The exponential stability of a class of neural networks with continuously distributed delays is investigated by employing a novel Lyapunov-Krasovskii functional. Through introducing some free-weighting matrices and th...The exponential stability of a class of neural networks with continuously distributed delays is investigated by employing a novel Lyapunov-Krasovskii functional. Through introducing some free-weighting matrices and the equivalent descriptor form, a delay-dependent stability criterion is established for the addressed systems. The condition is expressed in terms of a linear matrix inequality (LMI), and it can be checked by resorting to the LMI in the Matlab toolbox. In addition, the proposed stability criteria do not require the monotonicity of the activation functions and the derivative of a time-varying delay being less than 1, which generalize and improve earlier methods. Finally, numerical examples are given to show the effectiveness of the obtained methods.展开更多
By using the quasi-Lyapunov function, some sufficient conditions of global exponential stability for impulsive systems are established, which is the basis for the following discussion. Then, by employing Riccati inequ...By using the quasi-Lyapunov function, some sufficient conditions of global exponential stability for impulsive systems are established, which is the basis for the following discussion. Then, by employing Riccati inequality and Hamilton-Jacobi inequality approach, some sufficient conditions of robust exponential stability for uncertain linear/nonlinear impulsive systems are derived, respectively. Finally, some examples are given to illustrate the applications of the theory.展开更多
Both the global exponential stability and the existence of periodic solutions for a class of recurrent neural networks with continuously distributed delays (RNNs) are studied. By employing the inequality α∏k=1^m ...Both the global exponential stability and the existence of periodic solutions for a class of recurrent neural networks with continuously distributed delays (RNNs) are studied. By employing the inequality α∏k=1^m bk^qk≤1/r ∑qkbk^r+1/rα^r(α≥0,bk≥0,qk〉0,with ∑k=1^m qk=r-1,r≥1, constructing suitable Lyapunov r k=l k=l functions and applying the homeomorphism theory, a family of simple and new sufficient conditions are given ensuring the global exponential stability and the existence of periodic solutions of RNNs. The results extend and improve the results of earlier publications.展开更多
This paper investigates the absolute exponential stability of generalized neural networks with a general class of partially Lipschitz continuous and monotone increasing activation functions. The main obtained result i...This paper investigates the absolute exponential stability of generalized neural networks with a general class of partially Lipschitz continuous and monotone increasing activation functions. The main obtained result is that if the interconnection matrix T of the neural system satisfies that - T is an H matrix with nonnegative diagonal elements, then the neural system is absolutely exponentially stable(AEST). The Hopfield network, Cellular neural network and Bidirectional associative memory network are special cases of the network model considered in this paper. So this work gives some improvements to the previous ones.展开更多
Sufficient conditions for the exponential stability of a class of nonlinear, non-autonomous stochastic differential equations in infinite dimensions are studied. The analysis consists of introducing a suitable approxi...Sufficient conditions for the exponential stability of a class of nonlinear, non-autonomous stochastic differential equations in infinite dimensions are studied. The analysis consists of introducing a suitable approximating solution systems and usig a limiting argument to pass on stability of strong solutions to mild ones. Consequently, under these conditions the random attractors of given stochastic systems are reduced to zero with exponential decay. Lastly, two examples are investigated to illustrate the theory.展开更多
A class of generalized Cohen-Grossberg neural networks(CGNNs) with variable de- lays are investigated. By introducing a new type of Lyapunov functional and applying the homeomorphism theory and inequality technique,...A class of generalized Cohen-Grossberg neural networks(CGNNs) with variable de- lays are investigated. By introducing a new type of Lyapunov functional and applying the homeomorphism theory and inequality technique, some new conditions axe derived ensuring the existence and uniqueness of the equilibrium point and its global exponential stability for CGNNs. These results obtained are independent of delays, develop the existent outcome in the earlier literature and are very easily checked in practice.展开更多
The problem of stabilizing a class of large-scale non-linear multiple delay systems is considered.The complicated system is decomposed into several subsystems; each function of them is expressed by a set of components...The problem of stabilizing a class of large-scale non-linear multiple delay systems is considered.The complicated system is decomposed into several subsystems; each function of them is expressed by a set of components of the overall state vector,with interconnections between them, and the subsystems are coupled by the delayed state. In this paper, a method is devised to be a suitable choice of state feedback controls of every subsystems, moreover, it is proved that the large-scale system is exponential stable.展开更多
