNRs). However, the performance of ADS-B algorithms in applications can b... Standard automatic dependent surveillance broadcast (ADS-B) reception algorithms offer considerable performance at high signal-to-noise ratios (SNRs). However, the performance of ADS-B algorithms in applications can be problematic at low SNRs and in high interference situations, as detecting and decoding techniques may not perform correctly in such circumstances. In addition, conventional error correction algorithms have limitations in their ability to correct errors in ADS-B messages, as the bit and confidence values may be declared inaccurately in the event of low SNRs and high interference. The principal goal of this paper is to deploy a Long Short-Term Memory (LSTM) recurrent neural network model for error correction in conjunction with a conventional algorithm. The data of various flights are collected and cleaned in an initial stage. The clean data is divided randomly into training and test sets. Next, the LSTM model is trained based on the training dataset, and then the model is evaluated based on the test dataset. The proposed model not only improves the ADS-B In packet error correction rate (PECR), but it also enhances the ADS-B In terms of sensitivity. The performance evaluation results reveal that the proposed scheme is achievable and efficient for the avionics industry. It is worth noting that the proposed algorithm is not dependent on conventional algorithms’ prerequisites. 展开更多
关键词 ADS-B Long Short-term Memory Packet error Correction Rate error Correction Bit error Rate
下载PDF
基于Vine Copula的梯级水库短期发电调度风险估计
7
作者 李继清 谢宇韬 孙凤玲 《水资源保护》 EI CAS CSCD 北大核心 2024年第4期17-26,47,共11页
基于能准确描述高维变量相关关系的Vine Copula,考虑短期径流预报误差的空间相关性,构建了梯级水库短期发电调度风险估计模型,并将模型应用于长江上游溪洛渡、向家坝和三峡水库,分析了径流预报误差带来的单一水库、梯级水库短期发电调... 基于能准确描述高维变量相关关系的Vine Copula,考虑短期径流预报误差的空间相关性,构建了梯级水库短期发电调度风险估计模型,并将模型应用于长江上游溪洛渡、向家坝和三峡水库,分析了径流预报误差带来的单一水库、梯级水库短期发电调度风险。结果表明:基于C-vine Copula构建的联合分布能较好地描述屏山站、朱沱站、寸滩站和武隆站的日径流预报误差特性;随着水库可调节安全区间范围增大,单一水库发电量不足风险率、弃水风险率均越来越小,梯级水库发电量不足、弃水联合风险率和同现风险率越来越小,即水库调节库容越大,其承担的风险也就越小。 展开更多
