期刊文献+
共找到34篇文章
< 1 2 >
每页显示 20 50 100
Dynamic Variation and Simulation of Extinction Coefficient of Corn Population
1
作者 祁红彦 周广胜 +1 位作者 李荣平 刘志 《Agricultural Science & Technology》 CAS 2011年第11期1724-1728,共5页
[Objective] The aim was to study the dynamic variation of extinction coefficient of corn population, so as to improve the accuracy of assessment on net primary productivity (NPP) or yield. [Method] Based on the data... [Objective] The aim was to study the dynamic variation of extinction coefficient of corn population, so as to improve the accuracy of assessment on net primary productivity (NPP) or yield. [Method] Based on the data of photosynthetic active radiation and leaf area index during corn growing season (from May to September) in 2006, observed in Jinzhou observation station of corn farmland ecosystem, China Meteorological Administration, the dynamic variation of extinction coefficient of corn population was analyzed. [Result] There was a great daily variation in the extinction coefficient of corn population during growing season, and the maximum value appeared from 7:00 to 9:00 and from 15:00 to 17:00, while the minimum could be found around 12:00, but the amplitude of variation decreased in tasseling stage. On a large time scale (5 d), there was a parabolic relationship between extinction coefficient (K) and leaf area index (LAI), with determination coefficient R2 of 0.960 7. The simulation equation of extinction coefficient, based on the sun elevation angle or leaf area index, had poor accuracy at various time during growing season, so a new dynamic model of extinction coefficient was established, namely K=λ(0.784 8-0.001 6θ)(0.154 8LAI2-0.558 6LAI+0.654). [Conclusion] The effect of sun elevation angle and leaf area index on extinction coefficient during corn growing season was considered in the new dynamic model of extinction coefficient, and its simulated result was superior to that of single-factor model. 展开更多
关键词 Corn population Sun elevation angle Leaf area index extinction coefficient
下载PDF
Reconstructed Light Extinction Coefficients Using Chemical Compositions of PM_(2.5) in Winter in Urban Guangzhou, China 被引量:22
2
作者 陶俊 曹军骥 +4 位作者 张仁健 朱李华 张涛 施思 陈尊裕 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2012年第2期359-368,共10页
The objective of this study was to reconstruct light extinction coefficients (b ext ) according to chemical composition components of particulate matter up to 2.5 μm in size (PM 2.5 ). PM 2.5 samples were collect... The objective of this study was to reconstruct light extinction coefficients (b ext ) according to chemical composition components of particulate matter up to 2.5 μm in size (PM 2.5 ). PM 2.5 samples were collected at the monitoring station of the South China of Institute of Environmental Science (SCIES, Guangzhou, China) during January 2010, and the online absorbing and scattering coefficients were obtained using an aethalometer and a nephelometer. The measured values of light absorption coefficient by particle (b ap ) and light scattering coefficient by particle (b sp ) significantly correlated (R 2 0.95) with values of b ap and b sp that were reconstructed using the Interagency Monitoring of Protected Visual Environments (IMPROVE) formula when RH was 70%. The measured b ext had a good correlation (R 2 0.83) with the calculated b ext under ambient RH conditions. The result of source apportionment of b ext showed that ammonium sulfate [(NH 4 ) 2 SO 4 ] was the largest contributor (35.0%) to b ext , followed by ammonium nitrate (NH 4 NO 3 , 22.9%), organic matter (16.1%), elemental carbon (11.8%), sea salt (4.7%), and nitrogen dioxide (NO 2 , 9.6%). To improve visibility in Guangzhou, the effective control of secondary particles like sulfates, nitrates, and ammonia should be given more attention in urban environmental management. 展开更多
关键词 light extinction coefficients PM 2.5 aerosol chemical species
下载PDF
Determination of aerosol extinction coefficient and mass extinction efficiency by DOAS with a flashlight source 被引量:3
3
作者 司福祺 刘建国 +6 位作者 谢品华 张玉钧 刘文清 Hiroaki Kuze 刘诚 Nofel Lagrosas Nobuo Takeuchi 《Chinese Physics B》 SCIE EI CAS CSCD 2005年第11期2360-2364,共5页
With the method of differential optical absorption spectroscopy (DOAS), average concentrations of aerosol particles along light path were measured with a flashlight source in Chiba area during the period of one mont... With the method of differential optical absorption spectroscopy (DOAS), average concentrations of aerosol particles along light path were measured with a flashlight source in Chiba area during the period of one month. The optical thickness at 550 nm is compared with the concentration of ground-measured suspended particulate matter (SPM). Good correlations are found between the DOAS and SPM data, leading to the determination of the aerosol mass extinction efficiency (MEE) to be possible in the lower troposphere. The average MEE value is about 7.6m^2.g^-1 , and the parameter exhibits a good correlation with the particle size as determined from the wavelength dependence of the DOAS signal intensity. 展开更多
