The effects of Ce on the secondary dendrite arm spacing(SDAS) and mechanical behavior of Al-Si-Cu-Mg alloys were investigated. The reduction of SDAS at different Ce concentrations was evaluated in a directional soli...The effects of Ce on the secondary dendrite arm spacing(SDAS) and mechanical behavior of Al-Si-Cu-Mg alloys were investigated. The reduction of SDAS at different Ce concentrations was evaluated in a directional solidification experiment via computer-aided cooling curve thermal analysis(CA-CCTA). The results showed that 0.1wt%-1.0wt% Ce addition resulted in a rapid solidification time, ?ts, and low solidification temperature, ?T_S, whereas 0.1wt% Ce resulted in a fast solidification time, Δ^(ta-Al), of the α-Al phase. Furthermore, Ce addition refined the SDAS, which was reduced to approximately 36%. The mechanical properties of the alloys with and without Ce were investigated using tensile and hardness tests. The quality index(Q) and ultimate tensile strength of(UTS) Al-Si-Cu-Mg alloys significantly improved with the addition of 0.1wt% Ce. Moreover, the base alloy hardness was improved with increasing Ce concentration.展开更多
Low-melting-point alloys have an extensive applications in the fields of materials processing, phase change energy storage, electronic and electrical automatic control, continuous casting simulation, welding, etc. Spe...Low-melting-point alloys have an extensive applications in the fields of materials processing, phase change energy storage, electronic and electrical automatic control, continuous casting simulation, welding, etc. Specifically, the eutectic compositions make up a large number of low-melting-point alloys that are ex- ploited because of their desirable features like single melting peaks, excellent operational reliability, and casting fluidity. However, the fundamental physicochemical properties from the current available liter- ature on low-melting-point multi-component eutectic alloys (LMP-MCEAs) are rather rare and lowly accurate, including the exact melting temperatures and compositions, constituent phases, microstruc- tures and morphologies, melting enthalpies, specific heats, densities, and so on. This lack of information seriously limits the development and application of low-melting-point multi-component eutectic alloys. In this paper, the low-melting-point multi-component eutectic alloys composed of Bi, Cd, Sn, Pb, and In elements synthesized by high vacuum induction melting and fundamental data were investigated by scan- ning electron microscopy (SEM), energy dispersive spectrometry (EDS), X-ray diffraction (XRD), differential scanning calorimetry (DSC), and density analysis instrument. Most of the LMP-MCEAs with complex eu- tectic morphology structures and XRD diffraction patterns could be explained with the fact that they were three-phase eutectic alloys with mixed growth way. Generally, LMP-MCEAs present an extremely low melting point between 48.3 and 124 ℃ and high density between 8 and 10 g/cm3.展开更多
This paper investigates the solidification behaviour of the Ag-Cu eutectic alloy melt undercooled up to 100 K. It is revealed that lamellar eutectics grow in a dendritic form in the Ag-Cu eutectic melt with undercooli...This paper investigates the solidification behaviour of the Ag-Cu eutectic alloy melt undercooled up to 100 K. It is revealed that lamellar eutectics grow in a dendritic form in the Ag-Cu eutectic melt with undercooling equal to or greater than 76 K. As undercooling increases, the remelted fraction of the primary eutectics during recalescence rises. The severe remelting and the subsequent ripening of the primary eutectic dendrites lead to the formation of anomalous eutectics.展开更多
The wear resistance of six kinds of the electrolytic low-titanium eutectic AI-Si piston alloys with various Ti content ranging from 0.00wt.% to 0.21wt.% has been studied. A new method of adding Ti is adopted in the el...The wear resistance of six kinds of the electrolytic low-titanium eutectic AI-Si piston alloys with various Ti content ranging from 0.00wt.% to 0.21wt.% has been studied. A new method of adding Ti is adopted in the electrolytic low-titanium aluminum alloy ingots. The electrolytic low-titanium eutectic AI-Si piston alloys are produced by remelting the electrolytic low-titanium aluminum alloy, crystal silicon, pure magnesium, AI-50%Cu and AI-10%Mn master alloy. The wear experiments are conducted using MM200 wear testing machine under lubricating condition. The results indicate that the better wear resistance and the less weight loss are achieved in the study for the eutectic AI-Si piston alloys with 0.08wt.%-0.12wt.% Ti content. The highest ultimate tensile strength of 135.94 MPa at 300℃ and HV141.70 hardness of the alloys are obtained at 0.12wt.% and 0.08wt.% Ti content, respectively. The wear mechanism of the eutectic AI-Si piston alloys under lubricating condition is abrasive wear.展开更多
The isothermal oxidation behavior of NiAl-31Cr-2.9Mo-0.1Hf-0.05Ho directional eutectic alloy was investigated with the help of scanning electron microscopy and X-ray diffraction.The results revealed that a continuous ...The isothermal oxidation behavior of NiAl-31Cr-2.9Mo-0.1Hf-0.05Ho directional eutectic alloy was investigated with the help of scanning electron microscopy and X-ray diffraction.The results revealed that a continuous Al2O3 scale was formed and owned excellent oxidation resistance in the temperature range of 900-1100°C.When the temperature was up to 1150°C,the continuous Al2O3 oxide film ruptured.Trace rare earth element Ho distributed uniformly in the alloy and relatively high level of Al in Cr(Mo)phase are beneficial to the formation of continuous and compact Al2O3 scale.During the oxidation,a phase transformation fromθ-Al2O3 toα-Al2O3 existed on the surface of oxidation film.It resulted in the abnormal oxidation mass gain happening when the alloy was oxidized at 1000°C or 1050°C.展开更多
