In this study,a fully coupled hydromechanical model within the extended finite element method(XFEM)-based cohesive zone method(CZM)is employed to investigate the simultaneous height growth behavior of multi-cluster hy...In this study,a fully coupled hydromechanical model within the extended finite element method(XFEM)-based cohesive zone method(CZM)is employed to investigate the simultaneous height growth behavior of multi-cluster hydraulic fractures in layered porous reservoirs with modulus contrast.The coupled hydromechanical model is first verified against an analytical solution and a laboratory experiment.Then,the fracture geometry(e.g.height,aperture,and area)and fluid pressure evolutions of multiple hydraulic fractures placed in a porous reservoir interbedded with alternating stiff and soft layers are investigated using the model.The stress and pore pressure distributions within the layered reservoir during fluid injection are also presented.The simulation results reveal that stress umbrellas are easily to form among multiple hydraulic fractures’tips when propagating in soft layers,which impedes the simultaneous height growth.It is also observed that the impediment effect of soft layer is much more significant in the fractures suppressed by the preferential growth of adjoining fractures.After that,the combined effect of in situ stress ratio and fracturing spacing on the multi-fracture height growth is presented,and the results elucidate the influence of in situ stress ratio on the height growth behavior depending on the fracture spacing.Finally,it is found that the inclusion of soft layers changes the aperture distribution of outmost and interior hydraulic fractures.The results obtained from this study may provide some insights on the understanding of hydraulic fracture height containment observed in filed.展开更多
Crack is found to be a major distress that affects the performance of the epoxy asphalt pavement.An extended finite element method was proposed for investigating the fracture properties of the epoxy asphalt mixture.Fi...Crack is found to be a major distress that affects the performance of the epoxy asphalt pavement.An extended finite element method was proposed for investigating the fracture properties of the epoxy asphalt mixture.Firstly,the single-edge notched beam test was used to analyze the temperature effect and calculate the material parameters.Then,the mechanical responses were studied using numerical analysis.It is concluded that 5℃ can be selected as the critical temperature that affects the fracture properties,and numerical simulations indicate that crack propagation is found to significantly affect the stress state of the epoxy asphalt mixture.The maximum principal stress at the crack surface exhibits different trends at various temperatures.Numerical solution of stress intensity factor can well meet the theoretical solution,especially when the temperature is lower than 5℃.展开更多
This paper applies an extended auxiliary equation method to obtain exact solutions of the KdV equation with variable coefficients. As a result, solitary wave solutions, trigonometric function solutions, rational funct...This paper applies an extended auxiliary equation method to obtain exact solutions of the KdV equation with variable coefficients. As a result, solitary wave solutions, trigonometric function solutions, rational function solutions, Jacobi elliptic doubly periodic wave solutions, and nonsymmetrical kink solution are obtained. It is shown that the extended auxiliary equation method, with the help of a computer symbolic computation system, is reliable and effective in finding exact solutions of variable coefficient nonlinear evolution equations in mathematical physics.展开更多
An extended displacement discontinuity method (EDDM) is proposed to analyze the stress wave propagation in jointed viscoelastic rock mass (VRM).The discontinuities in a rock mass are divided into two groups.The primar...An extended displacement discontinuity method (EDDM) is proposed to analyze the stress wave propagation in jointed viscoelastic rock mass (VRM).The discontinuities in a rock mass are divided into two groups.The primary group with an average geometrical size larger than or in the same order of magnitude of wavelength of a concerned stress wave is defined as 'macro-joints',while the secondary group with a high density and relatively small geometrical size compared to the wavelength is known as 'micro-defects'.The rock mass with micro-defects is modeled as an equivalent viscoelastic medium while the macro-joints in the rock mass are modeled explicitly as physical discontinuities.Viscoelastic properties of a micro-defected sedimentary rock are obtained by longitudinally impacting a cored long sedimentary rod with a pendulum.Wave propagation coefficient and dynamic viscoelastic modulus are measured.The EDDM is then successfully employed to analyze the wave propagation across macro-joint in VRM.The effect of the rock viscosity on the stress wave propagation is evaluated by comparing the results of VRM from the presented EDDM with those of an elastic rock mass (ERM) from the conventional displacement discontinuity method (CDDM).The CDDM is a special case of the EDDM under the condition that the rock viscosity is ignored.Comparison of the reflected and transmitted waves shows that the essential rock viscosity has a significant effect on stress wave attenuation.When a short propagation distance of a stress wave is considered,the results obtained from the CDDM approximate to the EDDM solutions,however,when the propagation distance is sufficiently long relative to the wavelength,the effect of rock viscosity on the stress wave propagation cannot be ignored.展开更多