关键词 aerosol extinction coefficient differential absorption optical spectroscopy mass extinction efficiency size distribution
下载PDF
An Empirical Method for Estimating Background Stratospheric Aerosol Extinction Profiles over China 被引量:2
4
作者 Yang Jing-Mei 《Atmospheric and Oceanic Science Letters》 2012年第2期95-101,共7页
The current paper introduces an empirical method for estimating the vertical distribution of background stratospheric aerosol extinction profiles covering the latitude bands of 50±5°N,40±5°N,30... The current paper introduces an empirical method for estimating the vertical distribution of background stratospheric aerosol extinction profiles covering the latitude bands of 50±5°N,40±5°N,30±5°N,and 20±5°N and the longitude range of 75 135°E based on Stratospheric Aerosol and Gas Experiment (SAGE) II aerosol extinction measurements at wavelengths of 1020 nm,525 nm,452 nm,and 386 nm for the volcanically calm years between 1998 2004.With this method,the vertical distribution of stratospheric aerosol extinction coefficients can be estimated according to latitude and wavelength.Comparisons of the empirically calculated aerosol extinction profiles and the SAGE II aerosol measurements show that the empirically calculated aerosol extinction coefficients are consistent with SAGE II values,with relative differences within 10% from 2 km above the tropopause to 33 km,and within 22% from 33 km to 35 km.The empirically calculated aerosol stratospheric optical depths (vertically integrated aerosol extinction coefficient) at the four wavelengths are also consistent with the corresponding SAGE II optical depth measurements,with differences within 2.2% in the altitude range from 2 km above the tropopause to 35 km. 展开更多
关键词 AEROSOL extinction coefficient STRATOSPHERE empirical method
下载PDF
An Empirical Model for Estimating the Zonal Mean Aerosol Extinction Profiles from SAGE II Measurements
5
作者 YANG Jing-Mei ZONG Xue-Mei 《Atmospheric and Oceanic Science Letters》 CSCD 2014年第6期553-558,共6页
This paper presents an empirical model for estimating the zonal mean aerosol extinction profiles in the stratosphere over 10°-wide latitude bands between 60°S and 60°N, on the basis of Stratospheric Aer... This paper presents an empirical model for estimating the zonal mean aerosol extinction profiles in the stratosphere over 10°-wide latitude bands between 60°S and 60°N, on the basis of Stratospheric Aerosol and Gas Experiment(SAGE) II aerosol extinction measurements at 1.02, 0.525, and 0.452 μm during the volcanically quiescent period between 1998–2004. First, an empirical model is developed for calculating the stratospheric aerosol extinction profiles at 1.02 μm. Then, starting from the 1.02 μm extinction profile and an exponential spectral dependence, an empirical algorithm is developed that allows the aerosol extinction profiles at other wavelengths to be calculated. Comparisons of the model-calculated aerosol extinction profiles at the wavelengths of 1.02, 0.525, and 0.452 μm and the SAGE II measurements show that the model-calculated aerosol extinction coefficients conform well with the SAGE II values, with the relative differences generally being within 15% from 2 km above the tropopause to 40 km. The model-calculated stratospheric aerosol optical depths at the three wavelengths are also in good agreement with the corresponding optical depths derived from the SAGE II measurements, with the relative differences being within 0.9% for all latitude bands. This paper provides a useful tool in simulating zonal mean aerosol extinction profiles, which can be used as representative background stratospheric aerosols in view of atmospheric modeling and remote sensing retrievals. 展开更多
关键词 AEROSOL extinction coefficient STRATOSPHERE empirical model
下载PDF
Development of a Gas Monitoring and Removal Device to Reduce the Effect of Extinction Coefficient
6
作者 Fenghe Liu Simin Wang +3 位作者 Yaoyu Liu Zhicheng Wang Yuxin Xia Xianbin Zhao 《Journal of Applied Mathematics and Physics》 2024年第11期4042-4055,共14页
At present, the use of furnaces in the northern rural areas of China is very common, due to the insufficient burning of fuel (coal, wood, etc.), carbon monoxide (CO) and other toxic gases are produced, CO colorless an... At present, the use of furnaces in the northern rural areas of China is very common, due to the insufficient burning of fuel (coal, wood, etc.), carbon monoxide (CO) and other toxic gases are produced, CO colorless and odorless, difficult to find in time, and bring huge safety risks to the life and health of residents. Based on the above problems, we developed a gas monitoring and removal device which could reduce the effect of extinction coefficient. The device was composed of ash settling area, gas disturbance area, spectral absorption identification area and gas removal area. After the air entered the device, the large-size particles were first settled to purify the solid particles in the gas, the gas was disturbed through the multi-layer separator to achieve the turbulent production of the gas, and then the gas was identified through the optical element of the direct absorption spectrum technology. When the toxic gas component reached the threshold, the spray device would automatically start for chemical removal to achieve the role of purifying the gas. At the same time, the device’s alarm could be alerted by buzzer and flash to remind users to evacuate in time. By improving the optical device, the effect of extinction coefficient on measurement was reduced and the monitoring accuracy was improved. 展开更多