Zn-5wt% Al eutectic alloy was directionally solidified with different growth rates (5.32-250.0μm/s) at a constant temperature gradient of 8.50 K/mm using a Bridgman-type growth apparatus.The values of eutectic spac...Zn-5wt% Al eutectic alloy was directionally solidified with different growth rates (5.32-250.0μm/s) at a constant temperature gradient of 8.50 K/mm using a Bridgman-type growth apparatus.The values of eutectic spacing were measured from transverse sections of the samples.The dependences of the eutectic spacing and undercooling on growth rate are determined as λ=9.21V-0.53 and ΔT=0.0245V0.53,respectively.The results obtained in this work were compared with the Jackson-Hunt eutectic theory and the similar experimental results in the literature.Microhardness of directionally solidified samples was also measured by using a microhardness test device.The dependency of the microhardness on growth rate is found as Hv=115.64V0.13.Afterwards,the electrical resistivity (r) of the casting alloy changes from 40×10-9 to 108×10-9 Ω·m with the temperature rising in the range of 300-630 K.The enthalpy of fusion (ΔH) and specific heat (Cp) for the Zn-Al eutectic alloy are calculated to be 113.37 J/g and 0.309 J/(g·K),respectively by means of differential scanning calorimetry (DSC) from heating trace during the transformation from liquid to solid.展开更多
A Bi-2.0Zn-0.2A1 (wt%) ternary eutectic alloy was prepared using a vacuum melting furnace and a casting furnace. The samples were directionally solidified upwards at a constant growth rate (V= 18.4 μm/s) under di...A Bi-2.0Zn-0.2A1 (wt%) ternary eutectic alloy was prepared using a vacuum melting furnace and a casting furnace. The samples were directionally solidified upwards at a constant growth rate (V= 18.4 μm/s) under different temperature gradients (G = 1.15-3.44 K/mm) and at a constant temperature gradient (G = 2.66 K/mm) under different growth rates (V= 8.3-500 μm/s) in a Bridgman-type directional so- lidification furnace. The dependence ofmicrostructure parameter (2) on the solidification parameters (G and V) and that of the microhardness (Hv) on the microstructure and solidification parameters were investigated. The resistivity (ρ) measurements of the studied alloy were per- formed using the standard four-point-probe method, and the temperature coefficient of resistivity (α) was calculated from the ρ-Tcurve. The enthalpy (AH) and the specific heat (Cp) values were determined by differential scanning calorimetry analysis. In addition, the thermal conductivities of samples, obtained using the Wiedemann-Franz and Smith-Palmer equations, were compared with the experimental results. The results revealed that, the thermal conductivity values obtained using the Wiedemarm-Franz and Smith-Palmer equations for the Bi-2.0Zn-0.2Al (wt%) alloy are in the range of 5.2-6.5 W/Km and 15.2-16.4 W/Km, respectively.展开更多
Undercoolings up to 397 K(0.283 T_E)have been obtained for Ni-32.5% Sn eutectic alloy melted by superheating-cooling cycles and denucleating with inorganic glasses.The predomi- nant dissipation of heat for highly unde...Undercoolings up to 397 K(0.283 T_E)have been obtained for Ni-32.5% Sn eutectic alloy melted by superheating-cooling cycles and denucleating with inorganic glasses.The predomi- nant dissipation of heat for highly undercooled alloy melt is through radiation.An approxi- mate method is consequently derived to calculate its mean specific heat from measured cooling curves.With the aid of high speed cinematography,it is revealed that the surface or interface heterogeneous nucleation takes place in preference to homogeneous nucleation even though the undercooling has exceeded 0.2 T_E.展开更多
The interaction between Zn-AI eutectic alloy and Al203p/6061AI composites in the vacuum furnace was investigated. Great attention has been paid to the elements diffusion, the microstructure and formation of the interf...The interaction between Zn-AI eutectic alloy and Al203p/6061AI composites in the vacuum furnace was investigated. Great attention has been paid to the elements diffusion, the microstructure and formation of the interface between Zn-AI eutectic alloy and Al2O3p/6061AI composites. Experimental results show that Zn-AI eutectic alloy has a good wetting ability to Al2O3p/6061 Al composites and the wetting angle decreases with increasing the temperature in vacuum. After the interaction, an interaction layer forms between Zn-AI alloy and Al2O3p/6061 Al composites. The phases in the interaction layer mainly consist of α-AI(Zn), Al2O3 and CuZn5 resulted from the diffusion of elements from the Zn-AI alloy. Several porosities distribute in the region near the interface of the Zn-AI alloy/interaction layer. The amount of shrinkage voids in the interacting layer is relevant to the penetration of Zn element into Al2O3p/6061Al composites which is a function of temperature. So it is necessary to lower heating temperature in order to limit the Zn penetration.展开更多