An extended multiscale finite element method (EMsFEM) is developed for solving the mechanical problems of heterogeneous materials in elasticity.The underlying idea of the method is to construct numerically the multi...An extended multiscale finite element method (EMsFEM) is developed for solving the mechanical problems of heterogeneous materials in elasticity.The underlying idea of the method is to construct numerically the multiscale base functions to capture the small-scale features of the coarse elements in the multiscale finite element analysis.On the basis of our existing work for periodic truss materials, the construction methods of the base functions for continuum heterogeneous materials are systematically introduced. Numerical experiments show that the choice of boundary conditions for the construction of the base functions has a big influence on the accuracy of the multiscale solutions, thus,different kinds of boundary conditions are proposed. The efficiency and accuracy of the developed method are validated and the results with different boundary conditions are verified through extensive numerical examples with both periodic and random heterogeneous micro-structures.Also, a consistency test of the method is performed numerically. The results show that the EMsFEM can effectively obtain the macro response of the heterogeneous structures as well as the response in micro-scale,especially under the periodic boundary conditions.展开更多
In this paper, the extended finite element method (XFEM) is adopted to analyze the interaction between a single macroscopic inclusion and a single macroscopic crack as well as that between multiple macroscopic or micr...In this paper, the extended finite element method (XFEM) is adopted to analyze the interaction between a single macroscopic inclusion and a single macroscopic crack as well as that between multiple macroscopic or microscopic defects under thermal/mechanical load. The effects of different shapes of multiple inclusions on the material thermomechanical response are investigated, and the level set method is coupled with XFEM to analyze the interaction of multiple defects. Further, the discretized extended finite element approximations in relation to thermoelastic problems of multiple defects under displacement or temperature field are given. Also, the interfaces of cracks or materials are represented by level set functions, which allow the mesh assignment not to conform to crack or material interfaces. Moreover, stress intensity factors of cracks are obtained by the interaction integral method or the M-integral method, and the stress/strain/stiffness fields are simulated in the case of multiple cracks or multiple inclusions. Finally, some numerical examples are provided to demonstrate the accuracy of our proposed method.展开更多
Extended finite element method (XFEM) implementation of the interaction integral methodology for evaluating the stress intensity factors (SIF) of the mixed-mode crack problem is presented. A discontinuous function...Extended finite element method (XFEM) implementation of the interaction integral methodology for evaluating the stress intensity factors (SIF) of the mixed-mode crack problem is presented. A discontinuous function and the near-tip asymptotic function are added to the classic finite element approximation to model the crack behavior. Two-state integral by the superposition of actual and auxiliary fields is derived to calculate the SIFs. Applications of the proposed technique to the inclined centre crack plate with inclined angle from 0° to 90° and slant edge crack plate with slant angle 45°, 67.5° and 90° are presented, and comparisons are made with closed form solutions. The results show that the proposed method is convenient, accurate and computationallv efficient.展开更多