关键词 Atmospheric Monitoring Carbon Monoxide Direct Absorption Spectros-copy Gas Removal extinction coefficient
下载PDF
Vertical root distribution characters of Robinia pseudoacacia on the Loess Plateau in China 被引量:3
7
作者 李鹏 赵忠 李占斌 《Journal of Forestry Research》 SCIE CAS CSCD 2004年第2期87-92,i001,共7页
On the Loess Plateau, water is the main limiting factors for vegetation growth. Root distribution characters have special ecological meaning as it reflected the utilizations of trees to the environments. Even-aged sta... On the Loess Plateau, water is the main limiting factors for vegetation growth. Root distribution characters have special ecological meaning as it reflected the utilizations of trees to the environments. Even-aged stands ofRobinia pseudoacacia on slope lands facing south and north were selected as sampling plots for root distribution investigation. Investigatiing results showed that indicated that on all sites, root biomass decreased with depth, and the distribution depth of fine root was deeper than that of coarser root. The results of variance analysis indicated that there were great differences in root biomass among different diameter classes, and coarser root was the main sources of variance, and the root biomass, especially fine root (?<3mm) biomass on northern exposition sites was bigger than that on southern exposition sites. Analysis of the vertical root distribution parameters, root extinction coefficient, β indicated that the value of β on northern exposition was more than 0.982, while the value of β on southern exposition was less than 0.982, which indicated that the vertical root distribution depth ofRobinia pseudoacacia on southern exposition was deeper than that on southern exposition. And the distribution depth of fine roots (Φ<1mm) was deeper than that of thicker roots(Φ<3mm), which was in favor of the uptake of water and nutrients from deeper layers, helped the trees to adapt the arid environment, and promoted the growth of the upper parts of the tree. Keywords Root diameter classes - Variance analysis - Root extinction coefficient - Vertical distribution characters - Site conditions - Loess Plateau CLC number S792.27.01 Document code A Foundation Item: This research was supported by National Natural Science Foundation of China (30371150 and 40371075).Biography: LI Peng (1974-) male, post: Ph. D. in Northwest Scientific & Technological University of Agriculture and Forestry, Yangling 712100, Shaanxi Province, P. R. China. Tel: 029-82312651.Responsible editor: Chai Ruihal 展开更多
关键词 Root diameter classes Variance analysis Root extinction coefficient Vertical distribution characters Site conditions Loess Plateau
下载PDF
The Dynamic Study on Transpiration Consumption of Black Locust Forest 被引量:2
8
作者 贺康宁 侯振宏 《Forestry Studies in China》 CAS 2001年第2期10-17,共8页
To know the annual water consumption of forest, it is necessary to acquire the annual transpiration value of stands. This paper is based on the data measured in the typical weather of the growth season, from 1998 to 2... To know the annual water consumption of forest, it is necessary to acquire the annual transpiration value of stands. This paper is based on the data measured in the typical weather of the growth season, from 1998 to 2000, with the LI 1600 Steady Porometer and the general weather information. The daily variation of transpiration in black locust forest ( Robinia pesudoacacia L.) is modeled by Penman Monteith equation. As a result of the model, a continuous daily transpiration in the growth season was calculated. The net radiation, intercepted by black locust forest canopy, was acquired from a semi empirical equation of measuring net radiation R n with the extinction coefficient k and leaf area index LAI . The canopy integral stomatic resistance is a mimesis with an empirical equation of measuring data. Compared with measuring data, the relative error of the modeled ones is less than 12% averagely. At last, the total transpiration of black locust forest during the period of 1998 and 2000 in the growth season of May to October, as an average transpiration of the different density stands, were 192 46, 187 07 and 195 59?mm respectively. 展开更多
关键词 black locust TRANSPIRATION net radiation leaf area index extinction coefficient stomatic resistance water consumption
下载PDF
Vertical root distribution and root cohesion of typical tree species on the Loess Plateau, China 被引量:11
9
作者 ChaoBo ZHANG LiHua CHEN Jing JIANG 《Journal of Arid Land》 SCIE CSCD 2014年第5期601-611,共11页