In order to provide scientific basis for advanced applications of near eutectic Al-Si-Mg alloys as architectural profiles, a comparative study on the corrosion resistance of an as-extruded near eutectic AI-Si-Mg alloy...In order to provide scientific basis for advanced applications of near eutectic Al-Si-Mg alloys as architectural profiles, a comparative study on the corrosion resistance of an as-extruded near eutectic AI-Si-Mg alloy and AA6063 aluminium alloy was carried out by means of neutral salt spray test. The corroded surfaces of the alloys were examined with optical microscopy and scanning electron microscope (SEM). Results show that the corrosion type of these two alloys is pitting corrosion. The number of corrosion pits in the AA6063 aluminium alloy is more than that in the near eutectic AI-Si-Mg alloy, but the pits in the latter alloy are much larger and deeper. Because the relatively low polarization resistance of the near eutectic alloy leads to poorer repassivation ability, autocatalytic acidification occurs once a pit forms. Thus, occluded corrosion cells are developed in this alloy.展开更多
Hot compression was performed on a multilayered Au−20Sn eutectic alloy to investigate the deformation behavior and microstructure evolution.During hot compression,microstructural spheroidization was initiated from pla...Hot compression was performed on a multilayered Au−20Sn eutectic alloy to investigate the deformation behavior and microstructure evolution.During hot compression,microstructural spheroidization was initiated from plastic instability regions,and it was preferentially activated in vertical lamellae with a growth direction parallel to the compressive direction.Continuous dynamic recrystallization associated with lattice dislocations was the mechanism in both AuSn and Au5Sn multilayers.After spheroidization,strain accumulations were weakened in both of the equiaxed phases,and the deformation mechanism was substantially replaced by grain boundary sliding and migration.Based on these findings,hot rolling was conducted on an as-cast Au−20Sn alloy and a foil with a thickness of~50μm was successfully prepared.The present study can promote the development of Au−20Sn foils,and provide insights into the deformation behavior and microstructure evolution of multilayered eutectic alloys.展开更多
Pb-Bi eutectic alloy has been receiving increasing attention as a heavy liquid metal coolant in accelerator driven systems and Generation IV fission reactors. Compatibility of structural materials with liquid PbBi eut...Pb-Bi eutectic alloy has been receiving increasing attention as a heavy liquid metal coolant in accelerator driven systems and Generation IV fission reactors. Compatibility of structural materials with liquid PbBi eutectic alloy at high temperature is one of the issues concerned. In the present study, corrosion tests of T91 steel in stagnant Pb-Bi eutectic alloy in saturated oxygen condition at 450 oC were carried out. After experiments, the thickness and compositional profile of the oxide layer on the specimen were analyzed using SEM and EDX. Analysis results show that the thickness of the oxide layer increases as the exposure time increases from 500 h to 1,000 h. The thickness of the oxide layer remains almost unchanged at 15 to 16 mm from 1,000 to 1,500 h. Formation of a thick and protective oxide layer at 450 oC prevents the penetration of liquid Pb-Bi eutectic alloy into the matrix of the T91 steel.展开更多
In this work,the Sn-58Bi(weight percent) eutectic alloy was directionally solidified at a constant temperature gradient(G = 12 K.mm-1) with different growth rates using a Bridgman type directional solidification furna...In this work,the Sn-58Bi(weight percent) eutectic alloy was directionally solidified at a constant temperature gradient(G = 12 K.mm-1) with different growth rates using a Bridgman type directional solidification furnace.A lamellar microstructure was observed in the Sn-58Bi samples.The lamellar spacing and micro-hardness of longitudinal and transversal sections were measured.The values of lamellar spacing of both longitudinal and transversal sections decrease with an increase in growth rate.The microhardness increases with an increase in the growth rate and decreases with an increase in the lamellar spacing.The dependence of lamellar spacing on growth rate,and micro-hardness on both growth rate and lamellar spacing were obtained by linear regression analysis.The relationships between the lamellar spacing and growth rate,microhardness and growth rate,and micro-hardness and lamellar spacing for transversal and longitudinal sections of Sn-58Bi eutectic alloy were given.The fitted exponent values obtained in this work were compared with the previous similar experimental results and a good agreement was obtained.展开更多
The viscosities of liquid Fe-4.30C and Fe-4.30C-Ce alloys were measured by oscillating crucible viscometer. The results show that viscosity of Fe-4.30C alloy changes from 5.50 to 8.30 MPa·s when the liquid is coo...The viscosities of liquid Fe-4.30C and Fe-4.30C-Ce alloys were measured by oscillating crucible viscometer. The results show that viscosity of Fe-4.30C alloy changes from 5.50 to 8.30 MPa·s when the liquid is cooled from 1425 ℃ to the melting point. The abnormity of viscosity of Fe-4.30C alloy near the melting point is reasonable due to the formation of graphite. The addition of cerium especially with content higher than 0.21% causes an evidently decrease in viscosity for eutectic alloy resulting from increase of free volume and size decrease of atom cluster in the liquids. It can be concended that the existence of C-Ce compound contributes to the discontinuous of viscosity at 1340~1370 ℃ for the Fe-4.30C-Ce alloy by experinments with differential scanning calorimeter.展开更多