For the appearance of the additive perturbation of controller gain when the controller parameter has minute adjustment at the initial running stage of system,to avoid the adverse effects,this paper investigates the mi...For the appearance of the additive perturbation of controller gain when the controller parameter has minute adjustment at the initial running stage of system,to avoid the adverse effects,this paper investigates the mixed H_2/H_∞ state feedback attitude control problem of microsatellite based on extended LMI method.Firstly,the microsatellite attitude control system is established and transformed into corresponding state space form.Then,without the equivalence restriction of the two Lyapunov variables of H_2 and H∞performance,this paper introduces additional variables to design the mixed H_2/H_∞ control method based on LMI which can also reduce the conservatives.Finally,numerical simulations are analyzed to show that the proposed method can make the satellite stable within 20 s whether there is additive perturbation of the controller gain or not.The comparative analysis of the simulation results between extended LMI method and traditional LMI method also demonstrates the effectiveness and feasibility of the proposed method in this paper.展开更多
Taking the Konopelchenko-Dubrovsky system as a simple example, some familles of rational formal hyperbolic function solutions, rational formal triangular periodic solutions, and rational solutions are constructed by u...Taking the Konopelchenko-Dubrovsky system as a simple example, some familles of rational formal hyperbolic function solutions, rational formal triangular periodic solutions, and rational solutions are constructed by using the extended Riccati equation rational expansion method presented by us. The method can also be applied to solve more nonlinear partial differential equation or equations.展开更多
An extended sine-Gordon equation method is proposed to construct exact travelling wave solutions to Maccari's equation based upon a generalized sine-Gordon equation. It is shown that more new travelling wave solut...An extended sine-Gordon equation method is proposed to construct exact travelling wave solutions to Maccari's equation based upon a generalized sine-Gordon equation. It is shown that more new travelling wave solutions can be found by this new method, which include bell-shaped soliton solutions, kink-shaped soliton solutions, periodic wave solution, and new travelling waves.展开更多
The extended F-expansion method or mapping method is used to construct exact solutions for the coupled KleinGordon Schr/Sdinger equations (K-G-S equations) by the aid of the symbolic computation system Mathematica. ...The extended F-expansion method or mapping method is used to construct exact solutions for the coupled KleinGordon Schr/Sdinger equations (K-G-S equations) by the aid of the symbolic computation system Mathematica. More solutions in the Jacobi elliptic function form are obtained, including the single Jacobi elliptic function solutions, combined Jacobi elliptic function solutions, rational solutions, triangular solutions, soliton solutions and combined soliton solutions.展开更多
In this paper, a new extended complex tanh-function method is presented for constructing traveling wave, non-traveling wave, and coefficient functions' soliton-like solutions of nonlinear equations. This method is mo...In this paper, a new extended complex tanh-function method is presented for constructing traveling wave, non-traveling wave, and coefficient functions' soliton-like solutions of nonlinear equations. This method is more powerful than the complex tanh-function method [Chaos, Solitons and Fractals 20 (2004) 1037]. Abundant new solutions o[ (2q-1)-dimensional Hirota equation are obtained by using this method and symbolic computation system Maple.展开更多
Making use of a new generalized ansatz, we present a new generalized extended F-expansion method for constructing the exact solutions of nonlinear partial differential equations in a unified way. Applying the generali...Making use of a new generalized ansatz, we present a new generalized extended F-expansion method for constructing the exact solutions of nonlinear partial differential equations in a unified way. Applying the generalized method with the aid of Maple, we consider the (2+1)-dimentional breaking soliton equation. As a result, we successfully obtain some new and more general solutions including Jacobi elliptic function solutions, soliton-like solutions, trigonometric function solutions, and so on. As an illustrative sampler the properties of some soliton solutions for the breaking soliton equation are shown by some figures. Our method can also be applied to other partial differential equations.展开更多
In the finite element method,the numerical simulation of three-dimensional crack propagation is relatively rare,and it is often realized by commercial programs.In addition to the geometric complexity,the determination...In the finite element method,the numerical simulation of three-dimensional crack propagation is relatively rare,and it is often realized by commercial programs.In addition to the geometric complexity,the determination of the cracking direction constitutes a great challenge.In most cases,the local stress state provides the fundamental criterion to judge the presence of cracks and the direction of crack propagation.However,in the case of three-dimensional analysis,the coordination relationship between grid elements due to occurrence of cracks becomes a difficult problem for this method.In this paper,based on the extended finite element method,the stress-related function field is introduced into the calculation domain,and then the boundary value problem of the function is solved.Subsequently,the envelope surface of all propagation directions can be obtained at one time.At last,the possible surface can be selected as the direction of crack development.Based on the aforementioned procedure,such method greatly reduces the programming complexity of tracking the crack propagation.As a suitable method for simulating tension-induced failure,it can simulate multiple cracks simultaneously.展开更多