Black locust(Robinia pseudoacacia L.) and Chinese pine(Pinus tabulaeformis Carr.) are two woody plants that are widely planted on the Loess Plateau for controlling soil erosion and land desertification. In this st... Black locust(Robinia pseudoacacia L.) and Chinese pine(Pinus tabulaeformis Carr.) are two woody plants that are widely planted on the Loess Plateau for controlling soil erosion and land desertification. In this study, we conducted an excavation experiment in 2008 to investigate the overall vertical root distribution characteristics of black locust and Chinese pine. We also performed triaxial compression tests to evaluate the root cohesion(additional soil cohesion increased by roots) of black locust. Two types of root distribution, namely, vertical root(VR) and horizontal root(HR), were used as samples and tested under four soil water content(SWC) conditions(12.7%, 15.0%, 18.0% and 20.0%, respectively). Results showed that the root lengths of the two species were mainly concentrated in the root diameter of 5–20 mm. A comparison of root distribution between the two species indicated that the root length of black locust was significantly greater than that of Chinese pine in nearly all root diameters, although the black locust used in the comparison was 10 years younger than the Chinese pine. Root biomass was also significantly greater in black locust than in Chinese pine, particularly in the root diameters of 3–5 and 5–10 mm. These two species were both found to be deep-rooted. The triaxial compression tests showed that root cohesion was greater in the VR samples than in the HR samples. SWC was negatively related to both soil shear strength and root cohesion. These results could provide useful information on the architectural characteristics of woody root system and expand the knowledge on shallow slope stabilization and soil erosion control by plant roots on the Loess Plateau. 展开更多
关键词 root distribution root cohesion root extinction coefficient soil erosion soil reinforcement Loess Plateau
下载PDF
Light interception and radiation use efficiency response to tridimensional uniform sowing in winter wheat 被引量:10
10
作者 tao zhi-qiang wang de-mei +3 位作者 ma shao-kang yang yu-shuang zhao guang-cai chang xu-hong 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2018年第3期566-578,共13页
Improving radiation use efficiency (RUE) of the canopy is necessary to increase wheat (Triticum aesfivum) production. Tridimensional uniform sowing (U) technology has previously been used to construct a uniforml... Improving radiation use efficiency (RUE) of the canopy is necessary to increase wheat (Triticum aesfivum) production. Tridimensional uniform sowing (U) technology has previously been used to construct a uniformly distributed population structure that increases RUE. In this study, we used tridimensional uniform sowing to create a wheat canopy within which light was spread evenly to increase RUE. This study was done during 2014-2016 in the Shunyi District, Beijing, China. The soil type was sandy loam. Wheat was grown in two sowing patterns: (1) tridimensional uniform sowing (U); (2) conventional drilling (D). Four planting densities were used: 1.8, 2.7, 3.6, and 4.5 million plants ha-1. Several indices were measured to compare the wheat canopies: photosynthetic active radiation intercepted by the canopy (IPAR), leaf area index (LAI), leaf mass per unit area (LMA), canopy extinction coefficient (K), and RUE. In two sowing patterns, the K values decreased with increasing planting density, but the K values of U were lower than that of D. LMA and IPAR were higher for U than for D, whereas LAI was nearly the same for both sowing patterns. IPAR and LAI increased with increasing density under the same sowing pattern. However, the difference in IPAR and LAI between the 3.6 and 4.5 million plants ha-1 treatments was not significant for both sowing patterns. Therefore, LAI within the same planting density was not affected by sowing pattern. RUE was the largest for the U mode with a planting density of 3.6 million plants ha-1 treatment. For the D sowing pattern, the lowest planting density (1.8 million plants ha-1) resulted in the highest yield. Light radiation interception was minimal for the D mode with a planting density of 1.8 million plants ha-1 treatment, but the highest RUE and highest yield were observed under this condition. For the U sowing pattern, IPAR increased with increasing planting density, but yield and RUE were the highest with a planting density of 3.6 million plants ha-1. These results indicated that the optimal planting density for improving the canopy light environment differed between the sowing patterns. The effect of sowing patternxplanting density interaction on grain yield, yield components, RUE, IPAR, and LMA was significant (P〈0.05). Correlation analysis indicated that there is a positive significant correlation between grain yield and RUE (t=0.880, P〈0.01), LMA (r=0.613, P〈0.05), andspike number (t=0.624, P〈0.05). These results demonstrated that the tridimensional uniform sowing technique, particularly at a planting density of 3.6 million plants ha-0, can effectively increase light interception and utilization and unit leaf area. This leads to the production of more photosynthetic products that in turn lead to significantly increased spike number (P〈0.05), kernel number, grain weight, and an overall increase in yield. 展开更多
