Two estimaton methods are used to calculate the theoretical reservoir potential of China's oceanic thermal energy. One is based on the measured temperature difference between the surface water and the deep water, ...Two estimaton methods are used to calculate the theoretical reservoir potential of China's oceanic thermal energy. One is based on the measured temperature difference between the surface water and the deep water, the other on the net radiation energy income from solar insolation either measured or deduced. The results from these two methods are compared and examined. Then, the maximum amount of the exploitable thermal energy is calculated based on the assumption of a Carnot cycle efficiency. In the process of estimation, such factors as water depth, seasonal water temperature variation and geographic location have been taken into account.The theoretical reservoir capacity and the exploitable quantity of the thermal energy of China's four seas are thus estimated separately.展开更多
In order to correctly evaluate the exploitable groundwater resottrce in regional complex, thick Quaternary unconsolidated sediments, the whole Quaternary unconsolidated sediments are considered as a unified hydrogeolo...In order to correctly evaluate the exploitable groundwater resottrce in regional complex, thick Quaternary unconsolidated sediments, the whole Quaternary unconsolidated sediments are considered as a unified hydrogeological unit and a 3-D unsteady groundwater flow numerical model is adopted. Meanwhile, with the consideration of the dynamic changes of the porosity, the hydraulic conductivity and the specific storage with the groundwater level dropping during the exploitation process, an improved composite element seepage matrix adjustment method is applied to solve the unsteady flow problem of free surface. In order to eva- luate the exploitable groundwater resource in Cangzhou, Hebei Province, the hydrogeological conceptual model of Cangzhou is generalized to establish, a 3-D variable parameter numerical model of Cangzhou. Based on the prediction of the present groundwater exploitation, and by adjusting the groundwater exploitation layout, the exploitable groundwater resource is predicted. The model enjoys features like good convergence, good stability and high precision.展开更多
文摘Two estimaton methods are used to calculate the theoretical reservoir potential of China's oceanic thermal energy. One is based on the measured temperature difference between the surface water and the deep water, the other on the net radiation energy income from solar insolation either measured or deduced. The results from these two methods are compared and examined. Then, the maximum amount of the exploitable thermal energy is calculated based on the assumption of a Carnot cycle efficiency. In the process of estimation, such factors as water depth, seasonal water temperature variation and geographic location have been taken into account.The theoretical reservoir capacity and the exploitable quantity of the thermal energy of China's four seas are thus estimated separately.
基金Project supported by the Major Research Project of Hebei Province(Grant No.CZCG2008008)
文摘In order to correctly evaluate the exploitable groundwater resottrce in regional complex, thick Quaternary unconsolidated sediments, the whole Quaternary unconsolidated sediments are considered as a unified hydrogeological unit and a 3-D unsteady groundwater flow numerical model is adopted. Meanwhile, with the consideration of the dynamic changes of the porosity, the hydraulic conductivity and the specific storage with the groundwater level dropping during the exploitation process, an improved composite element seepage matrix adjustment method is applied to solve the unsteady flow problem of free surface. In order to eva- luate the exploitable groundwater resource in Cangzhou, Hebei Province, the hydrogeological conceptual model of Cangzhou is generalized to establish, a 3-D variable parameter numerical model of Cangzhou. Based on the prediction of the present groundwater exploitation, and by adjusting the groundwater exploitation layout, the exploitable groundwater resource is predicted. The model enjoys features like good convergence, good stability and high precision.