In this work, by means of a new more general ansatz and the symbolic computation system Maple, we extend the Riccati equation rational expansion method [Chaos, Solitons & Fractals 25 (2005) 1019] to uniformly const...In this work, by means of a new more general ansatz and the symbolic computation system Maple, we extend the Riccati equation rational expansion method [Chaos, Solitons & Fractals 25 (2005) 1019] to uniformly construct a series of stochastic nontravelling wave solutions for nonlinear stochastic evolution equation. To illustrate the effectiveness of our method, we take the stochastic mKdV equation as an example, and successfully construct some new and more general solutions including a series of rational formal nontraveling wave and coefficient functions' soliton-like solution.s and trigonometric-like function solutions. The method can also be applied to solve other nonlinear stochastic evolution equation or equations.展开更多
In this study,the potential Kadomtsev-Petviashvili(pKP)equation,which describes the oblique interaction of surface waves in shallow waters,is solved by the new extended direct algebraic method.The results of the study...In this study,the potential Kadomtsev-Petviashvili(pKP)equation,which describes the oblique interaction of surface waves in shallow waters,is solved by the new extended direct algebraic method.The results of the study show that by applying the new direct algebraic method to the pKP equation,the behavior of the obliquely interacting surface waves in two dimensions can be analyzed.This article fairly clarifies the behaviors of surface waves in shallow waters.In the literature,several mathematical models have been developed in attempt to study these behaviors,with nonlinear mathematics being one of the most important steps;however,the investigations are still at a level that can be called‘baby steps’.Therefore,every study to be carried out in this context is of great importance.Thus,this study will serve as a reference to guide scientists working in this field.展开更多
In a recent article [Physics Letters A 372 (2008) 417], Wang et al. proposed a method, which is called the (G′/G)-expansion method, to look for travelling wave solutions of nonlinear evolution equations. The trav...In a recent article [Physics Letters A 372 (2008) 417], Wang et al. proposed a method, which is called the (G′/G)-expansion method, to look for travelling wave solutions of nonlinear evolution equations. The travelling wave solutions involving parameters of the KdV equation, the mKdV equation, the variant Boussinesq equations, and the Hirota-Satsuma equations are obtained by using this method. They think the (G′/G)-expansion method is a new method and more travelling wave solutions of many nonlinear evolution equations can be obtained. In this paper, we will show that the (G′/G)-expansion method is equivalent to the extended tanh function method.展开更多
In this paper, extended projective Riccati equation method is presented for constructing more new exact solutions of nonlinear differential equations in mathematical physics, which is direct and more powerful than pro...In this paper, extended projective Riccati equation method is presented for constructing more new exact solutions of nonlinear differential equations in mathematical physics, which is direct and more powerful than projective Riccati equation method. In order to illustrate the effect of the method, Broer Kaup Kupershmidt system is employed and Jacobi doubly periodic solutions are obtained. This algorithm can also be applied to other nonlinear differential equations.展开更多
Self-deformation cracking is the cracking caused by thermal deformation, autogenous volume deformation or shrinkage deformation. In this paper, an extended finite element calculation method was deduced for concrete cr...Self-deformation cracking is the cracking caused by thermal deformation, autogenous volume deformation or shrinkage deformation. In this paper, an extended finite element calculation method was deduced for concrete crack propagation under a constant hydration and hardening condition during the construction period, and a corresponding programming code was developed. The experimental investigation shows that initial crack propagation caused by self-deformation loads can be analyzed by this program. This improved algorithm was a preliminary application of the XFEM to the problem of the concrete self-deformation cracking during the hydration and hardening period. However, room for improvement exists for this algorithm in terms of matching calculation programs with mass concrete temperature fields containing cooling pipes and the influence of creep or damage on crack propagation.展开更多