关键词 发电调度风险 Vine Copula 梯级水库 短期径流预报误差 溪洛渡水库 向家坝水库 三峡水库
下载PDF
数控机床旋转轴多自由度静/热误差同步测量与建模
8
作者 李国龙 肖扬 +2 位作者 李喆裕 徐凯 张薇 《中国机械工程》 EI CAS CSCD 北大核心 2024年第8期1426-1434,共9页
针对现有的数控机床旋转轴误差测量与建模方法仅考虑多自由度静态几何误差或单自由度热误差单独作用的影响,未考虑几何误差和热误差耦合影响的问题,提出了一种基于球杆仪的数控机床旋转轴多自由度静/热误差同步测量与建模方法。首先基... 针对现有的数控机床旋转轴误差测量与建模方法仅考虑多自由度静态几何误差或单自由度热误差单独作用的影响,未考虑几何误差和热误差耦合影响的问题,提出了一种基于球杆仪的数控机床旋转轴多自由度静/热误差同步测量与建模方法。首先基于齐次坐标变换建立球杆仪杆长变化模型,再基于该模型使用非齐次线性方程组建立静/热误差辨识模型;其次设计了适应多自由度静/热误差同步测量的球杆仪安装模式以缩短测量时间,减少热逸散对测量结果的影响;再次基于卷积长短期记忆神经网络(CNN-LSTM)建立旋转轴多自由度静/热误差预测模型;最后在数控蜗杆砂轮磨齿机的C轴上进行误差测量实验,对多种转速下的旋转轴多自由度误差进行快速辨识,并通过CNN-LSTM静/热误差预测模型对多自由度误差和球杆仪杆长变化进行预测,以验证所建模型的准确性。 展开更多
关键词 静/热误差 误差测量 卷积长短期记忆神经网络 旋转轴 球杆仪
下载PDF
基于第十三代国际地磁参考场模型在中国区域特征分析与研究
9
作者 张秀玲 赵旭东 《地震学报》 CSCD 北大核心 2024年第1期120-128,共9页
根据最新的第十三代国际地磁参考场模型(IGRF13),计算了2015—2020年中国区域地磁场模型七要素长期变化速率,并在此基础上分析我国区域地磁场长期变化特征。通过分析计算我国28个地磁台的IGRF13模型值与实际地磁场的长期变化速率、差值... 根据最新的第十三代国际地磁参考场模型(IGRF13),计算了2015—2020年中国区域地磁场模型七要素长期变化速率,并在此基础上分析我国区域地磁场长期变化特征。通过分析计算我国28个地磁台的IGRF13模型值与实际地磁场的长期变化速率、差值及均方误差,结果显示:IGRF13模型所显示的地磁场长期变化与我国区域地磁场实际观测变化基本一致,但在局部区域也存在差异,IGRF13模型能够体现中国区域地磁场的特征。应用IGRF13模型数据时需要考虑局部区域与台站实际观测数据的误差。 展开更多
关键词 地磁参考场模型 等变线 平均年变率 长期变化速率 均方根误差
下载PDF
计及误差信息的自适应超短期风速预测模型
10
作者 张金良 刘子毅 孙安黎 《太阳能学报》 EI CAS CSCD 北大核心 2024年第3期18-28,共11页
为提升超短期风速预测精度,提出一种计及误差信息的自适应混合预测模型。应用自适应噪声的完备集合经验模态分解模型与鲸鱼优化的变分模态分解模型分别对风速样本数据与预测误差进行分解,同时计算各子序列的模糊熵以判断序列复杂程度。... 为提升超短期风速预测精度,提出一种计及误差信息的自适应混合预测模型。应用自适应噪声的完备集合经验模态分解模型与鲸鱼优化的变分模态分解模型分别对风速样本数据与预测误差进行分解,同时计算各子序列的模糊熵以判断序列复杂程度。在此基础上,应用鲸鱼优化的长短期网络预测复杂程度较高的序列,差分自回归移动平均模型预测复杂程度较低的序列。最后,将初始风速预测结果和风速误差预测值相加得到基于误差修正的超短期风速预测值。结果表明,修正预测误差与考虑分解策略可有效提升点预测的性能,与基准模型相比,所提模型在多场景下均具备优良的预测精度。 展开更多
关键词 风电 风速 预测 误差修正 变分模态分解 长短期记忆网络 鲸鱼优化
下载PDF
基于混合特征双重衍生和误差修正的风电功率超短期预测 被引量:1
11
作者 袁畅 王森 +2 位作者 孙永辉 武云逸 谢东亮 《电力系统自动化》 EI CSCD 北大核心 2024年第5期68-76,共9页
