期刊文献+
共找到149篇文章
< 1 2 8 >
每页显示 20 50 100
Sparse representation scheme with enhanced medium pixel intensity for face recognition
1
作者 Xuexue Zhang Yongjun Zhang +3 位作者 Zewei Wang Wei Long Weihao Gao Bob Zhang 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第1期116-127,共12页
Sparse representation is an effective data classification algorithm that depends on the known training samples to categorise the test sample.It has been widely used in various image classification tasks.Sparseness in ... Sparse representation is an effective data classification algorithm that depends on the known training samples to categorise the test sample.It has been widely used in various image classification tasks.Sparseness in sparse representation means that only a few of instances selected from all training samples can effectively convey the essential class-specific information of the test sample,which is very important for classification.For deformable images such as human faces,pixels at the same location of different images of the same subject usually have different intensities.Therefore,extracting features and correctly classifying such deformable objects is very hard.Moreover,the lighting,attitude and occlusion cause more difficulty.Considering the problems and challenges listed above,a novel image representation and classification algorithm is proposed.First,the authors’algorithm generates virtual samples by a non-linear variation method.This method can effectively extract the low-frequency information of space-domain features of the original image,which is very useful for representing deformable objects.The combination of the original and virtual samples is more beneficial to improve the clas-sification performance and robustness of the algorithm.Thereby,the authors’algorithm calculates the expression coefficients of the original and virtual samples separately using the sparse representation principle and obtains the final score by a designed efficient score fusion scheme.The weighting coefficients in the score fusion scheme are set entirely automatically.Finally,the algorithm classifies the samples based on the final scores.The experimental results show that our method performs better classification than conventional sparse representation algorithms. 展开更多
关键词 computer vision face recognition image classification image representation
下载PDF
A Deep Transfer Learning Approach for Addressing Yaw Pose Variation to Improve Face Recognition Performance
2
作者 M.Jayasree K.A.Sunitha +3 位作者 A.Brindha Punna Rajasekhar G.Aravamuthan G.Joselin Retnakumar 《Intelligent Automation & Soft Computing》 2024年第4期745-764,共20页
Identifying faces in non-frontal poses presents a significant challenge for face recognition(FR)systems.In this study,we delved into the impact of yaw pose variations on these systems and devised a robust method for d... Identifying faces in non-frontal poses presents a significant challenge for face recognition(FR)systems.In this study,we delved into the impact of yaw pose variations on these systems and devised a robust method for detecting faces across a wide range of angles from 0°to±90°.We initially selected the most suitable feature vector size by integrating the Dlib,FaceNet(Inception-v2),and“Support Vector Machines(SVM)”+“K-nearest neighbors(KNN)”algorithms.To train and evaluate this feature vector,we used two datasets:the“Labeled Faces in the Wild(LFW)”benchmark data and the“Robust Shape-Based FR System(RSBFRS)”real-time data,which contained face images with varying yaw poses.After selecting the best feature vector,we developed a real-time FR system to handle yaw poses.The proposed FaceNet architecture achieved recognition accuracies of 99.7%and 99.8%for the LFW and RSBFRS datasets,respectively,with 128 feature vector dimensions and minimum Euclidean distance thresholds of 0.06 and 0.12.The FaceNet+SVM and FaceNet+KNN classifiers achieved classification accuracies of 99.26%and 99.44%,respectively.The 128-dimensional embedding vector showed the highest recognition rate among all dimensions.These results demonstrate the effectiveness of our proposed approach in enhancing FR accuracy,particularly in real-world scenarios with varying yaw poses. 展开更多
关键词 face recognition pose variations transfer learning method yaw poses faceNet Inception-v2
下载PDF
Masked Face Recognition Using MobileNet V2 with Transfer Learning 被引量:1
3