In the paper the extended modelling method with serial sands is used in an experimental research on the erosion patterns at the discharge outlet of a beach Hua-Neng power plant. The theoretical basis for the extended ...In the paper the extended modelling method with serial sands is used in an experimental research on the erosion patterns at the discharge outlet of a beach Hua-Neng power plant. The theoretical basis for the extended modelling method with serial sands is systematically presented in the paper and the method has been successfully employed in the sediment experiment of coastal works. According to the Froude Law, the model is designed to be a normal one with movable bed, the geometric scale lambda(L) = lambda(H) = 15, and three scales of sediment grain size are chosen, i.e., lambda(d1) = 0.207; lambda(d2) = 0.393; and lambda(d3) = 0.656. The median particle diameter of sea beach prototype sand d(50p) = 0.059 mm and the dis-changed water flow of the power plant is 21.7 m(3) / s. Three types of natural sea sands have been chosen as the serial modelling sands to extend the simulation of the prototype, thus replacing the conventional test in which artificial lightweight sands are used. As a result, this method can not only reduce the cost significantly, but also it is an advanced technique easy to use. Upon a series of tests, satisfactory results have been obtained.展开更多
文摘In this study,a fully coupled hydromechanical model within the extended finite element method(XFEM)-based cohesive zone method(CZM)is employed to investigate the simultaneous height growth behavior of multi-cluster hydraulic fractures in layered porous reservoirs with modulus contrast.The coupled hydromechanical model is first verified against an analytical solution and a laboratory experiment.Then,the fracture geometry(e.g.height,aperture,and area)and fluid pressure evolutions of multiple hydraulic fractures placed in a porous reservoir interbedded with alternating stiff and soft layers are investigated using the model.The stress and pore pressure distributions within the layered reservoir during fluid injection are also presented.The simulation results reveal that stress umbrellas are easily to form among multiple hydraulic fractures’tips when propagating in soft layers,which impedes the simultaneous height growth.It is also observed that the impediment effect of soft layer is much more significant in the fractures suppressed by the preferential growth of adjoining fractures.After that,the combined effect of in situ stress ratio and fracturing spacing on the multi-fracture height growth is presented,and the results elucidate the influence of in situ stress ratio on the height growth behavior depending on the fracture spacing.Finally,it is found that the inclusion of soft layers changes the aperture distribution of outmost and interior hydraulic fractures.The results obtained from this study may provide some insights on the understanding of hydraulic fracture height containment observed in filed.
基金Project(50578038)supported by the National Natural Science Foundation of China
文摘Crack is found to be a major distress that affects the performance of the epoxy asphalt pavement.An extended finite element method was proposed for investigating the fracture properties of the epoxy asphalt mixture.Firstly,the single-edge notched beam test was used to analyze the temperature effect and calculate the material parameters.Then,the mechanical responses were studied using numerical analysis.It is concluded that 5℃ can be selected as the critical temperature that affects the fracture properties,and numerical simulations indicate that crack propagation is found to significantly affect the stress state of the epoxy asphalt mixture.The maximum principal stress at the crack surface exhibits different trends at various temperatures.Numerical solution of stress intensity factor can well meet the theoretical solution,especially when the temperature is lower than 5℃.
基金Project supported by the Fundamental Research Funds for the Central Universities (Grant No. 2010B17914) and the National Natural Science Foundation of China (Grant No. 10926162).
文摘This paper applies an extended auxiliary equation method to obtain exact solutions of the KdV equation with variable coefficients. As a result, solitary wave solutions, trigonometric function solutions, rational function solutions, Jacobi elliptic doubly periodic wave solutions, and nonsymmetrical kink solution are obtained. It is shown that the extended auxiliary equation method, with the help of a computer symbolic computation system, is reliable and effective in finding exact solutions of variable coefficient nonlinear evolution equations in mathematical physics.