The effects of magnetic field on macro and microstructure of Al-CuAl2 eutectic alloy produced by electromagnetic centrifugal casting have been erperimentally investigated in the present paper. Electromagnetic stirring...The effects of magnetic field on macro and microstructure of Al-CuAl2 eutectic alloy produced by electromagnetic centrifugal casting have been erperimentally investigated in the present paper. Electromagnetic stirring can lead to columnar formation in the cuter region and equiaxed in the inner, and otherwise cause the lamellae coarsened and the microstructure morphology to change from lamella to rod and then to block,if the electromagnetic stirring is intensified.展开更多
Microstructure Characteristic of Ni-Nb near eutectic alloy is systematically investigated during directional solidification with electron beam floating zone melting (EBFZM). The effect of the Zone melting rate on the ...Microstructure Characteristic of Ni-Nb near eutectic alloy is systematically investigated during directional solidification with electron beam floating zone melting (EBFZM). The effect of the Zone melting rate on the microstructure has also been studied.展开更多
To improve the wear resistance of Cr5 steel, wear-resistant layers with lamellar eutectic microstructure were fabricated by laser surface alloying(LSA), which is dependent on the in situ reaction between Cr and B_4C...To improve the wear resistance of Cr5 steel, wear-resistant layers with lamellar eutectic microstructure were fabricated by laser surface alloying(LSA), which is dependent on the in situ reaction between Cr and B_4C. Our results indicated that the hypoeutectic structures of the LSA layers were divided into interdendritic eutectic structures and dendrites. The area fraction of the eutectic structures increased with increasing laser scanning speed, which improved the hardness and wear resistance of the LSA layers. The average hardness of the LSA layer prepared at a scanning speed of 8 mm/s was HV_(0.2) 883.9, which was 1.8 times greater than that of the traditional quenched layer(approximately HV 480). After sliding for 659.4 m, the specimen prepared at a scanning speed of 8 mm/s exhibited a volume loss of 0.0323 mm^3, which was only 29.5% of the volume loss of the traditional quenched specimen.展开更多
To solve the problems generally encountered during the plasma electrolytic oxidation(PEO) of Al alloys with high Si content, a pretreatment of chemical etching was applied before the process. The influence of such pre...To solve the problems generally encountered during the plasma electrolytic oxidation(PEO) of Al alloys with high Si content, a pretreatment of chemical etching was applied before the process. The influence of such pretreatment was studied by SEM, EDS and XRD. The pretreatment presents a significant effect on positive voltage at the beginning stage of PEO, leading to higher voltage over the whole process. The difference between the positive voltages of non-etched and etched specimens decreases gradually with the increase of processing time. The pretreatment exhibits much less influence on the negative voltage. For the sample with surface pretreatment, the average growth rate of PEO coating is increased from 0.50 to 0.84 μm·min-1and the energy consumption is decreased from 6.30 to 4.36 k W·h·μm-1·m-2. At the same time, both mullite and amorphous Si O2 contents are decreased in the coating.展开更多
The influence of strain rate and temperature on the tensile behavior of as-cast and HIPed NiAI-9Mo eutectic alloy was investigated in the temperature range of 700-950℃ and over a strain rate range from 2.08×10-4...The influence of strain rate and temperature on the tensile behavior of as-cast and HIPed NiAI-9Mo eutectic alloy was investigated in the temperature range of 700-950℃ and over a strain rate range from 2.08×10-4 s-1 to 2.08×10-2 s-1. The results indicate that HIP process causes an enhancement in ductility and a decrease in ultimate tensile strength (UTS), yield strength (YS), average strain hardening rate as well as a drop in brittle to ductile transition temperature(BDTT) under the same condition. It is noticed that the BDTT of as-cast NiAI-9Mo is more dependent on strain rate than that of HIPed one. The brittle to ductile transition process of the alloy is related to a sharp drop in strain hardening rate. Regardless of strain rate, the fracture morphology changes from cleavage in NiAl phase and debonding along NiAI/Mo interface below the BDTT to microvoid coalescence above BDTT. The apparent activation energy of the BDT of HIPed and as-cast material are calculated to be 327 and 263 kJ/mol, respectively, suggesting that the mechanism is associated with lattice diffusion in NiAl phase.展开更多