随着风电渗透率的不断提高,对风电功率进行精准、可靠的预测是提升风电消纳水平的有效措施。针对功率预测时风电数据种类不足和特征数量稀缺的问题,提出基于混合特征双重衍生和误差修正的风电功率超短期预测模型。首先,在原始功率特征... 随着风电渗透率的不断提高,对风电功率进行精准、可靠的预测是提升风电消纳水平的有效措施。针对功率预测时风电数据种类不足和特征数量稀缺的问题,提出基于混合特征双重衍生和误差修正的风电功率超短期预测模型。首先,在原始功率特征中施加混沌噪声,构造出多条混沌扰动特征,改善原始功率特征分布过于单一的状况。其次,提出基于免疫算法的特征衍生算法,挖掘风电功率数据的潜在信息,增加优质特征数量,进而构建误差预测模型,通过预测风电功率预测误差修正风电功率预测结果,进一步提升预测准确率。最后,基于比利时风电场实际运行数据进行算例分析。所提模型预测效果较好,且相较其他传统预测模型精确度更高,验证了所提模型的有效性。 展开更多
关键词 风电功率预测 风电场 特征稀缺回归预测 特征衍生 误差修正 超短期预测
下载PDF
基于双重注意力机制CNN-BiLSTM与LightGBM误差修正的超短期风电功率预测 被引量:3
12
作者 龙铖 余成波 +3 位作者 何铖 朱春霖 张未 陈佳 《电气工程学报》 CSCD 北大核心 2024年第2期138-145,共8页
为了响应国家“双碳”目标,针对风电功率预测误差影响电网安全稳定运行的问题,提出一种基于双重注意力机制改进的CNN-BiLSTM初步预测和LightGBM误差修正的组合预测模型。该模型首先利用卷积神经网络(Convolutional neural network,CNN)... 为了响应国家“双碳”目标,针对风电功率预测误差影响电网安全稳定运行的问题,提出一种基于双重注意力机制改进的CNN-BiLSTM初步预测和LightGBM误差修正的组合预测模型。该模型首先利用卷积神经网络(Convolutional neural network,CNN)与注意力机制结合构成特征注意力模块自适应提取风电功率重要特征,然后利用双向长短期记忆网络(Bi-directional long short-term memory,BiLSTM)与注意力机制结合构成时间注意力模块对风电功率进行初步预测,最后利用LightGBM构造误差修正模型,对初步预测结果进行修正。使用平均绝对误差(Mean absolute error,MAE)、均方根误差(Root mean square error,RMSE)和确定系数(R^(2))作为试验评价指标,结果表明,该组合模型预测效果明显优于BiLSTM、CNN-BiLSTM等模型。 展开更多
关键词 风电功率预测 注意力机制 卷积神经网络 长短期记忆网络 误差修正 LightGBM
下载PDF
基于SVM-STL-LSTM的区域短期电力负荷预测研究 被引量:2
13
作者 王晨 李又轩 +1 位作者 吴其琦 邬蓉蓉 《水电能源科学》 北大核心 2024年第4期215-218,共4页
针对区域电力负荷的时间序列数据随机性强、预测精度低及单一模型的数据特征提取能力差等问题,提出了一种支持向量机(SVM)、STL时序分解法、长短期记忆神经网络(LSTM)组合的电力负荷预测模型。该模型利用SVM对时间序列的电力负荷数据进... 针对区域电力负荷的时间序列数据随机性强、预测精度低及单一模型的数据特征提取能力差等问题,提出了一种支持向量机(SVM)、STL时序分解法、长短期记忆神经网络(LSTM)组合的电力负荷预测模型。该模型利用SVM对时间序列的电力负荷数据进行初始预测,并通过STL时序分解法对残差序列进行时序分解,从而提高残差序列的稳定性,减小其随机性,最后用LSTM对SVM的预测误差进行修正。试验结果证明,该方法利用误差修正可有效处理随机性强的数据,有利于预测结果的稳定性,提高预测精度。 展开更多
关键词 组合模型 支持向量机 STL时序分解 长短期记忆网络 短期预测 误差修正
下载PDF
基于VMD和改进BiLSTM的短期风电功率预测
14
作者 朱菊萍 魏霞 +1 位作者 谢丽蓉 杨家梁 《太阳能学报》 EI CAS CSCD 北大核心 2024年第6期422-428,共7页