In this paper, the problem of the global exponential stability analysis is investigated for a class of recurrent neural networks (RNNs) with time-varying discrete and distributed delays. Due to a novel technique whe...In this paper, the problem of the global exponential stability analysis is investigated for a class of recurrent neural networks (RNNs) with time-varying discrete and distributed delays. Due to a novel technique when estimating the upper bound of the derivative of Lyapunov functional, we establish new exponential stability criteria in terms of LMIs. It is shown that the obtained criteria can provide less conservative results than some existing ones. Numerical examples are given to show the effectiveness of the proposed results.展开更多
The exponential stability is investigated for a class of continuous time linear systems with a finite state Markov chain form process and the impulsive jump at switching moments. The conditions, based on the average d...The exponential stability is investigated for a class of continuous time linear systems with a finite state Markov chain form process and the impulsive jump at switching moments. The conditions, based on the average dwell time and the ratio of expectation of the total time running on all unstable subsystems to the expectation of the total time running on all stable subsystems,assure the exponential stability with a desired stability degree of the system irrespective of the impact of impulsive jump. The uniformly bounded result is realized for the case in which switched system is subjected to the impulsive effect of the excitation signal at some switching moments.展开更多
In this paper,the global robust exponential stability is considered for a class of neural networks with parametric uncer- tainties and time-varying delay.By using Lyapunov functional method,and by resorting to the new...In this paper,the global robust exponential stability is considered for a class of neural networks with parametric uncer- tainties and time-varying delay.By using Lyapunov functional method,and by resorting to the new technique for estimating the upper bound of the derivative of the Lyapunov functional,some less conservative exponential stability criteria are derived in terms of linear matrix inequalities (LMIs).Numerical examples are presented to show the effectiveness of the proposed method.展开更多
Some global properties such as global attractivity and global exponential stability for delayed Hopfield neural networks model, under the weaker assumptions on nonlinear activation functions, are concerned. By constru...Some global properties such as global attractivity and global exponential stability for delayed Hopfield neural networks model, under the weaker assumptions on nonlinear activation functions, are concerned. By constructing suitable Liapunov function, some simpler criteria for global attractivity and global exponential stability for Hopfield continuous neural network,; with time delays are presented.展开更多
This article is devoted to the study of global existence and exponential stability of solutions to an initial-boundary value problem of the quasilinear thermo-diffusion equations with second sound by means of multipli...This article is devoted to the study of global existence and exponential stability of solutions to an initial-boundary value problem of the quasilinear thermo-diffusion equations with second sound by means of multiplicative techniques and energy method provided that the initial data are close to the equilibrium and the relaxation kernel is strongly positive definite and decays exponentially.展开更多
The paper develops exponential stability of the analytic solution and convergence in probability of the numerical method for highly nonlinear hybrid stochastic pantograph equation. The classical linear growth conditio...The paper develops exponential stability of the analytic solution and convergence in probability of the numerical method for highly nonlinear hybrid stochastic pantograph equation. The classical linear growth condition is replaced by polynomial growth conditions, under which there exists a unique global solution and the solution is almost surely exponentially stable. On the basis of a series of lemmas, the paper establishes a new criterion on convergence in probability of the Euler-Maruyama approximate solution. The criterion is very general so that many highly nonlinear stochastic pantograph equations can obey these conditions. A highly nonlinear example is provided to illustrate the main theory.展开更多
A new class of hybrid impulsive and switching models are introduced and their robust exponential stability and control synthesis are addressed. The proposed switched system is composed of stable subsystems and unstabl...A new class of hybrid impulsive and switching models are introduced and their robust exponential stability and control synthesis are addressed. The proposed switched system is composed of stable subsystems and unstable subsystems, which not only involves state delay and norm-bounded time-varying parameter uncertainties, but also contains the impulsive switching effects between the subsystems. Based on the extension of the system dimension and the concept of average dwell time, a kind of practically useful switching rule is presented which guarantees the desired robust exponential stability. A switched state feedback controller is also given.展开更多
This paper investigates the problem of robust exponential stability for neutral systems with time-varying delays and nonlinear perturbations. Based on a novel Lyapunov functional approach and linear matrix inequality ...This paper investigates the problem of robust exponential stability for neutral systems with time-varying delays and nonlinear perturbations. Based on a novel Lyapunov functional approach and linear matrix inequality technique, a new delay-dependent stability condition is derived. Since the model transformation and bounding techniques for cross terms are avoided, the criteria proposed in this paper are less conservative than some previous approaches by using the free-weighting matrices. One numerical example is presented to illustrate the effectiveness of the proposed results.展开更多