作者 Ratnesh Kumar Shukla Arvind Kumar Tiwari 《Computer Systems Science & Engineering》 SCIE EI 2023年第4期293-309,共17页
Corona virus(COVID-19)is once in a life time calamity that has resulted in thousands of deaths and security concerns.People are using face masks on a regular basis to protect themselves and to help reduce corona virus... Corona virus(COVID-19)is once in a life time calamity that has resulted in thousands of deaths and security concerns.People are using face masks on a regular basis to protect themselves and to help reduce corona virus transmission.During the on-going coronavirus outbreak,one of the major priorities for researchers is to discover effective solution.As important parts of the face are obscured,face identification and verification becomes exceedingly difficult.The suggested method is a transfer learning using MobileNet V2 based technology that uses deep feature such as feature extraction and deep learning model,to identify the problem of face masked identification.In the first stage,we are applying face mask detector to identify the face mask.Then,the proposed approach is applying to the datasets from Canadian Institute for Advanced Research10(CIFAR10),Modified National Institute of Standards and Technology Database(MNIST),Real World Masked Face Recognition Database(RMFRD),and Stimulated Masked Face Recognition Database(SMFRD).The proposed model is achieving recognition accuracy 99.82%with proposed dataset.This article employs the four pre-programmed models VGG16,VGG19,ResNet50 and ResNet101.To extract the deep features of faces with VGG16 is achieving 99.30%accuracy,VGG19 is achieving 99.54%accuracy,ResNet50 is achieving 78.70%accuracy and ResNet101 is achieving 98.64%accuracy with own dataset.The comparative analysis shows,that our proposed model performs better result in all four previous existing models.The fundamental contribution of this study is to monitor with face mask and without face mask to decreases the pace of corona virus and to detect persons using wearing face masks. 展开更多
关键词 Convolutional Neural Network(CNN) deep learning face recognition system COVID-19 dataset and machine learning based models
下载PDF
Optimizing Deep Neural Networks for Face Recognition to Increase Training Speed and Improve Model Accuracy
4
作者 Mostafa Diba Hossein Khosravi 《Intelligent Automation & Soft Computing》 2023年第12期315-332,共18页
Convolutional neural networks continually evolve to enhance accuracy in addressing various problems,leading to an increase in computational cost and model size.This paper introduces a novel approach for pruning face r... Convolutional neural networks continually evolve to enhance accuracy in addressing various problems,leading to an increase in computational cost and model size.This paper introduces a novel approach for pruning face recognition models based on convolutional neural networks.The proposed method identifies and removes inefficient filters based on the information volume in feature maps.In each layer,some feature maps lack useful information,and there exists a correlation between certain feature maps.Filters associated with these two types of feature maps impose additional computational costs on the model.By eliminating filters related to these categories of feature maps,the reduction of both computational cost and model size can be achieved.The approach employs a combination of correlation analysis and the summation of matrix elements within each feature map to detect and eliminate inefficient filters.The method was applied to two face recognition models utilizing the VGG16 and ResNet50V2 backbone architectures.In the proposed approach,the number of filters removed in each layer varies,and the removal process is independent of the adjacent layers.The convolutional layers of both backbone models were initialized with pre-trained weights from ImageNet.For training,the CASIA-WebFace dataset was utilized,and the Labeled Faces in the Wild(LFW)dataset was employed for benchmarking purposes.In the VGG16-based face recognition model,a 0.74%accuracy improvement was achieved while reducing the number of convolution parameters by 26.85%and decreasing Floating-point operations per second(FLOPs)by 47.96%.For the face recognition model based on the ResNet50V2 architecture,the ArcFace method was implemented.The removal of inactive filters in this model led to a slight decrease in accuracy by 0.11%.However,it resulted in enhanced training speed,a reduction of 59.38%in convolution parameters,and a 57.29%decrease in FLOPs. 展开更多