精准的短期风电功率预测对电力系统稳定运行至关重要。为提高短期预测精确度,提出一种基于变分模态分解(VMD)-样本熵(SE)和利用注意力(attention)机制改进双向长短期记忆网络(BiLSTM)以及误差修正的组合预测模型。首先,采用VMD将原始功... 精准的短期风电功率预测对电力系统稳定运行至关重要。为提高短期预测精确度,提出一种基于变分模态分解(VMD)-样本熵(SE)和利用注意力(attention)机制改进双向长短期记忆网络(BiLSTM)以及误差修正的组合预测模型。首先,采用VMD将原始功率数据分解为若干个相对平稳的子序列,重构样本熵值相似分量以降低复杂性;然后,引入Attention对BiLSTM的隐含层状态输出分配相应的权重以突出重要影响的输入特征,同时采用极限梯度提升(XGBoost)对误差进行修正,从而进一步提高预测精确度;最后,将初步预测值和修正预测值相加得到最终结果。采用风电场实际数据进行验证,结果表明,所提组合模型的平均绝对误差(MAE)下降至1.6565,与其他模型相比精度提升25.8%~56.5%,具有较好的预测效果。 展开更多
关键词 风电功率 预测 变分模态分解 注意力机制 双向长短期记忆网络 误差修正
下载PDF
折射率湿项对靶场经纬仪测高精度的影响分析
15
作者 韩先平 陈祥明 《应用光学》 CAS 北大核心 2024年第4期790-795,共6页
针对部分靶场经纬仪外测数据处理时常忽略折射率湿项对大气折射效应影响的现状,基于2019年环渤海某地区626组气象探空数据,利用射线描迹法计算了考虑折射率湿项和忽略折射率湿项两种情况下大气折射导致的经纬仪测高偏差。通过统计全年... 针对部分靶场经纬仪外测数据处理时常忽略折射率湿项对大气折射效应影响的现状,基于2019年环渤海某地区626组气象探空数据,利用射线描迹法计算了考虑折射率湿项和忽略折射率湿项两种情况下大气折射导致的经纬仪测高偏差。通过统计全年内不同仰角、不同高度等情况下折射率湿项对测高精度的影响,结果表明:折射率湿项是构成靶场经纬仪测高残差的一个重要误差源,对于目标高度测量有较高精度要求的试验任务,特别是在低仰角测量的情况,不能忽略折射率湿项的影响。 展开更多
关键词 光波大气折射率 折射率湿项 折光修正 射线描迹 测高误差
下载PDF
复杂环境下基于自监督LSTM网络的导航误差建模补偿
16
作者 成果达 岳亚洲 +1 位作者 韦彦一 李四海 《中国惯性技术学报》 EI CSCD 北大核心 2024年第2期115-124,共10页
针对复杂环境下惯导系统存在交互影响和导航误差难以辨识的问题,提出了一种基于自监督长短期记忆(LSTM)网络智能组合模型的导航误差补偿方法。模型中的自监督温变速率模块不受到温度传感器精度的限制,从而实时计算更精确的温变速率,进... 针对复杂环境下惯导系统存在交互影响和导航误差难以辨识的问题,提出了一种基于自监督长短期记忆(LSTM)网络智能组合模型的导航误差补偿方法。模型中的自监督温变速率模块不受到温度传感器精度的限制,从而实时计算更精确的温变速率,进一步提升了模型导航误差辨识的能力。在实验部分,基于多种复杂环境下的实验数据,通过消融实验验证了自监督模块的有效性。以飞行数据的北向速度为例,补偿前后的最大速度绝对误差分别为1.607 m/s和0.357 m/s。实验结果说明了所提方法可以减小复杂环境下的速度和位置误差,从而提升惯性导航精度. 展开更多
关键词 惯性导航 长短期记忆网络 导航误差补偿 自监督学习
下载PDF
基于考虑误差修正的非线性自适应权重组合模型的光伏发电功率预测 被引量:2
17
作者 陈德余 张玮 王辉 《济南大学学报(自然科学版)》 CAS 北大核心 2024年第2期250-256,共7页
为了提高光伏电站光伏发电功率预测精度,解决极限梯度提升模型、长短期记忆模型2种传统单一模型及传统组合模型极限梯度提升-长短期记忆模型的光伏发电功率预测结果滞后、预测效果易突变、预测误差较大、线性拟合性较差等不足,基于极限... 为了提高光伏电站光伏发电功率预测精度,解决极限梯度提升模型、长短期记忆模型2种传统单一模型及传统组合模型极限梯度提升-长短期记忆模型的光伏发电功率预测结果滞后、预测效果易突变、预测误差较大、线性拟合性较差等不足,基于极限梯度提升算法、长短期记忆算法和线性自适应权重,提出一种考虑误差修正的非线性自适应权重极限梯度提升-长短期记忆模型进行光伏发电功率预测;分别使用极限梯度提升算法和长短期记忆算法训练得到2种单一模型,将2种单一模型的初步预测值和真实值组成新的训练数据集,利用神经网络算法训练所提出的模型,对2种单一模型的初步预测值分配自适应权重系数,并根据训练时所提出模型的预测值大小分段统计预测误差的分布,预测时根据所提出模型的预测值在预测结果的基础上累加误差均值从而进行误差修正,进一步提高所提出模型的预测精度;利用Python语言分别对所提出的模型、传统组合模型和2种传统单一模型在晴天、阴天和雨天的光伏发电功率预测性能进行仿真。结果表明:与极限梯度提升-长短期记忆模型、极限梯度提升模型、长短期记忆模型相比,所提出模型的均方根误差分别减小28.57%、 39.39%、 49.79%,平均绝对误差分别减小44.25%、 53.33%、 64.8%,决定系数分别增大1.43%、 2.38%、 3.34%,所提出的模型更有效地减小了传统单一模型的光伏发电功率预测误差,优化了传统组合模型的权重系数;3种天气条件下所提出模型的光伏发电功率预测误差相对最小且稳健性最强,验证了所提出模型的有效性。 展开更多