This paper deals with the global exponential stability problems for stochastic neutral Markov jump systems (MJSs) with uncertain parameters and multiple time-delays. The delays are respectively considered as constan...This paper deals with the global exponential stability problems for stochastic neutral Markov jump systems (MJSs) with uncertain parameters and multiple time-delays. The delays are respectively considered as constant and time varying cases, and the uncertainties are assumed to be norm bounded. By selecting appropriate Lyapunov-Krasovskii functions, it gives the sufficient condition such that the uncertain neutral MJSs are globally exponentially stochastically stable for all admissible uncertainties. The stability criteria are formulated in the form of linear matrix inequalities (LMIs), which can be easily checked in practice. Finally, two numerical examples are exploited to illustrate the effectiveness of the developed techniques.展开更多
This paper concernes analysis for the global exponential stability of a class of recurrent neural networks with mixed discrete and distributed delays. It first proves the existence and uniqueness of the balance point,...This paper concernes analysis for the global exponential stability of a class of recurrent neural networks with mixed discrete and distributed delays. It first proves the existence and uniqueness of the balance point, then by employing the Lyapunov-Krasovskii functional and Young inequality, it gives the sufficient condition of global exponential stability of cellular neural network with mixed discrete and distributed delays, in addition, the example is provided to illustrate the applicability of the result.展开更多
In this paper, the Cohen-Grossberg neural networks with time-varying delays and impulses are considered. New sufficient conditions for the existence and global exponential stability of a unique equilibrium point are e...In this paper, the Cohen-Grossberg neural networks with time-varying delays and impulses are considered. New sufficient conditions for the existence and global exponential stability of a unique equilibrium point are established by using the fixed point theorem and Lyapunov functional. An example is given to demonstrate the effectiveness of our results.展开更多
This paper considers the issue of delay-dependent exponential stability for time-delay systems. Both nominal and uncertain systems are investigated. New sufficient conditions in terms of linear matrix inequalities(LMI...This paper considers the issue of delay-dependent exponential stability for time-delay systems. Both nominal and uncertain systems are investigated. New sufficient conditions in terms of linear matrix inequalities(LMIs) are obtained. These criteria are simple owing to the use of an integral inequality. The model transformation approaches,bounding techniques for cross terms and slack matrices are all avoided in the derivation. Rigorous proof and numerical examples showed that the proposed criteria and those based on introducing slack matrices are equivalent.展开更多
The robust exponential stability of a larger class of discrete-time recurrent neural networks (RNNs) is explored in this paper. A novel neural network model, named standard neural network model (SNNM), is introduced t...The robust exponential stability of a larger class of discrete-time recurrent neural networks (RNNs) is explored in this paper. A novel neural network model, named standard neural network model (SNNM), is introduced to provide a general framework for stability analysis of RNNs. Most of the existing RNNs can be transformed into SNNMs to be analyzed in a unified way. Applying Lyapunov stability theory method and S-Procedure technique, two useful criteria of robust exponential stability for the discrete-time SNNMs are derived. The conditions presented are formulated as linear matrix inequalities (LMIs) to be easily solved using existing efficient convex optimization techniques. An example is presented to demonstrate the transformation procedure and the effectiveness of the results.展开更多
基金The National Natural Science Foundation of China (No60574006)
文摘The exponential stability of a class of neural networks with continuously distributed delays is investigated by employing a novel Lyapunov-Krasovskii functional. Through introducing some free-weighting matrices and the equivalent descriptor form, a delay-dependent stability criterion is established for the addressed systems. The condition is expressed in terms of a linear matrix inequality (LMI), and it can be checked by resorting to the LMI in the Matlab toolbox. In addition, the proposed stability criteria do not require the monotonicity of the activation functions and the derivative of a time-varying delay being less than 1, which generalize and improve earlier methods. Finally, numerical examples are given to show the effectiveness of the obtained methods.
文摘By using the quasi-Lyapunov function, some sufficient conditions of global exponential stability for impulsive systems are established, which is the basis for the following discussion. Then, by employing Riccati inequality and Hamilton-Jacobi inequality approach, some sufficient conditions of robust exponential stability for uncertain linear/nonlinear impulsive systems are derived, respectively. Finally, some examples are given to illustrate the applications of the theory.
文摘Both the global exponential stability and the existence of periodic solutions for a class of recurrent neural networks with continuously distributed delays (RNNs) are studied. By employing the inequality α∏k=1^m bk^qk≤1/r ∑qkbk^r+1/rα^r(α≥0,bk≥0,qk〉0,with ∑k=1^m qk=r-1,r≥1, constructing suitable Lyapunov r k=l k=l functions and applying the homeomorphism theory, a family of simple and new sufficient conditions are given ensuring the global exponential stability and the existence of periodic solutions of RNNs. The results extend and improve the results of earlier publications.