Large undercoolings up to 395K (0.28TE) are obtained for 15g samples of Ni-32.5%Sn eutectic alloy by superheating the alloy melt to 108-700K above its eutectic temperature and consequently destroying most of the inher...Large undercoolings up to 395K (0.28TE) are obtained for 15g samples of Ni-32.5%Sn eutectic alloy by superheating the alloy melt to 108-700K above its eutectic temperature and consequently destroying most of the inherent heterogeneous nuclei. The recalcscence phenomenon and its dependence on undercooling and on crystal nuclcation and growth, as well as its relationship to solidification microstructures are studied. The crystalli/ation fraction during recalcsccnce is also calculated. Experiments reveal that recalcscence degree increases with undercooling when the latter is below a certain critical value∧Te, but it decreases as undercooling increases above A 7'( (under present conditions∧Te= 245K, i. c. 0.17TE). The greater the recalescencc degree, the larger the proportion of anomalous eutectic in solidified structures. It is inferred that anomalous eutectic is the product of rapid solidification while lamellar eutectic forms at much slower nuclcation rate and growth velocity.展开更多
基金the ministry of higher education Malaysia and Universiti Tun Hussein Onn Malaysia for supporting this research under Vot no FRGS1422 and E15501
文摘The effects of Ce on the secondary dendrite arm spacing(SDAS) and mechanical behavior of Al-Si-Cu-Mg alloys were investigated. The reduction of SDAS at different Ce concentrations was evaluated in a directional solidification experiment via computer-aided cooling curve thermal analysis(CA-CCTA). The results showed that 0.1wt%-1.0wt% Ce addition resulted in a rapid solidification time, ?ts, and low solidification temperature, ?T_S, whereas 0.1wt% Ce resulted in a fast solidification time, Δ^(ta-Al), of the α-Al phase. Furthermore, Ce addition refined the SDAS, which was reduced to approximately 36%. The mechanical properties of the alloys with and without Ce were investigated using tensile and hardness tests. The quality index(Q) and ultimate tensile strength of(UTS) Al-Si-Cu-Mg alloys significantly improved with the addition of 0.1wt% Ce. Moreover, the base alloy hardness was improved with increasing Ce concentration.
基金supported by the National Natural Science Foundation of China (Nos. 51525401 and 51471044)the Fundamental Research Funds for the Central Universities (No. DUT14LH013)+1 种基金Key Laboratory of Basic Research Projects of Liaoning Province Department of Education (No. LZ2014007)the Natural Science Foundation of Liaoning Province (No. 2014028013)
文摘Low-melting-point alloys have an extensive applications in the fields of materials processing, phase change energy storage, electronic and electrical automatic control, continuous casting simulation, welding, etc. Specifically, the eutectic compositions make up a large number of low-melting-point alloys that are ex- ploited because of their desirable features like single melting peaks, excellent operational reliability, and casting fluidity. However, the fundamental physicochemical properties from the current available liter- ature on low-melting-point multi-component eutectic alloys (LMP-MCEAs) are rather rare and lowly accurate, including the exact melting temperatures and compositions, constituent phases, microstruc- tures and morphologies, melting enthalpies, specific heats, densities, and so on. This lack of information seriously limits the development and application of low-melting-point multi-component eutectic alloys. In this paper, the low-melting-point multi-component eutectic alloys composed of Bi, Cd, Sn, Pb, and In elements synthesized by high vacuum induction melting and fundamental data were investigated by scan- ning electron microscopy (SEM), energy dispersive spectrometry (EDS), X-ray diffraction (XRD), differential scanning calorimetry (DSC), and density analysis instrument. Most of the LMP-MCEAs with complex eu- tectic morphology structures and XRD diffraction patterns could be explained with the fact that they were three-phase eutectic alloys with mixed growth way. Generally, LMP-MCEAs present an extremely low melting point between 48.3 and 124 ℃ and high density between 8 and 10 g/cm3.
基金supported by the National Natural Science Foundation of China(Grant No 50571068)
文摘This paper investigates the solidification behaviour of the Ag-Cu eutectic alloy melt undercooled up to 100 K. It is revealed that lamellar eutectics grow in a dendritic form in the Ag-Cu eutectic melt with undercooling equal to or greater than 76 K. As undercooling increases, the remelted fraction of the primary eutectics during recalescence rises. The severe remelting and the subsequent ripening of the primary eutectic dendrites lead to the formation of anomalous eutectics.
基金the Natural Science Fund of Education Department of Henan Province (200510459077)
文摘The wear resistance of six kinds of the electrolytic low-titanium eutectic AI-Si piston alloys with various Ti content ranging from 0.00wt.% to 0.21wt.% has been studied. A new method of adding Ti is adopted in the electrolytic low-titanium aluminum alloy ingots. The electrolytic low-titanium eutectic AI-Si piston alloys are produced by remelting the electrolytic low-titanium aluminum alloy, crystal silicon, pure magnesium, AI-50%Cu and AI-10%Mn master alloy. The wear experiments are conducted using MM200 wear testing machine under lubricating condition. The results indicate that the better wear resistance and the less weight loss are achieved in the study for the eutectic AI-Si piston alloys with 0.08wt.%-0.12wt.% Ti content. The highest ultimate tensile strength of 135.94 MPa at 300℃ and HV141.70 hardness of the alloys are obtained at 0.12wt.% and 0.08wt.% Ti content, respectively. The wear mechanism of the eutectic AI-Si piston alloys under lubricating condition is abrasive wear.