关键词 光伏发电 功率预测 自适应权重 误差修正 极限梯度提升算法 长短期记忆算法
下载PDF
基于SDP和MCNN-LSTM的齿轮箱故障诊断方法
18
作者 吴胜利 周燚 邢文婷 《振动与冲击》 EI CSCD 北大核心 2024年第15期126-132,178,共8页
齿轮箱在长期使用过程中,不可避免地会产生齿轮故障和轴承故障,严重影响传动精度和设备运行安全。基于此,针对齿轮箱常见故障类型,研究多通道对称点图案(symmetrized dot pattern, SDP)数据处理方法,并利用最小能量误差法实现SDP关键参... 齿轮箱在长期使用过程中,不可避免地会产生齿轮故障和轴承故障,严重影响传动精度和设备运行安全。基于此,针对齿轮箱常见故障类型,研究多通道对称点图案(symmetrized dot pattern, SDP)数据处理方法,并利用最小能量误差法实现SDP关键参数的选取。结合多尺度卷积神经网络(multi-scale convolutional neural network, MCNN)的空间处理优势、长短时记忆网络(long short term memory, LSTM)的时间处理优势及其良好的抗噪性和鲁棒性,提出了一种基于SDP和MCNN-LSTM的齿轮箱故障诊断模型。同时利用东南大学齿轮箱数据集,验证了基于SDP和MCNN-LSTM的齿轮箱故障诊断方法对齿轮和轴承常见故障类型特征提取的有效性,并与现有其他故障诊断方法进行对比,结果表明了所提方法具有更高的精度。 展开更多
关键词 齿轮箱故障诊断 对称点图案(SDP) 最小能量误差 多尺度卷积神经网络(MCNN) 长短时记忆网络(LSTM)
下载PDF
关于整数矩阵除数函数余项的二次积分均值
19
作者 于若彤 劳会学 杨晓伟 《纯粹数学与应用数学》 2024年第2期203-211,共9页
整数矩阵表法个数的渐近分布问题是解析数论中的重要研究课题,受到日益增长的关注.设t_(3)^((2))(n)是整数矩阵环M_(2)(Z)中形式为C=A_(1)A_(2)A_(3)且|C|=n的矩阵表法个数的求和函数,△_(2,3)^(*)(x)是关于t_(3)^((2))(n)的渐近公式中... 整数矩阵表法个数的渐近分布问题是解析数论中的重要研究课题,受到日益增长的关注.设t_(3)^((2))(n)是整数矩阵环M_(2)(Z)中形式为C=A_(1)A_(2)A_(3)且|C|=n的矩阵表法个数的求和函数,△_(2,3)^(*)(x)是关于t_(3)^((2))(n)的渐近公式中的余项.利用经典的解析方法和黎曼zeta函数的良好性质,本文研究了整数矩阵除数函数t_(3)^((2))(n)在无平方因子数集上的分布问题,并得到了余项△_(2,3)^(*)(x)的二次积分均值的上界估计. 展开更多
关键词 余项 无平方因子数 整数矩阵除数函数
下载PDF
大规模电力工程数据价值深度挖掘算法设计研究 被引量:1
20
作者 薛礼月 陆瑜峰 王琼 《电子设计工程》 2024年第10期125-129,共5页
针对传统电力工程数据处理方法中存在的不可追溯且不易统一管理等问题,文中基于数据挖掘的思想提出了一种电力工程数据价值分析预测模型。该模型采用Boosting算法将多个预测树结构组合形成极端梯度提升树模型,从而实现对非线性数据的深... 针对传统电力工程数据处理方法中存在的不可追溯且不易统一管理等问题,文中基于数据挖掘的思想提出了一种电力工程数据价值分析预测模型。该模型采用Boosting算法将多个预测树结构组合形成极端梯度提升树模型,从而实现对非线性数据的深入分析,且经过多次迭代后,可以使训练准确度与学习效果得到显著提升。通过采用改进的双向长短时记忆网络,增强了模型处理时序性数据的能力。同时还使用误差倒数法将两个算法模型相结合,使其具有更高的预测精度。在实验测试中,所提算法的预测结果更贴近实际值,且其MAPE及RMSE测试指标分别为0.201%和0.039%,在所有对比算法中均为最优,可以对电力工程数据价值进行准确的分析和预测。 展开更多
关键词 数据挖掘 极端梯度提升树 长短时记忆网络 误差倒数法 数据预测
下载PDF
上一页 1 2 22 下一页 到第
使用帮助 返回顶部