文摘This paper investigates the absolute exponential stability of generalized neural networks with a general class of partially Lipschitz continuous and monotone increasing activation functions. The main obtained result is that if the interconnection matrix T of the neural system satisfies that - T is an H matrix with nonnegative diagonal elements, then the neural system is absolutely exponentially stable(AEST). The Hopfield network, Cellular neural network and Bidirectional associative memory network are special cases of the network model considered in this paper. So this work gives some improvements to the previous ones.
文摘Sufficient conditions for the exponential stability of a class of nonlinear, non-autonomous stochastic differential equations in infinite dimensions are studied. The analysis consists of introducing a suitable approximating solution systems and usig a limiting argument to pass on stability of strong solutions to mild ones. Consequently, under these conditions the random attractors of given stochastic systems are reduced to zero with exponential decay. Lastly, two examples are investigated to illustrate the theory.
基金Supported by the Distinguished Expert Science Foundation of Naval Aeronautical Engineering Institutethe Younger Foundation of Yantai University (SX06Z9)
文摘A class of generalized Cohen-Grossberg neural networks(CGNNs) with variable de- lays are investigated. By introducing a new type of Lyapunov functional and applying the homeomorphism theory and inequality technique, some new conditions axe derived ensuring the existence and uniqueness of the equilibrium point and its global exponential stability for CGNNs. These results obtained are independent of delays, develop the existent outcome in the earlier literature and are very easily checked in practice.
文摘The problem of stabilizing a class of large-scale non-linear multiple delay systems is considered.The complicated system is decomposed into several subsystems; each function of them is expressed by a set of components of the overall state vector,with interconnections between them, and the subsystems are coupled by the delayed state. In this paper, a method is devised to be a suitable choice of state feedback controls of every subsystems, moreover, it is proved that the large-scale system is exponential stable.
基金supported by National Natural Science Foundation of China (No.60674027,No.60974127)Key Project of Education Ministry of China (No.208074)
文摘In this paper, the problem of the global exponential stability analysis is investigated for a class of recurrent neural networks (RNNs) with time-varying discrete and distributed delays. Due to a novel technique when estimating the upper bound of the derivative of Lyapunov functional, we establish new exponential stability criteria in terms of LMIs. It is shown that the obtained criteria can provide less conservative results than some existing ones. Numerical examples are given to show the effectiveness of the proposed results.
基金the National Natural Science Foundation of China (60674027, 60574007)Doctoral Foundation of Education Ministry of China (20050446001).
文摘The exponential stability is investigated for a class of continuous time linear systems with a finite state Markov chain form process and the impulsive jump at switching moments. The conditions, based on the average dwell time and the ratio of expectation of the total time running on all unstable subsystems to the expectation of the total time running on all stable subsystems,assure the exponential stability with a desired stability degree of the system irrespective of the impact of impulsive jump. The uniformly bounded result is realized for the case in which switched system is subjected to the impulsive effect of the excitation signal at some switching moments.
基金Natural Science Foundation of Henan Education Department (No.2007120005).
文摘In this paper,the global robust exponential stability is considered for a class of neural networks with parametric uncer- tainties and time-varying delay.By using Lyapunov functional method,and by resorting to the new technique for estimating the upper bound of the derivative of the Lyapunov functional,some less conservative exponential stability criteria are derived in terms of linear matrix inequalities (LMIs).Numerical examples are presented to show the effectiveness of the proposed method.
文摘Some global properties such as global attractivity and global exponential stability for delayed Hopfield neural networks model, under the weaker assumptions on nonlinear activation functions, are concerned. By constructing suitable Liapunov function, some simpler criteria for global attractivity and global exponential stability for Hopfield continuous neural network,; with time delays are presented.
基金Sponsored by the NNSF of China(11031003,11271066,11326158)a grant of Shanghai Education Commission(13ZZ048)Chinese Universities Scientific Fund(CUSF-DH-D-2013068)
文摘This article is devoted to the study of global existence and exponential stability of solutions to an initial-boundary value problem of the quasilinear thermo-diffusion equations with second sound by means of multiplicative techniques and energy method provided that the initial data are close to the equilibrium and the relaxation kernel is strongly positive definite and decays exponentially.
基金support from the National Natural Science Foundation of China(70871046,71171091,71191091)Fundamental Research Funds for the Central Universities(2011QN167)
文摘The paper develops exponential stability of the analytic solution and convergence in probability of the numerical method for highly nonlinear hybrid stochastic pantograph equation. The classical linear growth condition is replaced by polynomial growth conditions, under which there exists a unique global solution and the solution is almost surely exponentially stable. On the basis of a series of lemmas, the paper establishes a new criterion on convergence in probability of the Euler-Maruyama approximate solution. The criterion is very general so that many highly nonlinear stochastic pantograph equations can obey these conditions. A highly nonlinear example is provided to illustrate the main theory.