关键词 face recognition network pruning FLOPs reduction deep learning Arcface
下载PDF
Modified algorithm of principal component analysis for face recognition 被引量:3
5
作者 罗琳 邹采荣 仰枫帆 《Journal of Southeast University(English Edition)》 EI CAS 2006年第1期26-30,共5页
In principal component analysis (PCA) algorithms for face recognition, to reduce the influence of the eigenvectors which relate to the changes of the illumination on abstract features, a modified PCA (MPCA) algori... In principal component analysis (PCA) algorithms for face recognition, to reduce the influence of the eigenvectors which relate to the changes of the illumination on abstract features, a modified PCA (MPCA) algorithm is proposed. The method is based on the idea of reducing the influence of the eigenvectors associated with the large eigenvalues by normalizing the feature vector element by its corresponding standard deviation. The Yale face database and Yale face database B are used to verify the method. The simulation results show that, for front face and even under the condition of limited variation in the facial poses, the proposed method results in better performance than the conventional PCA and linear discriminant analysis (LDA) approaches, and the computational cost remains the same as that of the PCA, and much less than that of the LDA. 展开更多
关键词 face recognition principal component analysis linear discriminant analysis
下载PDF
Feature fusing in face recognition 被引量:1
6
作者 于威威 滕晓龙 刘重庆 《Journal of Southeast University(English Edition)》 EI CAS 2005年第4期427-431,共5页
With the aim of extracting the features of face images in face recognition, a new method of face recognition by fusing global features and local features is presented. The global features are extracted using principal... With the aim of extracting the features of face images in face recognition, a new method of face recognition by fusing global features and local features is presented. The global features are extracted using principal component analysis (PCA). Active appearance model (AAM) locates 58 facial fiducial points, from which 17 points are characterized as local features using the Gabor wavelet transform (GWT). Normalized global match degree (local match degree) can be obtained by global features (local features) of the probe image and each gallery image. After the fusion of normalized global match degree and normalized local match degree, the recognition result is the class that included the gallery image corresponding to the largest fused match degree. The method is evaluated by the recognition rates over two face image databases (AR and SJTU-IPPR). The experimental results show that the method outperforms PCA and elastic bunch graph matching (EBGM). Moreover, it is effective and robust to expression, illumination and pose variation in some degree. 展开更多
关键词 face recognition feature fusion global features local features
下载PDF
FUZZY WITHIN-CLASS MATRIX PRINCIPAL COMPONENT ANALYSIS AND ITS APPLICATION TO FACE RECOGNITION 被引量:3
7
作者 朱玉莲 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2008年第2期141-147,共7页
Matrix principal component analysis (MatPCA), as an effective feature extraction method, can deal with the matrix pattern and the vector pattern. However, like PCA, MatPCA does not use the class information of sampl... Matrix principal component analysis (MatPCA), as an effective feature extraction method, can deal with the matrix pattern and the vector pattern. However, like PCA, MatPCA does not use the class information of samples. As a result, the extracted features cannot provide enough useful information for distinguishing pat- tern from one another, and further resulting in degradation of classification performance. To fullly use class in- formation of samples, a novel method, called the fuzzy within-class MatPCA (F-WMatPCA)is proposed. F-WMatPCA utilizes the fuzzy K-nearest neighbor method(FKNN) to fuzzify the class membership degrees of a training sample and then performs fuzzy MatPCA within these patterns having the same class label. Due to more class information is used in feature extraction, F-WMatPCA can intuitively improve the classification perfor- mance. Experimental results in face databases and some benchmark datasets show that F-WMatPCA is effective and competitive than MatPCA. The experimental analysis on face image databases indicates that F-WMatPCA im- proves the recognition accuracy and is more stable and robust in performing classification than the existing method of fuzzy-based F-Fisherfaces. 展开更多