文摘An extended displacement discontinuity method (EDDM) is proposed to analyze the stress wave propagation in jointed viscoelastic rock mass (VRM).The discontinuities in a rock mass are divided into two groups.The primary group with an average geometrical size larger than or in the same order of magnitude of wavelength of a concerned stress wave is defined as 'macro-joints',while the secondary group with a high density and relatively small geometrical size compared to the wavelength is known as 'micro-defects'.The rock mass with micro-defects is modeled as an equivalent viscoelastic medium while the macro-joints in the rock mass are modeled explicitly as physical discontinuities.Viscoelastic properties of a micro-defected sedimentary rock are obtained by longitudinally impacting a cored long sedimentary rod with a pendulum.Wave propagation coefficient and dynamic viscoelastic modulus are measured.The EDDM is then successfully employed to analyze the wave propagation across macro-joint in VRM.The effect of the rock viscosity on the stress wave propagation is evaluated by comparing the results of VRM from the presented EDDM with those of an elastic rock mass (ERM) from the conventional displacement discontinuity method (CDDM).The CDDM is a special case of the EDDM under the condition that the rock viscosity is ignored.Comparison of the reflected and transmitted waves shows that the essential rock viscosity has a significant effect on stress wave attenuation.When a short propagation distance of a stress wave is considered,the results obtained from the CDDM approximate to the EDDM solutions,however,when the propagation distance is sufficiently long relative to the wavelength,the effect of rock viscosity on the stress wave propagation cannot be ignored.
基金supported by the National Natural Science Foundation(10721062,11072051,90715037,10728205,91015003, 51021140004)the Program of Introducing Talents of Discipline to Universities(B08014)the National Key Basic Research Special Foundation of China(2010CB832704).
文摘An extended multiscale finite element method (EMsFEM) is developed for solving the mechanical problems of heterogeneous materials in elasticity.The underlying idea of the method is to construct numerically the multiscale base functions to capture the small-scale features of the coarse elements in the multiscale finite element analysis.On the basis of our existing work for periodic truss materials, the construction methods of the base functions for continuum heterogeneous materials are systematically introduced. Numerical experiments show that the choice of boundary conditions for the construction of the base functions has a big influence on the accuracy of the multiscale solutions, thus,different kinds of boundary conditions are proposed. The efficiency and accuracy of the developed method are validated and the results with different boundary conditions are verified through extensive numerical examples with both periodic and random heterogeneous micro-structures.Also, a consistency test of the method is performed numerically. The results show that the EMsFEM can effectively obtain the macro response of the heterogeneous structures as well as the response in micro-scale,especially under the periodic boundary conditions.
基金supported by the National Natural Science Foundation of China (Grants 11471262, 50976003, 51136005)
文摘In this paper, the extended finite element method (XFEM) is adopted to analyze the interaction between a single macroscopic inclusion and a single macroscopic crack as well as that between multiple macroscopic or microscopic defects under thermal/mechanical load. The effects of different shapes of multiple inclusions on the material thermomechanical response are investigated, and the level set method is coupled with XFEM to analyze the interaction of multiple defects. Further, the discretized extended finite element approximations in relation to thermoelastic problems of multiple defects under displacement or temperature field are given. Also, the interfaces of cracks or materials are represented by level set functions, which allow the mesh assignment not to conform to crack or material interfaces. Moreover, stress intensity factors of cracks are obtained by the interaction integral method or the M-integral method, and the stress/strain/stiffness fields are simulated in the case of multiple cracks or multiple inclusions. Finally, some numerical examples are provided to demonstrate the accuracy of our proposed method.
基金Projects(41172244,41072224) supported by the National Natural Science Foundation of ChinaProject(2009GGJS-037) supported by the Foundation of Youths Key Teacher by the Henan Educational Committee,China
文摘Extended finite element method (XFEM) implementation of the interaction integral methodology for evaluating the stress intensity factors (SIF) of the mixed-mode crack problem is presented. A discontinuous function and the near-tip asymptotic function are added to the classic finite element approximation to model the crack behavior. Two-state integral by the superposition of actual and auxiliary fields is derived to calculate the SIFs. Applications of the proposed technique to the inclined centre crack plate with inclined angle from 0° to 90° and slant edge crack plate with slant angle 45°, 67.5° and 90° are presented, and comparisons are made with closed form solutions. The results show that the proposed method is convenient, accurate and computationallv efficient.