基金Project(51101055)supported by the National Natural Science Foundation of China
文摘The isothermal oxidation behavior of NiAl-31Cr-2.9Mo-0.1Hf-0.05Ho directional eutectic alloy was investigated with the help of scanning electron microscopy and X-ray diffraction.The results revealed that a continuous Al2O3 scale was formed and owned excellent oxidation resistance in the temperature range of 900-1100°C.When the temperature was up to 1150°C,the continuous Al2O3 oxide film ruptured.Trace rare earth element Ho distributed uniformly in the alloy and relatively high level of Al in Cr(Mo)phase are beneficial to the formation of continuous and compact Al2O3 scale.During the oxidation,a phase transformation fromθ-Al2O3 toα-Al2O3 existed on the surface of oxidation film.It resulted in the abnormal oxidation mass gain happening when the alloy was oxidized at 1000°C or 1050°C.
基金supported by Erciyes University Scientific Research Project Unit (No.FBA-10-3376)
文摘Zn-5wt% Al eutectic alloy was directionally solidified with different growth rates (5.32-250.0μm/s) at a constant temperature gradient of 8.50 K/mm using a Bridgman-type growth apparatus.The values of eutectic spacing were measured from transverse sections of the samples.The dependences of the eutectic spacing and undercooling on growth rate are determined as λ=9.21V-0.53 and ΔT=0.0245V0.53,respectively.The results obtained in this work were compared with the Jackson-Hunt eutectic theory and the similar experimental results in the literature.Microhardness of directionally solidified samples was also measured by using a microhardness test device.The dependency of the microhardness on growth rate is found as Hv=115.64V0.13.Afterwards,the electrical resistivity (r) of the casting alloy changes from 40×10-9 to 108×10-9 Ω·m with the temperature rising in the range of 300-630 K.The enthalpy of fusion (ΔH) and specific heat (Cp) for the Zn-Al eutectic alloy are calculated to be 113.37 J/g and 0.309 J/(g·K),respectively by means of differential scanning calorimetry (DSC) from heating trace during the transformation from liquid to solid.
基金financially supported by the Nigde University Scientific Research Project Unit(No.FEB 2009/02)
文摘A Bi-2.0Zn-0.2A1 (wt%) ternary eutectic alloy was prepared using a vacuum melting furnace and a casting furnace. The samples were directionally solidified upwards at a constant growth rate (V= 18.4 μm/s) under different temperature gradients (G = 1.15-3.44 K/mm) and at a constant temperature gradient (G = 2.66 K/mm) under different growth rates (V= 8.3-500 μm/s) in a Bridgman-type directional so- lidification furnace. The dependence ofmicrostructure parameter (2) on the solidification parameters (G and V) and that of the microhardness (Hv) on the microstructure and solidification parameters were investigated. The resistivity (ρ) measurements of the studied alloy were per- formed using the standard four-point-probe method, and the temperature coefficient of resistivity (α) was calculated from the ρ-Tcurve. The enthalpy (AH) and the specific heat (Cp) values were determined by differential scanning calorimetry analysis. In addition, the thermal conductivities of samples, obtained using the Wiedemann-Franz and Smith-Palmer equations, were compared with the experimental results. The results revealed that, the thermal conductivity values obtained using the Wiedemarm-Franz and Smith-Palmer equations for the Bi-2.0Zn-0.2Al (wt%) alloy are in the range of 5.2-6.5 W/Km and 15.2-16.4 W/Km, respectively.
文摘Undercoolings up to 397 K(0.283 T_E)have been obtained for Ni-32.5% Sn eutectic alloy melted by superheating-cooling cycles and denucleating with inorganic glasses.The predomi- nant dissipation of heat for highly undercooled alloy melt is through radiation.An approxi- mate method is consequently derived to calculate its mean specific heat from measured cooling curves.With the aid of high speed cinematography,it is revealed that the surface or interface heterogeneous nucleation takes place in preference to homogeneous nucleation even though the undercooling has exceeded 0.2 T_E.
文摘The interaction between Zn-AI eutectic alloy and Al203p/6061AI composites in the vacuum furnace was investigated. Great attention has been paid to the elements diffusion, the microstructure and formation of the interface between Zn-AI eutectic alloy and Al2O3p/6061AI composites. Experimental results show that Zn-AI eutectic alloy has a good wetting ability to Al2O3p/6061 Al composites and the wetting angle decreases with increasing the temperature in vacuum. After the interaction, an interaction layer forms between Zn-AI alloy and Al2O3p/6061 Al composites. The phases in the interaction layer mainly consist of α-AI(Zn), Al2O3 and CuZn5 resulted from the diffusion of elements from the Zn-AI alloy. Several porosities distribute in the region near the interface of the Zn-AI alloy/interaction layer. The amount of shrinkage voids in the interacting layer is relevant to the penetration of Zn element into Al2O3p/6061Al composites which is a function of temperature. So it is necessary to lower heating temperature in order to limit the Zn penetration.