关键词 face recognition principal component analysis (PCA) matrix pattern PCA(MatPCA) fuzzy K-nearest neighbor(FKNN) fuzzy within-class MatPCA(F-WMatPCA)
下载PDF
LOCAL BAGGING AND ITS APPLICATIONON FACE RECOGNITION 被引量:1
8
作者 朱玉莲 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2010年第3期255-260,共6页
Bagging is not quite suitable for stable classifiers such as nearest neighbor classifiers due to the lack of diversity and it is difficult to be directly applied to face recognition as well due to the small sample si... Bagging is not quite suitable for stable classifiers such as nearest neighbor classifiers due to the lack of diversity and it is difficult to be directly applied to face recognition as well due to the small sample size (SSS) property of face recognition. To solve the two problems,local Bagging (L-Bagging) is proposed to simultaneously make Bagging apply to both nearest neighbor classifiers and face recognition. The major difference between L-Bagging and Bagging is that L-Bagging performs the bootstrap sampling on each local region partitioned from the original face image rather than the whole face image. Since the dimensionality of local region is usually far less than the number of samples and the component classifiers are constructed just in different local regions,L-Bagging deals with SSS problem and generates more diverse component classifiers. Experimental results on four standard face image databases (AR,Yale,ORL and Yale B) indicate that the proposed L-Bagging method is effective and robust to illumination,occlusion and slight pose variation. 展开更多
关键词 face recognition local Bagging (L-Bagging) small sample size (SSS) nearest neighbor classifiers
下载PDF
Enhanced kernel minimum squared error algorithm and its application in face recognition
9
作者 赵英男 何祥健 +1 位作者 陈北京 赵晓平 《Journal of Southeast University(English Edition)》 EI CAS 2016年第1期35-38,共4页
To improve the classification performance of the kernel minimum squared error( KMSE), an enhanced KMSE algorithm( EKMSE) is proposed. It redefines the regular objective function by introducing a novel class label ... To improve the classification performance of the kernel minimum squared error( KMSE), an enhanced KMSE algorithm( EKMSE) is proposed. It redefines the regular objective function by introducing a novel class label definition, and the relative class label matrix can be adaptively adjusted to the kernel matrix.Compared with the common methods, the newobjective function can enlarge the distance between different classes, which therefore yields better recognition rates. In addition, an iteration parameter searching technique is adopted to improve the computational efficiency. The extensive experiments on FERET and GT face databases illustrate the feasibility and efficiency of the proposed EKMSE. It outperforms the original MSE, KMSE,some KMSE improvement methods, and even the sparse representation-based techniques in face recognition, such as collaborate representation classification( CRC). 展开更多
关键词 minimum squared error kernel minimum squared error pattern recognition face recognition
下载PDF
Face Recognition Based on Support Vector Machine and Nearest Neighbor Classifier 被引量:8
10
作者 Zhang Yankun & Liu Chongqing Institute of Image Processing and Pattern Recognition, Shanghai Jiao long University, Shanghai 200030 P.R.China 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2003年第3期73-76,共4页
Support vector machine (SVM), as a novel approach in pattern recognition, has demonstrated a success in face detection and face recognition. In this paper, a face recognition approach based on the SVM classifier with ... Support vector machine (SVM), as a novel approach in pattern recognition, has demonstrated a success in face detection and face recognition. In this paper, a face recognition approach based on the SVM classifier with the nearest neighbor classifier (NNC) is proposed. The principal component analysis (PCA) is used to reduce the dimension and extract features. Then one-against-all stratedy is used to train the SVM classifiers. At the testing stage, we propose an al- 展开更多
关键词 face recognition Support vector machine Nearest neighbor classifier Principal component analysis.