关键词 tridimensional uniform sowing extinction coefficient leaf area index leaf mass per unit area WHEAT
下载PDF
Extinction coefficient per CdE (E = Se or S) unit for zinc- blende CdE nanocrystals 被引量:7
11
作者 Jiongzhao Li Jialiang Chen +1 位作者 Yongmiao Shen Xiaogang Peng 《Nano Research》 SCIE EI CAS CSCD 2018年第8期3991-4004,共14页
The extinction coefficient of semiconductor nanocrystals is a key parameter for understanding both the quantum confinement and applications of the nanocrystals. The existing extinction coefficients of CdE (E = Se, S... The extinction coefficient of semiconductor nanocrystals is a key parameter for understanding both the quantum confinement and applications of the nanocrystals. The existing extinction coefficients of CdE (E = Se, S) nanocrystals were found to have an unacceptable deviation for the zinc-blende CdE quantum dots (QDs). The analysis reveals that, in addition to the interference of impurities, the commonly applied extinction coefficient per CdE nanocrystal is sensitive to the size, shape, and density of the surface ligands of nanocrystals. The extinction coefficient per CdE unit does not depend on accurate information of the size, shape, and number of surface ligands of the nanocrystals. A new three-step purification scheme was developed to investigate three classes of possible impurities for accurate determination of the extinction coefficient per CdE unit, including CdE clusters not considered previously. Given that the sole ligands of zinc-blende CdE nanocrystals are cadmium fatty acid salts (CdFa2), a universal formula for the nanocrystals can be written as (CdE),(CdFa2),. The n:rn ratio was accurately determined for purified nanocrystals. The resulting extinction coefficients per unit for both CdSe and CdS QDs were found to decrease exponentially as the size of the QDs increases, with the corresponding bulk value as the large-size limit. 展开更多
关键词 extinction coefficient nanocrystal ZINC-BLENDE CdE unit
原文传递
A meta-analysis of the canopy light extinction coefficient in terrestrial ecosystems 被引量:5
12
作者 Liangxia ZHANG Zhongmin HU +2 位作者 Jiangwen FAN Decheng ZHOU Fengpei TANG 《Frontiers of Earth Science》 SCIE CAS CSCD 2014年第4期599-609,共11页
The canopy light extinction coefficient (K) is a key factor in affecting ecosystem carbon, water, and energy processes. However, K is assumed as a constant in most biogeochemical models owing to lack of in-site meas... The canopy light extinction coefficient (K) is a key factor in affecting ecosystem carbon, water, and energy processes. However, K is assumed as a constant in most biogeochemical models owing to lack of in-site measurements at diverse terrestrial ecosystems. In this study, by compiling data of K measured at 88 terrestrial ecosystems, we investigated the spatiotemporal variations of this index across main ecosystem types, including grassland, cropland, shrubland, broadleaf forest, and needleleaf forest. Our results indicated that the average K of all biome types during whole growing season was 0.56. However, this value in the peak growing season was 0.49, indicating a certain degree of seasonal variation. In addition, large variations in K exist within and among the plant functional types. Cropland had the highest value of K (0.62), followed by broadleaf forest (0.59), shrubland (0.56), grassland (0.50), and needleleaf forest (0.45). No significant spatial correlation was found between K and the major environmental factors, i.e., mean annual precipitation, mean annual temperature, and leaf area index (LAI). Intra-annually, significant negative correlations between K and seasonal changes in LAI were found in the natural {K=2/π[cosαcosθsina^-1(tanθtanα)+(1+cos^2a-cos^2θ^1/2)],a+θ〉π/2 K=cosαcosθ,α+θ≤π/2 k K is usually calculated with the Beer Lambert Law (Monsi and Sakei, 1953):K = - In (Ii/Io) cosθ/(LAIΩ),(2)ecosystems. In cropland, however, the temporal relation- ship was site-specific. The ecosystem type specific values of K and its temporal relationship with LAI observed in this study may contribute to improved modeling of global biogeochemical cycles. 展开更多
关键词 canopy light extinction coefficient ecologicalmodeling biogeochemical model FOREST GRASSLAND CROPLAND leaf area index
原文传递
Comparison of Visibility Measurements over Horizontal Path by Micro-pulsed Lidar and Visibility Meter 被引量:3
13
作者 GUO Jinjia SUN Zhaobin LIU Zhishen 《Journal of Ocean University of China》 SCIE CAS 2007年第3期315-318,共4页
As a powerful tool to scan the atmosphere, the I idar can derive visibility values by directly collecting the backscattering laser light from the atmosphere. Simultaneous measurements of atmospheric visibility by Micr... As a powerful tool to scan the atmosphere, the I idar can derive visibility values by directly collecting the backscattering laser light from the atmosphere. Simultaneous measurements of atmospheric visibility by Micro-pulsed lidar (MPL) and a commercial visibility meter (VM) NQ-1 have been performed to evaluate the feasibility of the MPL system designed by the Ocean Remote Sensing Laboratory (ORSL) of the Ocean University of China (OUC) from October 21 2005 to November 21 2005 in the Shilaoren Sightseeing Garden on the Qingdao coast. All the 880 data samples obtained by the two instruments have high correlation coefficients (up to 0.86), which indicates it is feasible to utilize MPL to measure atmospheric visibility. 展开更多