基金financially supported by Jiangsu Graduate Student Innovation Program of China(No.CXZZ-0146)the Scientif ic Research Foundation of Graduate School of Southeast University(No.YBJJ1235)
文摘In order to provide scientific basis for advanced applications of near eutectic Al-Si-Mg alloys as architectural profiles, a comparative study on the corrosion resistance of an as-extruded near eutectic AI-Si-Mg alloy and AA6063 aluminium alloy was carried out by means of neutral salt spray test. The corroded surfaces of the alloys were examined with optical microscopy and scanning electron microscope (SEM). Results show that the corrosion type of these two alloys is pitting corrosion. The number of corrosion pits in the AA6063 aluminium alloy is more than that in the near eutectic AI-Si-Mg alloy, but the pits in the latter alloy are much larger and deeper. Because the relatively low polarization resistance of the near eutectic alloy leads to poorer repassivation ability, autocatalytic acidification occurs once a pit forms. Thus, occluded corrosion cells are developed in this alloy.
基金financial supports from the National Natural Science Foundation of China(Nos.U1502272,51901204)the Precious Metal Materials Genome Engineering in Yunnan Province,China(Nos.2019ZE001,202002AB080001)。
文摘Hot compression was performed on a multilayered Au−20Sn eutectic alloy to investigate the deformation behavior and microstructure evolution.During hot compression,microstructural spheroidization was initiated from plastic instability regions,and it was preferentially activated in vertical lamellae with a growth direction parallel to the compressive direction.Continuous dynamic recrystallization associated with lattice dislocations was the mechanism in both AuSn and Au5Sn multilayers.After spheroidization,strain accumulations were weakened in both of the equiaxed phases,and the deformation mechanism was substantially replaced by grain boundary sliding and migration.Based on these findings,hot rolling was conducted on an as-cast Au−20Sn alloy and a foil with a thickness of~50μm was successfully prepared.The present study can promote the development of Au−20Sn foils,and provide insights into the deformation behavior and microstructure evolution of multilayered eutectic alloys.
基金financially supported by the Strategic Priority Research Program CAS under Grant No.XDA03010304the National Science Foundation of China under Grant No.91226204the Youth Innovation Promotion Association CAS
文摘Pb-Bi eutectic alloy has been receiving increasing attention as a heavy liquid metal coolant in accelerator driven systems and Generation IV fission reactors. Compatibility of structural materials with liquid PbBi eutectic alloy at high temperature is one of the issues concerned. In the present study, corrosion tests of T91 steel in stagnant Pb-Bi eutectic alloy in saturated oxygen condition at 450 oC were carried out. After experiments, the thickness and compositional profile of the oxide layer on the specimen were analyzed using SEM and EDX. Analysis results show that the thickness of the oxide layer increases as the exposure time increases from 500 h to 1,000 h. The thickness of the oxide layer remains almost unchanged at 15 to 16 mm from 1,000 to 1,500 h. Formation of a thick and protective oxide layer at 450 oC prevents the penetration of liquid Pb-Bi eutectic alloy into the matrix of the T91 steel.
基金financially supported by the China Postdoctoral Science Foundation(No.20110491492)Nature Science Foundation of Jiangxi Province(Nos.20114BAB216017,20114BAB206021)the Science and Technology Project of Jiangxi Department of Education(No.GJJ12035)
文摘In this work,the Sn-58Bi(weight percent) eutectic alloy was directionally solidified at a constant temperature gradient(G = 12 K.mm-1) with different growth rates using a Bridgman type directional solidification furnace.A lamellar microstructure was observed in the Sn-58Bi samples.The lamellar spacing and micro-hardness of longitudinal and transversal sections were measured.The values of lamellar spacing of both longitudinal and transversal sections decrease with an increase in growth rate.The microhardness increases with an increase in the growth rate and decreases with an increase in the lamellar spacing.The dependence of lamellar spacing on growth rate,and micro-hardness on both growth rate and lamellar spacing were obtained by linear regression analysis.The relationships between the lamellar spacing and growth rate,microhardness and growth rate,and micro-hardness and lamellar spacing for transversal and longitudinal sections of Sn-58Bi eutectic alloy were given.The fitted exponent values obtained in this work were compared with the previous similar experimental results and a good agreement was obtained.
文摘The viscosities of liquid Fe-4.30C and Fe-4.30C-Ce alloys were measured by oscillating crucible viscometer. The results show that viscosity of Fe-4.30C alloy changes from 5.50 to 8.30 MPa·s when the liquid is cooled from 1425 ℃ to the melting point. The abnormity of viscosity of Fe-4.30C alloy near the melting point is reasonable due to the formation of graphite. The addition of cerium especially with content higher than 0.21% causes an evidently decrease in viscosity for eutectic alloy resulting from increase of free volume and size decrease of atom cluster in the liquids. It can be concended that the existence of C-Ce compound contributes to the discontinuous of viscosity at 1340~1370 ℃ for the Fe-4.30C-Ce alloy by experinments with differential scanning calorimeter.