下载PDF
2DPCA versus PCA for face recognition 被引量:5
11
作者 胡建军 谭冠政 +1 位作者 栾凤刚 A.S.M.LIBDA 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第5期1809-1816,共8页
Dimensionality reduction methods play an important role in face recognition. Principal component analysis(PCA) and two-dimensional principal component analysis(2DPCA) are two kinds of important methods in this field. ... Dimensionality reduction methods play an important role in face recognition. Principal component analysis(PCA) and two-dimensional principal component analysis(2DPCA) are two kinds of important methods in this field. Recent research seems like that 2DPCA method is superior to PCA method. To prove if this conclusion is always true, a comprehensive comparison study between PCA and 2DPCA methods was carried out. A novel concept, called column-image difference(CID), was proposed to analyze the difference between PCA and 2DPCA methods in theory. It is found that there exist some restrictive conditions when2 DPCA outperforms PCA. After theoretical analysis, the experiments were conducted on four famous face image databases. The experiment results confirm the validity of theoretical claim. 展开更多
关键词 face recognition dimensionality reduction 2DPCA method PCA method column-image difference(CID)
下载PDF
Robust video foreground segmentation and face recognition 被引量:6
12
作者 管业鹏 《Journal of Shanghai University(English Edition)》 CAS 2009年第4期311-315,共5页
Face recognition provides a natural visual interface for human computer interaction (HCI) applications. The process of face recognition, however, is inhibited by variations in the appearance of face images caused by... Face recognition provides a natural visual interface for human computer interaction (HCI) applications. The process of face recognition, however, is inhibited by variations in the appearance of face images caused by changes in lighting, expression, viewpoint, aging and introduction of occlusion. Although various algorithms have been presented for face recognition, face recognition is still a very challenging topic. A novel approach of real time face recognition for HCI is proposed in the paper. In view of the limits of the popular approaches to foreground segmentation, wavelet multi-scale transform based background subtraction is developed to extract foreground objects. The optimal selection of the threshold is automatically determined, which does not require any complex supervised training or manual experimental calibration. A robust real time face recognition algorithm is presented, which combines the projection matrixes without iteration and kernel Fisher discriminant analysis (KFDA) to overcome some difficulties existing in the real face recognition. Superior performance of the proposed algorithm is demonstrated by comparing with other algorithms through experiments. The proposed algorithm can also be applied to the video image sequences of natural HCI. 展开更多
关键词 face recognition human computer interaction (HCI) foreground segmentation face detection THRESHOLD
下载PDF
Local Robust Sparse Representation for Face Recognition With Single Sample per Person 被引量:5
13
作者 Jianquan Gu Haifeng Hu Haoxi Li 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2018年第2期547-554,共8页
The purpose of this paper is to solve the problem of robust face recognition(FR) with single sample per person(SSPP). In the scenario of FR with SSPP, we present a novel model local robust sparse representation(LRSR) ... The purpose of this paper is to solve the problem of robust face recognition(FR) with single sample per person(SSPP). In the scenario of FR with SSPP, we present a novel model local robust sparse representation(LRSR) to tackle the problem of query images with various intra-class variations,e.g., expressions, illuminations, and occlusion. FR with SSPP is a very difficult challenge due to lacking of information to predict the possible intra-class variation of the query images.The key idea of the proposed method is to combine a local sparse representation model and a patch-based generic variation dictionary learning model to predict the possible facial intraclass variation of the query images. The experimental results on the AR database, Extended Yale B database, CMU-PIE database and LFW database show that the proposed method is robust to intra-class variations in FR with SSPP, and outperforms the state-of-art approaches. 展开更多
关键词 Index Terms-Dictionary learning face recognition (FR) il-lumination changes single sample per person (SSPP) sparserepresentation.
下载PDF
A NON-PARAMETER BAYESIAN CLASSIFIER FOR FACE RECOGNITION 被引量:9
14
作者 Liu Qingshan Lu Hanqing Ma Songde (Nat. Lab of Pattern Recognition, Inst. of Automation, Chinese Academy of Sciences, Beijing 100080) 《Journal of Electronics(China)》 2003年第5期362-370,共9页