关键词 VISIBILITY Micro-pulsed lidar visibility meter extinction coefficient AEROSOL
下载PDF
RELATIONSHIP BETWEEN HORIZONTAL EXTINCTION COEFFICIENT AND PM_(10) CONCENTRATION IN XI'AN,CHINA,DURING 1980-2002 被引量:3
14
作者 Huizheng Che Xiaoye Zhang +2 位作者 Yang Li Zijiang Zhou Zhenlin Chen 《China Particuology》 SCIE EI CAS CSCD 2006年第6期327-329,共3页
Based on daily visibility data obtained from 1980-2002 and air pollution index data from 2001-2004 in Xi'an, long-term variations and relationships for daily horizontal extinction coefficient and mass concentration o... Based on daily visibility data obtained from 1980-2002 and air pollution index data from 2001-2004 in Xi'an, long-term variations and relationships for daily horizontal extinction coefficient and mass concentration of PM10 have been evaluated. A decreasing trend was found in horizontal extinction coefficient during the past 23 years, with higher values observed in 1980s relative to 1990s, and the highest and lowest values in winter and summer, respectively. Significant correlation and similar seasonal variations existed between horizontal extinction coefficient and PM10 concentration, suggesting the high influence of PM10 to the visibility drop at a site in the Guanzhong Plain of central China during the past two decades. 展开更多
关键词 VISIBILITY AEROSOL horizontal extinction coefficient air pollution index Xi'an
原文传递
Lockdown-induced Urban Aerosol Change over Changchun, China During COVID-19 Outbreak with Polarization LiDAR 被引量:1
15
作者 CHEN Weiwei DUANMU Lingjian +5 位作者 QIN Yang YANG Hongwu FU Jing LU Chengwei FENG Wei GUO Li 《Chinese Geographical Science》 SCIE CSCD 2022年第5期824-833,共10页
Depending on various government policies,COVID-19(Corona Virus Disease-19) lockdowns have had diverse impacts on global aerosol concentrations.In 2022,Changchun a provincial capital city in Northeast China,suffered a ... Depending on various government policies,COVID-19(Corona Virus Disease-19) lockdowns have had diverse impacts on global aerosol concentrations.In 2022,Changchun a provincial capital city in Northeast China,suffered a severe COVID-19 outbreak and implemented a very strict lockdown that lasted for nearly two months.Using ground-based polarization Light Detection and Ranging(LiDAR),we detected real-time aerosol profile parameters(EC,extinction coefficient;DR,depolarization ratio;AOD,aerosol optical depth),as well as air-quality and meteorological indexes from 1 March to 30 April in 2021 and 2022 to quantify the effects of lockdown on aerosol concentrations.The period in 2022 was divided into three stages:pre-lockdown(1-10 March),strict lockdown(11 March to 10 April),and partial lockdown(11-30 April).The results showed that,during the strict lockdown period,compared with the pre-lockdown period,there were substantial reductions in aerosol parameters(EC and AOD),and this was consistent with the concentrations of the atmospheric pollutants PM_(2.5)(particulate matter with an aerodynamic diameter ≤2.5 μm) and PM_(2.5)(particulate matter with an aerodynamic diameter ≤10 μm),and the Oconcentration increased by 8.3%.During the strict lockdown,the values of EC within0-1 km and AOD decreased by 16.0% and 11.2%,respectively,as compared to the corresponding period in 2021.Lockdown reduced the conventional and organized emissions of air pollutants,and it clearly delayed the time of seasonal emissions from agricultural burning;however,it did not decrease the number of farmland fire points.Considering meteorological factors and eliminating the influence of wind-blown dust events,the results showed that reductions from conventional organized emission sources during the strict lockdown contributed to a 30% air-quality improvement and a 22% reduction in near-surface extinction(0-2 km).Aerosols produced by urban epidemic prevention and disinfection can also be identified using the EC.Regarding seasonal sources of agricultural straw burning,the concentrated burning induced by the epidemic led to the occurrence of heavy pollution from increased amounts of atmospheric aerosols,with a contribution rate of 62%.These results indicate that there is great potential to further improve air quality in the local area,and suggest that the comprehensive use of straw accompanied by reasonable planned burning is the best way to achieve this. 展开更多
关键词 PM_(2.5)(particulate matter with an aerodynamic diameter≤2.5μm) NO2 O3 aerosol optical depth(AOD) extinction coefficient depolarization ratio COVID-19(Corona Virus Disease-19)lockdown
下载PDF
Using a stand-level model to predict light absorption in stands with vertically and horizontally heterogeneous canopies 被引量:1
16
作者 David I Forrester Ruben Guisasola +3 位作者 Xiaolu Tang Axel T Albrecht Tran Lam Dong Guerric le Maire 《Forestry Studies in China》 CAS 2014年第3期158-176,共19页