基金the National Natural Science Foundation of China(No.60674027)China Postdoctoral Science Foundation(No.20070410336)the Postdoctor Foundation of Jiangsu Province(No.0602042B).
文摘A new class of hybrid impulsive and switching models are introduced and their robust exponential stability and control synthesis are addressed. The proposed switched system is composed of stable subsystems and unstable subsystems, which not only involves state delay and norm-bounded time-varying parameter uncertainties, but also contains the impulsive switching effects between the subsystems. Based on the extension of the system dimension and the concept of average dwell time, a kind of practically useful switching rule is presented which guarantees the desired robust exponential stability. A switched state feedback controller is also given.
基金supported by Natural Science Foundation of Jiangsu Province of China(No.BK2007016)Scientific Research and Development Program of the Higher Education Institutions of Shandong Province of China(No.J09LG58)
文摘This paper investigates the problem of robust exponential stability for neutral systems with time-varying delays and nonlinear perturbations. Based on a novel Lyapunov functional approach and linear matrix inequality technique, a new delay-dependent stability condition is derived. Since the model transformation and bounding techniques for cross terms are avoided, the criteria proposed in this paper are less conservative than some previous approaches by using the free-weighting matrices. One numerical example is presented to illustrate the effectiveness of the proposed results.
基金supported by the National Natural Science Foundation of China (No.60574001)Program for New Century Excellent Talents in University (No.050485)Program for Innovative Research Team of Jiangnan University
文摘This paper deals with the global exponential stability problems for stochastic neutral Markov jump systems (MJSs) with uncertain parameters and multiple time-delays. The delays are respectively considered as constant and time varying cases, and the uncertainties are assumed to be norm bounded. By selecting appropriate Lyapunov-Krasovskii functions, it gives the sufficient condition such that the uncertain neutral MJSs are globally exponentially stochastically stable for all admissible uncertainties. The stability criteria are formulated in the form of linear matrix inequalities (LMIs), which can be easily checked in practice. Finally, two numerical examples are exploited to illustrate the effectiveness of the developed techniques.
基金Project supported by the National Natural Science Foundations of China(Grant No.70871056)the Society Science Foundation from Ministry of Education of China(Grant No.08JA790057)the Advanced Talents'Foundation and Student's Foundation of Jiangsu University,China(Grant Nos.07JDG054 and 07A075)
文摘This paper concernes analysis for the global exponential stability of a class of recurrent neural networks with mixed discrete and distributed delays. It first proves the existence and uniqueness of the balance point, then by employing the Lyapunov-Krasovskii functional and Young inequality, it gives the sufficient condition of global exponential stability of cellular neural network with mixed discrete and distributed delays, in addition, the example is provided to illustrate the applicability of the result.
文摘In this paper, the Cohen-Grossberg neural networks with time-varying delays and impulses are considered. New sufficient conditions for the existence and global exponential stability of a unique equilibrium point are established by using the fixed point theorem and Lyapunov functional. An example is given to demonstrate the effectiveness of our results.
基金Project (Nos. 60434020 and 60604003) supported by the NationalNatural Science Foundation of China
文摘This paper considers the issue of delay-dependent exponential stability for time-delay systems. Both nominal and uncertain systems are investigated. New sufficient conditions in terms of linear matrix inequalities(LMIs) are obtained. These criteria are simple owing to the use of an integral inequality. The model transformation approaches,bounding techniques for cross terms and slack matrices are all avoided in the derivation. Rigorous proof and numerical examples showed that the proposed criteria and those based on introducing slack matrices are equivalent.
基金the National Natural Science Foundation of China (No. 60504024)the Research Project of Zhejiang Provin-cial Education Department (No. 20050905), China
文摘The robust exponential stability of a larger class of discrete-time recurrent neural networks (RNNs) is explored in this paper. A novel neural network model, named standard neural network model (SNNM), is introduced to provide a general framework for stability analysis of RNNs. Most of the existing RNNs can be transformed into SNNMs to be analyzed in a unified way. Applying Lyapunov stability theory method and S-Procedure technique, two useful criteria of robust exponential stability for the discrete-time SNNMs are derived. The conditions presented are formulated as linear matrix inequalities (LMIs) to be easily solved using existing efficient convex optimization techniques. An example is presented to demonstrate the transformation procedure and the effectiveness of the results.