A non-parameter Bayesian classifier based on Kernel Density Estimation (KDE)is presented for face recognition, which can be regarded as a weighted Nearest Neighbor (NN)classifier in formation. The class conditional de... A non-parameter Bayesian classifier based on Kernel Density Estimation (KDE)is presented for face recognition, which can be regarded as a weighted Nearest Neighbor (NN)classifier in formation. The class conditional density is estimated by KDE and the bandwidthof the kernel function is estimated by Expectation Maximum (EM) algorithm. Two subspaceanalysis methods-linear Principal Component Analysis (PCA) and Kernel-based PCA (KPCA)are respectively used to extract features, and the proposed method is compared with ProbabilisticReasoning Models (PRM), Nearest Center (NC) and NN classifiers which are widely used in facerecognition systems. The experiments are performed on two benchmarks and the experimentalresults show that the KDE outperforms PRM, NC and NN classifiers. 展开更多
关键词 Kernel Density Estimation (KDE) Probabilistic Reasoning Models (PRM) Principal Component Analysis (PCA) Kernel-based PCA (KPCA) face recognition
下载PDF
Efficient face recognition method based on DCT and LDA 被引量:4
15
作者 ZhangYankun LiuChongqing 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2004年第2期211-216,共6页
It has been demonstrated that the linear discriminant analysis (LDA) is an effective approach in face recognition tasks. However, due to the high dimensionality of an image space, many LDA based approaches first use t... It has been demonstrated that the linear discriminant analysis (LDA) is an effective approach in face recognition tasks. However, due to the high dimensionality of an image space, many LDA based approaches first use the principal component analysis (PCA) to project an image into a lower dimensional space, then perform the LDA transform to extract discriminant feature. But some useful discriminant information to the following LDA transform will be lost in the PCA step. To overcome these defects, a face recognition method based on the discrete cosine transform (DCT) and the LDA is proposed. First the DCT is used to achieve dimension reduction, then LDA transform is performed on the lower space to extract features. Two face databases are used to test our method and the correct recognition rates of 97.5% and 96.0% are obtained respectively. The performance of the proposed method is compared with that of the PCA+ LDA method and the results show that the method proposed outperforms the PCA+ LDA method. 展开更多
关键词 face recognition discrete cosine transform linear discriminant analysis principal component analysis.
下载PDF
A Novel Face Recognition Algorithm for Distinguishing Faces with Various Angles 被引量:3
16
作者 Yong-Zhong Lu 《International Journal of Automation and computing》 EI 2008年第2期193-197,共5页
In order to distinguish faces of various angles during face recognition, an algorithm of the combination of approximate dynamic programming (ADP) called action dependent heuristic dynamic programming (ADHDP) and p... In order to distinguish faces of various angles during face recognition, an algorithm of the combination of approximate dynamic programming (ADP) called action dependent heuristic dynamic programming (ADHDP) and particle swarm optimization (PSO) is presented. ADP is used for dynamically changing the values of the PSO parameters. During the process of face recognition, the discrete cosine transformation (DCT) is first introduced to reduce negative effects. Then, Karhunen-Loeve (K-L) transformation can be used to compress images and decrease data dimensions. According to principal component analysis (PCA), the main parts of vectors are extracted for data representation. Finally, radial basis function (RBF) neural network is trained to recognize various faces. The training of RBF neural network is exploited by ADP-PSO. In terms of ORL Face Database, the experimental result gives a clear view of its accurate efficiency. 展开更多
关键词 face recognition approximate dynamic programming (ADP) particle swarm optimization (PSO)
下载PDF
Pre-detection and dual-dictionary sparse representation based face recognition algorithm in non-sufficient training samples 被引量:2
17
作者 ZHAO Jian ZHANG Chao +3 位作者 ZHANG Shunli LU Tingting SU Weiwen JIA Jian 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第1期196-202,共7页
Face recognition based on few training samples is a challenging task. In daily applications, sufficient training samples may not be obtained and most of the gained training samples are in various illuminations and pos... Face recognition based on few training samples is a challenging task. In daily applications, sufficient training samples may not be obtained and most of the gained training samples are in various illuminations and poses. Non-sufficient training samples could not effectively express various facial conditions, so the improvement of the face recognition rate under the non-sufficient training samples condition becomes a laborious mission. In our work, the facial pose pre-recognition(FPPR) model and the dualdictionary sparse representation classification(DD-SRC) are proposed for face recognition. The FPPR model is based on the facial geometric characteristic and machine learning, dividing a testing sample into full-face and profile. Different poses in a single dictionary are influenced by each other, which leads to a low face recognition rate. The DD-SRC contains two dictionaries, full-face dictionary and profile dictionary, and is able to reduce the interference. After FPPR, the sample is processed by the DD-SRC to find the most similar one in training samples. The experimental results show the performance of the proposed algorithm on olivetti research laboratory(ORL) and face recognition technology(FERET) databases, and also reflect comparisons with SRC, linear regression classification(LRC), and two-phase test sample sparse representation(TPTSSR). 展开更多