Background: Forest ecosystem functioning is strongly influenced by the absorption of photosynthetically active radiation (APAR), and therefore, accurate predictions of APAR are critical for many process-based fores... Background: Forest ecosystem functioning is strongly influenced by the absorption of photosynthetically active radiation (APAR), and therefore, accurate predictions of APAR are critical for many process-based forest growth models. The Lambert-Beer law can be applied to estimate APAR for simple homogeneous canopies composed of one layer, one species, and no canopy gaps. However, the vertical and horizontal structure of forest canopies is rarely homogeneous. Detailed tree-level models can account for this heterogeneity but these often have high input and computational demands and work on finer temporal and spatial resolutions than required by stand-level growth models. The aim of this study was to test a stand-level light absorption model that can estimate APAR by individual species in mixed-species and multi-layered stands with any degree of canopy openness including open-grown trees to closed canopies. Methods: The stand-level model was compared with a detailed tree-level model that has already been tested in mixed-species stands using empirical data. Both models were parameterised for five different forests, including a wide range of species compositions, species proportions, stand densities, crown architectures and canopy structures. Results: The stand-level model performed well in all stands except in the stand where extinction coefficients were unusually variable and it appears unlikely that APAR could be predicted in such stands using (tree- or stand-level) models that do not allow individuals of a given species to have different extinction coefficients, leaf-area density or analogous parameters. Conclusion: This model is parameterised with species-specific information about extinction coefficients and mean crown length, diameter, height and leaf area. It could be used to examine light dynamics in complex canopies and in stand-level growth models. 展开更多
关键词 Complex forests MIXED-SPECIES Stand structure extinction coefficient Lambert-Beer law Light absorption
下载PDF
High Temperature Thermal Physical Properties of High-alumina Fibrous Insulation
17
作者 Boming ZHANG Shuyuan ZHAO Xiaodong HE Shanyi DU 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2007年第6期860-864,共5页
The thermal properties of high-alumina fibrous insulation which filled in metallic thermal protection system were investigated. The effective thermal conductivities of the fibrous insulation were measured under an atm... The thermal properties of high-alumina fibrous insulation which filled in metallic thermal protection system were investigated. The effective thermal conductivities of the fibrous insulation were measured under an atmospheric pressure from 10^-2 to 10^5 Pa. In addition, the changes of the specific heat and Rosseland mean extinction coefficient were experimentally determined under various surrounding temperatures up to 973 K. The spectral extinction coefficients were obtained from transmittance data in the wavelength range of 2.5- 25 μm using Beer's law. Rosseland mean extinction coefficients as a function of temperature were calculated based on spectral extinction coefficients at various temperatures. The results show that thermal conductivities of the sample increase with increasing temperature and pressure. Specific heat increases as temperature increases, which shows that the capacity of heat absorption increases gradually with temperature. Rosseland mean extinction coefficients of the sample decrease firstly and then increase with increasing the temperature. 展开更多
关键词 Effective thermal conductivity extinction coefficient TRANSMITTANCE Thermalphysical properties
下载PDF
Inversion Methods of Optical Constants of Semitransparent Solid Materials from Transmittance Spectrograms
18
作者 Dong Li Xin-Lin Xia Qing Ai 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2013年第2期55-60,共6页
The direct calculation models of spectral transmittance of single and double slabs consisted of semitransparent solid materials were developed based on ray trace method, and a new inversion method of optical constants... The direct calculation models of spectral transmittance of single and double slabs consisted of semitransparent solid materials were developed based on ray trace method, and a new inversion method of optical constants (k is extinction coefficient and n is refractive index ) of materials was proposed based on transmittance spectrograms of double slabs. Differences between the new method and two others currently used methods were studied, and application range of methods was also investigated. Optical constants of selenide glass attained in references were selected as true values, and spectral transmittances of glass simulated based on direct calculation model were regarded as experimental values. Optical constants of selenide glass were achieved by inverse models. Influences of measurement error on inverse results were also determined. The results showed that : ( 1 ) based on transmittance spectrograms of double slabs in which thickness of single slab is the same, the new proposed method can attain optical constants of materials; (2) the effect of optical constants n and k on three inversion methods are urgent larger, but inversed calculation precision of optical constants are higher in most application ranges ; ( 3 ) the influence of measurement errors existed in experimental datum on the inverse precision of three methods are urgent distinctness. 展开更多