文摘For the appearance of the additive perturbation of controller gain when the controller parameter has minute adjustment at the initial running stage of system,to avoid the adverse effects,this paper investigates the mixed H_2/H_∞ state feedback attitude control problem of microsatellite based on extended LMI method.Firstly,the microsatellite attitude control system is established and transformed into corresponding state space form.Then,without the equivalence restriction of the two Lyapunov variables of H_2 and H∞performance,this paper introduces additional variables to design the mixed H_2/H_∞ control method based on LMI which can also reduce the conservatives.Finally,numerical simulations are analyzed to show that the proposed method can make the satellite stable within 20 s whether there is additive perturbation of the controller gain or not.The comparative analysis of the simulation results between extended LMI method and traditional LMI method also demonstrates the effectiveness and feasibility of the proposed method in this paper.
基金The project partially supported by the State Key Basic Research Program of China under Grant No. 2004CB318000
文摘Taking the Konopelchenko-Dubrovsky system as a simple example, some familles of rational formal hyperbolic function solutions, rational formal triangular periodic solutions, and rational solutions are constructed by using the extended Riccati equation rational expansion method presented by us. The method can also be applied to solve more nonlinear partial differential equation or equations.
文摘An extended sine-Gordon equation method is proposed to construct exact travelling wave solutions to Maccari's equation based upon a generalized sine-Gordon equation. It is shown that more new travelling wave solutions can be found by this new method, which include bell-shaped soliton solutions, kink-shaped soliton solutions, periodic wave solution, and new travelling waves.
基金Project supported by the National Nature Science Foundation of China (Grant No 49894190) of the Chinese Academy of Science (Grant No KZCXI-sw-18), and Knowledge Innovation Program.
文摘The extended F-expansion method or mapping method is used to construct exact solutions for the coupled KleinGordon Schr/Sdinger equations (K-G-S equations) by the aid of the symbolic computation system Mathematica. More solutions in the Jacobi elliptic function form are obtained, including the single Jacobi elliptic function solutions, combined Jacobi elliptic function solutions, rational solutions, triangular solutions, soliton solutions and combined soliton solutions.
基金The project supported by National Natural Science Foundation of China and the Natural Science Foundation of Shandong Province of China
文摘In this paper, a new extended complex tanh-function method is presented for constructing traveling wave, non-traveling wave, and coefficient functions' soliton-like solutions of nonlinear equations. This method is more powerful than the complex tanh-function method [Chaos, Solitons and Fractals 20 (2004) 1037]. Abundant new solutions o[ (2q-1)-dimensional Hirota equation are obtained by using this method and symbolic computation system Maple.
基金The project supported partially by the State Key Basic Research Program of China under Grant No. 2004 CB 318000The authors would like to thank the referee for his/her valuable suggestions.
文摘Making use of a new generalized ansatz, we present a new generalized extended F-expansion method for constructing the exact solutions of nonlinear partial differential equations in a unified way. Applying the generalized method with the aid of Maple, we consider the (2+1)-dimentional breaking soliton equation. As a result, we successfully obtain some new and more general solutions including Jacobi elliptic function solutions, soliton-like solutions, trigonometric function solutions, and so on. As an illustrative sampler the properties of some soliton solutions for the breaking soliton equation are shown by some figures. Our method can also be applied to other partial differential equations.
基金Project(2017YFC0404802)supported by the National Key R&D Program of ChinaProjects(U1965206,51979143)supported by the National Natural Science Foundation of China。
文摘In the finite element method,the numerical simulation of three-dimensional crack propagation is relatively rare,and it is often realized by commercial programs.In addition to the geometric complexity,the determination of the cracking direction constitutes a great challenge.In most cases,the local stress state provides the fundamental criterion to judge the presence of cracks and the direction of crack propagation.However,in the case of three-dimensional analysis,the coordination relationship between grid elements due to occurrence of cracks becomes a difficult problem for this method.In this paper,based on the extended finite element method,the stress-related function field is introduced into the calculation domain,and then the boundary value problem of the function is solved.Subsequently,the envelope surface of all propagation directions can be obtained at one time.At last,the possible surface can be selected as the direction of crack development.Based on the aforementioned procedure,such method greatly reduces the programming complexity of tracking the crack propagation.As a suitable method for simulating tension-induced failure,it can simulate multiple cracks simultaneously.
基金The author would like to thank the referees very much for their careful reading of the manuscript and many valuable suggestions.