文摘The effects of magnetic field on macro and microstructure of Al-CuAl2 eutectic alloy produced by electromagnetic centrifugal casting have been erperimentally investigated in the present paper. Electromagnetic stirring can lead to columnar formation in the cuter region and equiaxed in the inner, and otherwise cause the lamellae coarsened and the microstructure morphology to change from lamella to rod and then to block,if the electromagnetic stirring is intensified.
文摘Microstructure Characteristic of Ni-Nb near eutectic alloy is systematically investigated during directional solidification with electron beam floating zone melting (EBFZM). The effect of the Zone melting rate on the microstructure has also been studied.
基金financially supported by the Joint Funds of the National Natural Science Foundation of China and Liaoning Province,China (No.U15082213)the Frontier and Key Technological Innovation Special Funds of Guangdong Province,China (No.2015B010122001)the Fundamental Research Funds for the Central Universities (No.N130810001)
文摘To improve the wear resistance of Cr5 steel, wear-resistant layers with lamellar eutectic microstructure were fabricated by laser surface alloying(LSA), which is dependent on the in situ reaction between Cr and B_4C. Our results indicated that the hypoeutectic structures of the LSA layers were divided into interdendritic eutectic structures and dendrites. The area fraction of the eutectic structures increased with increasing laser scanning speed, which improved the hardness and wear resistance of the LSA layers. The average hardness of the LSA layer prepared at a scanning speed of 8 mm/s was HV_(0.2) 883.9, which was 1.8 times greater than that of the traditional quenched layer(approximately HV 480). After sliding for 659.4 m, the specimen prepared at a scanning speed of 8 mm/s exhibited a volume loss of 0.0323 mm^3, which was only 29.5% of the volume loss of the traditional quenched specimen.
基金Supported by the Natural Science Foundation of Guangdong Province,China(S2013010015211)
文摘To solve the problems generally encountered during the plasma electrolytic oxidation(PEO) of Al alloys with high Si content, a pretreatment of chemical etching was applied before the process. The influence of such pretreatment was studied by SEM, EDS and XRD. The pretreatment presents a significant effect on positive voltage at the beginning stage of PEO, leading to higher voltage over the whole process. The difference between the positive voltages of non-etched and etched specimens decreases gradually with the increase of processing time. The pretreatment exhibits much less influence on the negative voltage. For the sample with surface pretreatment, the average growth rate of PEO coating is increased from 0.50 to 0.84 μm·min-1and the energy consumption is decreased from 6.30 to 4.36 k W·h·μm-1·m-2. At the same time, both mullite and amorphous Si O2 contents are decreased in the coating.
基金The authors gratefully acknowledge the National Natural Science Foundation of China for its financial support under the contract No.59895152.
文摘The influence of strain rate and temperature on the tensile behavior of as-cast and HIPed NiAI-9Mo eutectic alloy was investigated in the temperature range of 700-950℃ and over a strain rate range from 2.08×10-4 s-1 to 2.08×10-2 s-1. The results indicate that HIP process causes an enhancement in ductility and a decrease in ultimate tensile strength (UTS), yield strength (YS), average strain hardening rate as well as a drop in brittle to ductile transition temperature(BDTT) under the same condition. It is noticed that the BDTT of as-cast NiAI-9Mo is more dependent on strain rate than that of HIPed one. The brittle to ductile transition process of the alloy is related to a sharp drop in strain hardening rate. Regardless of strain rate, the fracture morphology changes from cleavage in NiAl phase and debonding along NiAI/Mo interface below the BDTT to microvoid coalescence above BDTT. The apparent activation energy of the BDT of HIPed and as-cast material are calculated to be 327 and 263 kJ/mol, respectively, suggesting that the mechanism is associated with lattice diffusion in NiAl phase.
文摘Large undercoolings up to 395K (0.28TE) are obtained for 15g samples of Ni-32.5%Sn eutectic alloy by superheating the alloy melt to 108-700K above its eutectic temperature and consequently destroying most of the inherent heterogeneous nuclei. The recalcscence phenomenon and its dependence on undercooling and on crystal nuclcation and growth, as well as its relationship to solidification microstructures are studied. The crystalli/ation fraction during recalcsccnce is also calculated. Experiments reveal that recalcscence degree increases with undercooling when the latter is below a certain critical value∧Te, but it decreases as undercooling increases above A 7'( (under present conditions∧Te= 245K, i. c. 0.17TE). The greater the recalescencc degree, the larger the proportion of anomalous eutectic in solidified structures. It is inferred that anomalous eutectic is the product of rapid solidification while lamellar eutectic forms at much slower nuclcation rate and growth velocity.