关键词 semitransparent slid material optical constants extinction coefficient refractive index inversemodel
下载PDF
Tunable Optical Bandgap of Gadolinium Substituted Nickel-Zinc Ferrite Nanoparticles-Effect of Calcination Temperature on Its Optical Parameters
19
作者 Katrapally Vijaya Kumar 《Advances in Materials Physics and Chemistry》 2022年第3期33-45,共13页
The gadolinium substituted nickel-zinc ferrite nanoparticles of the composition, Ni<sub>0.5</sub>Zn<sub>0.5</sub>Gd<sub>0.05</sub>Fe<sub>1.95</sub>O<sub>4</sub&... The gadolinium substituted nickel-zinc ferrite nanoparticles of the composition, Ni<sub>0.5</sub>Zn<sub>0.5</sub>Gd<sub>0.05</sub>Fe<sub>1.95</sub>O<sub>4</sub> were prepared using sol-gel method. In order to study the effect of calcination temperature on the optical parameters, the prepared powder was divided into five parts. The first part was taken as the as-prepared sample and the remaining four parts were calcinated at different temperatures, 600°C, 700°C, 800°C & 900°C. The X-ray diffraction patterns revealed the formation of cubic spinel structure with single phase and Fd3m space group. The crystallite size was increased from 11.75 nm to 18.13 nm as the calcination temperature increased from 600 to 900°C whereas as-prepared sample exhibited 17.61 nm. The dislocation density was decreased from 7.243 × 10<sup>-3</sup> to 3.042 × 10<sup>-3</sup> nm<sup>-2</sup> as the calcination temperature increased from 600°C to 900°C. The micro strain was decreased from 10 × 10<sup>-4</sup> to 6.452 × 10<sup>-4</sup> as the calcination temperature increased from 600°C to 900°C. The characteristic absorbance peaks were obtained at 255.2 nm for the ferrite nanoparticles of as-prepared and calcinated at 600°C and 800°C whereas it was obtained as 252.8 nm for the sample calcinated at 700°C and there was no such characteristic peak in UV-visible range for the sample calcinated at 900°C;it is expected in the below 200 nm region. The optical energy gap was calculated using Kubelka-Munk equation based on Tauc’s plot and found in the range 4.100 eV to 5.389 eV. The lowest energy gap of 4.100 eV exhibited by the sample calcinated at 700°C and the highest energy gap of 5.389 eV by the sample calcinated at 900°C. It is concluded that the tunable band gaps can be obtained with varying calcination temperature. 展开更多
关键词 XRD Optical Energy Bandgap Refractive Index Absorption coefficient extinction coefficient Real and Imaginary Parts of Dielectric Constant
下载PDF
Surface and intrinsic contributions to extinction properties of ZnSe quantum dots 被引量:8
20
作者 Shangxin Lin Jiongzhao Li +4 位作者 Chaodan Pu Hairui Lei Meiyi Zhu Haiyan Qin Xiaogang Peng 《Nano Research》 SCIE EI CAS CSCD 2020年第3期824-831,共8页
This work studies extinction properties of ZnSe quantum dots terminated with either Se-surface or Zn-surface(Se-ZnSe or Zn-ZnSe QDs).In addition to commonly observed photoluminescence quenching by anionic surface site... This work studies extinction properties of ZnSe quantum dots terminated with either Se-surface or Zn-surface(Se-ZnSe or Zn-ZnSe QDs).In addition to commonly observed photoluminescence quenching by anionic surface sites,Se-ZnSe QDs are found to show drastic signatures of Se-surface states in their UV-visible(Vis)absorption spectra.Similar to most QDs reported in literature,monodisperse Zn-ZnSe QDs show sharp absorption features and blue-shifted yet steep absorption edge respect to the bulk bandgap.However,for monodisperse Se-ZnSe QDs,all absorption features are smeared and a low-energy tail is identified to extend to an energy window below the bulk ZnSe bandgap.Along increasing their size,a cyclic growth of ZnSe QDs switches their surface from Zn-terminated to Se-terminated ones,which confirms that the specific absorption signatures are reproducibly repeated between those of two types of the QDs.Though the extinction coefficients per unit of Se-ZnSe QDs are always larger than those of Zn-ZnSe QDs with the same size,both of them approach the same bulk limit.In addition to contribution of the lattice,extinction coefficients per nanocrystal of Zn-ZnSe QDs show an exponential term against their sizes,which is expected for quantum-confinement enhancement of electron-hole wavefunction overlapping.For Se-ZnSe QDs,there is the third term identified for their extinction coefficients per nanocrystal,which is proportional to the square of size of the QDs and consistent with surface contribution. 展开更多
关键词 quantum dots ZNSE extinction coefficient surface state
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部