文摘In this work, by means of a new more general ansatz and the symbolic computation system Maple, we extend the Riccati equation rational expansion method [Chaos, Solitons & Fractals 25 (2005) 1019] to uniformly construct a series of stochastic nontravelling wave solutions for nonlinear stochastic evolution equation. To illustrate the effectiveness of our method, we take the stochastic mKdV equation as an example, and successfully construct some new and more general solutions including a series of rational formal nontraveling wave and coefficient functions' soliton-like solution.s and trigonometric-like function solutions. The method can also be applied to solve other nonlinear stochastic evolution equation or equations.
文摘In this study,the potential Kadomtsev-Petviashvili(pKP)equation,which describes the oblique interaction of surface waves in shallow waters,is solved by the new extended direct algebraic method.The results of the study show that by applying the new direct algebraic method to the pKP equation,the behavior of the obliquely interacting surface waves in two dimensions can be analyzed.This article fairly clarifies the behaviors of surface waves in shallow waters.In the literature,several mathematical models have been developed in attempt to study these behaviors,with nonlinear mathematics being one of the most important steps;however,the investigations are still at a level that can be called‘baby steps’.Therefore,every study to be carried out in this context is of great importance.Thus,this study will serve as a reference to guide scientists working in this field.
基金Supported by National Natural Science Foundation of China under Grant No. 10671172
文摘In a recent article [Physics Letters A 372 (2008) 417], Wang et al. proposed a method, which is called the (G′/G)-expansion method, to look for travelling wave solutions of nonlinear evolution equations. The travelling wave solutions involving parameters of the KdV equation, the mKdV equation, the variant Boussinesq equations, and the Hirota-Satsuma equations are obtained by using this method. They think the (G′/G)-expansion method is a new method and more travelling wave solutions of many nonlinear evolution equations can be obtained. In this paper, we will show that the (G′/G)-expansion method is equivalent to the extended tanh function method.
基金the State Key Basic Research Development Program of China under Grant No.2004CB318000
文摘In this paper, extended projective Riccati equation method is presented for constructing more new exact solutions of nonlinear differential equations in mathematical physics, which is direct and more powerful than projective Riccati equation method. In order to illustrate the effect of the method, Broer Kaup Kupershmidt system is employed and Jacobi doubly periodic solutions are obtained. This algorithm can also be applied to other nonlinear differential equations.
基金Funded by the National Natural Science Foundation of China(Nos.51409264,51509020,51209219)Zhejiang Provincial Natural Science Foundation(No.LQ15E090003)
文摘Self-deformation cracking is the cracking caused by thermal deformation, autogenous volume deformation or shrinkage deformation. In this paper, an extended finite element calculation method was deduced for concrete crack propagation under a constant hydration and hardening condition during the construction period, and a corresponding programming code was developed. The experimental investigation shows that initial crack propagation caused by self-deformation loads can be analyzed by this program. This improved algorithm was a preliminary application of the XFEM to the problem of the concrete self-deformation cracking during the hydration and hardening period. However, room for improvement exists for this algorithm in terms of matching calculation programs with mass concrete temperature fields containing cooling pipes and the influence of creep or damage on crack propagation.
文摘In the paper the extended modelling method with serial sands is used in an experimental research on the erosion patterns at the discharge outlet of a beach Hua-Neng power plant. The theoretical basis for the extended modelling method with serial sands is systematically presented in the paper and the method has been successfully employed in the sediment experiment of coastal works. According to the Froude Law, the model is designed to be a normal one with movable bed, the geometric scale lambda(L) = lambda(H) = 15, and three scales of sediment grain size are chosen, i.e., lambda(d1) = 0.207; lambda(d2) = 0.393; and lambda(d3) = 0.656. The median particle diameter of sea beach prototype sand d(50p) = 0.059 mm and the dis-changed water flow of the power plant is 21.7 m(3) / s. Three types of natural sea sands have been chosen as the serial modelling sands to extend the simulation of the prototype, thus replacing the conventional test in which artificial lightweight sands are used. As a result, this method can not only reduce the cost significantly, but also it is an advanced technique easy to use. Upon a series of tests, satisfactory results have been obtained.