关键词 face recognition facial pose pre-recognition(FPPR) dual-dictionary sparse representation method machine learning
下载PDF
A novel face recognition method with feature combination 被引量:2
18
作者 李文书 周昌乐 许家佗 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2005年第5期454-459,共6页
A novel combined personalized feature framework is proposed for face recognition (FR). In the framework, the proposed linear discriminant analysis (LDA) makes use of the null space of the within-class scatter matrix e... A novel combined personalized feature framework is proposed for face recognition (FR). In the framework, the proposed linear discriminant analysis (LDA) makes use of the null space of the within-class scatter matrix effectively, and Global feature vectors (PCA-transformed) and local feature vectors (Gabor wavelet-transformed) are integrated by complex vectors as input feature of improved LDA. The proposed method is compared to other commonly used FR methods on two face databases (ORL and UMIST). Results demonstrated that the performance of the proposed method is superior to that of traditional FR ap- proaches 展开更多
关键词 Fisher discriminant criterion face recognition (FR) Linear discriminant analysis (LDA) Principal component analysis (PCA) Small sample size (SSS)
下载PDF
Improved Face Recognition Method Using Genetic Principal Component Analysis 被引量:2
19
作者 E.Gomathi K.Baskaran 《Journal of Electronic Science and Technology》 CAS 2010年第4期372-378,共7页
An improved face recognition method is proposed based on principal component analysis (PCA) compounded with genetic algorithm (GA), named as genetic based principal component analysis (GPCA). Initially the eigen... An improved face recognition method is proposed based on principal component analysis (PCA) compounded with genetic algorithm (GA), named as genetic based principal component analysis (GPCA). Initially the eigenspace is created with eigenvalues and eigenvectors. From this space, the eigenfaces are constructed, and the most relevant eigenfaees have been selected using GPCA. With these eigenfaees, the input images are classified based on Euclidian distance. The proposed method was tested on ORL (Olivetti Research Labs) face database. Experimental results on this database demonstrate that the effectiveness of the proposed method for face recognition has less misclassification in comparison with previous methods. 展开更多
关键词 EIGENfaceS EIGENVECTORS face recognition genetic algorithm principal component analysis.
下载PDF
In-pit coal mine personnel uniqueness detection technology based on personnel positioning and face recognition 被引量:11
20
作者 Sun Jiping Li Chenxin 《International Journal of Mining Science and Technology》 SCIE EI 2013年第3期357-361,共5页
Since the coal mine in-pit personnel positioning system neither can effectively achieve the function to detect the uniqueness of in-pit coal-mine personnel nor can identify and eliminate violations in attendance manag... Since the coal mine in-pit personnel positioning system neither can effectively achieve the function to detect the uniqueness of in-pit coal-mine personnel nor can identify and eliminate violations in attendance management such as multiple cards for one person, and swiping one's cards by others in China at present. Therefore, the research introduces a uniqueness detection system and method for in-pit coal-mine personnel integrated into the in-pit coal mine personnel positioning system, establishing a system mode based on face recognition + recognition of personnel positioning card + release by automatic detection. Aiming at the facts that the in-pit personnel are wearing helmets and faces are prone to be stained during the face recognition, the study proposes the ideas that pre-process face images using the 2D-wavelet-transformation-based Mallat algorithm and extracts three face features: miner light, eyes and mouths, using the generalized symmetry transformation-based algorithm. This research carried out test with 40 clean face images with no helmets and 40 lightly-stained face images, and then compared with results with the one using the face feature extraction method based on grey-scale transformation and edge detection. The results show that the method described in the paper can detect accurately face features in the above-mentioned two cases, and the accuracy to detect face features is 97.5% in the case of wearing helmets and lightly-stained faces. 展开更多
关键词 Coal mine Uniqueness detection recognition of personnel positioning cards face recognition Generalized symmetry transformation
下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部