期刊文献+
共找到168篇文章
< 1 2 9 >
每页显示 20 50 100
ANALYSIS OF FAILURE MECHANISM IN MULTIPLE DISC WET BRAKES
1
作者 Sun Dongye Qin Datong Yang Yalian (Chongqing University) Wang Yuxing (Shandong Institute of Engineering) 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 1998年第1期35-38,共4页
By the numberical calculation of dynamic lining pressure distributions,temperature fields and thermal stress fields of steel plates,a method using nonlinear finite element techniques to analyze failure mechanism of a ... By the numberical calculation of dynamic lining pressure distributions,temperature fields and thermal stress fields of steel plates,a method using nonlinear finite element techniques to analyze failure mechanism of a multiple disc wet brake is detailed ,and some measures for combatting these failures are provided 展开更多
关键词 Wet brake failure mechanism Finite element
全文增补中
Failure mechanism and infrared radiation characteristic of hard siltstone induced by stratification effect
2
作者 CHENG Yun SONG Zhanping +2 位作者 XU Zhiwei YANG Tengtian TIAN Xiaoxu 《Journal of Mountain Science》 SCIE CSCD 2024年第3期1058-1074,共17页
The deformation in sedimentary rock induced by train loads has potential threat to the safe operation of tunnels. This study investigated the influence of stratification structure on the infrared radiation and tempora... The deformation in sedimentary rock induced by train loads has potential threat to the safe operation of tunnels. This study investigated the influence of stratification structure on the infrared radiation and temporal damage mechanism of hard siltstone. The uniaxial compression tests, coupled with acoustic emission(AE) and infrared radiation temperature(IRT) were conducted on siltstones with different stratification effects. The results revealed that the stratigraphic structure significantly affects the stress-strain response and strength degradation characteristics. The mechanical parameters exhibit anisotropy characteristics, and the stratification effect exhibits a negative correlation with the cracking stress and peak stress. The failure modes caused by the stratification effect show remarkable anisotropic features, including splitting failure(Ⅰ: 0°-22.50°, Ⅱ: 90°), composite failure(45°), and shearing failure(67.50°). The AE temporal sequences demonstrate a stepwise response characteristic to the loading stress level. The AE intensity indicates that the stress sensitivity of shearing failure and composite failure is generally greater than that of splitting failure. The IRT field has spatiotemporal migration and progressive dissimilation with stress loading and its dissimilation degree increases under higher stress levels. The stronger the stratification effect, the greater the dissimilation degree of the IRT field. The abnormal characteristic points of average infrared radiation temperature(AIRT) variance at local stress drop and peak stress can be used as early and late precursors to identify fracture instability. Theoretical analysis shows that the competitive relationship between compaction strengthening and fracturing damage intensifies the dissimilation of the infrared thermal field for an increasing stress level. The present study provides a theoretical reference for disaster warnings in hard sedimentary rock mass. 展开更多
关键词 Hard siltstone failure mechanism Stratification effect Infrared radiation characteristic Temporal-damage mechanism DISSIMILATION
下载PDF
Evolution model and failure mechanisms of rainfall-induced cracked red clay slopes:insights from Xinshao County,China
3
作者 JIAO Weizhi ZHANG Ming +4 位作者 LI Peng XIE Junjin PANG Haisong LIU Fuxing YANG Long 《Journal of Mountain Science》 SCIE CSCD 2024年第3期867-881,共15页
Red clay landslides are widely distributed worldwide,resulting in severe loss of life and property.Although rainfall-induced red clay slopes have received extensive attention,the role of cracks in the evolutionary pro... Red clay landslides are widely distributed worldwide,resulting in severe loss of life and property.Although rainfall-induced red clay slopes have received extensive attention,the role of cracks in the evolutionary process of red clay slopes and their connection to failure mechanisms is still poorly understood.A comprehensive approach integrating field investigation,laboratory tests,and numerical simulations was conducted to study the 168 red clay landslides in Xinshao County,China.The results show that red clay is prone to forming cracks at high moisture content due to its low swelling and high shrinkage properties.The failure mode of red clay slopes can be summarized in three stages:crack generation,slope excavation,and slope failure.Furthermore,the retrospective analysis and numerical simulations of the typical landslide in Guanchong indicated that intense rainfall primarily impacts the shallow layer of soil within approximately 0.5 m on the intact slope.However,cracks change the pattern of rainfall infiltration in the slope.Rainwater infiltrates rapidly through the preferential channels induced by the cracks rather than uniformly and slowly from the slope surface.This results in a significant increase in both the depth of infiltration and the saturated zone area of the cracked slope,reaching 3.8 m and 36.2 m^(2),respectively.Consequently,the factor of safety of the slope decreases by 13.4%compared to the intact slope,ultimately triggering landslides.This study can provide valuable insights into understanding the failure mechanisms of red clay slopes in China and other regions with similar geological settings. 展开更多
关键词 Red clay slopes Cracks Preferential flow failure mechanism
下载PDF
Deformation and failure mechanism of Yanjiao rock slope influenced by rainfall and water level fluctuation of the Xiluodu hydropower station reservoir 被引量:3
4
作者 Wang Neng-feng He Jian-xian +2 位作者 DU Xiao-xiang Cai Bin Zhao Jian-jun 《Journal of Mountain Science》 SCIE CSCD 2023年第1期1-14,共14页
With the construction of the Xiluodu hydropower station on the Jinsha River,the reservoir impoundment began in 2013 and the water level fluctuates annually between 540 m and 600 m above sea level.The Yanjiao rock slop... With the construction of the Xiluodu hydropower station on the Jinsha River,the reservoir impoundment began in 2013 and the water level fluctuates annually between 540 m and 600 m above sea level.The Yanjiao rock slope which is located on the left bank of the Jinsha River 75 km upstream of the Xiluodu dam site,began to deform in 2014.The potential failure of the slope not only threatens Yanjiao town but also affects the safe operation of the Xiluodu reservoir.This paper is to find the factors influencing the Yanjiao slope deformation through field investigation,geotechnical reconnaissance,and monitoring.Results show that the Yanjiao slope can be divided into a bank collapse area(BCA)and a strong deformation area(SDA)based on the crack distribution characteristics of the slope.The rear area of the slope has been experiencing persistent deformation with a maximum cumulative displacement(GPS monitoring point G4)of 505 mm and 399 mm in the horizontal and vertical directions,respectively.The potential failure surface of the slope is formed 36 m below the surface based on the borehole inclinometer.The bank collapses of the Yanjiao slope are directly caused by the reservoir impoundment while the deformation area of the slope is affected by the combination of the rainfall and reservoir water level fluctuation.Based on mechanism of the Yanjiao slope,prestressed anchor combined with the surface drainage and slope unloading are recommended to prevent potential deformation. 展开更多
关键词 Reservoir rock slope RAINFALL Reservoir water level fluctuation Deformation characteristics Slope failure mechanism
下载PDF
Spatial distribution and failure mechanism of water-induced landslides in the reservoir areas of Southwest China 被引量:2
5
作者 Mingliang Chen Xingguo Yang Jiawen Zhou 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第2期442-456,共15页
Water-induced landslides in hydropower reservoirs pose a great threat to both project operation and human life.This paper examines three large reservoirs in Sichuan Province,China.Field surveys,site monitoring data an... Water-induced landslides in hydropower reservoirs pose a great threat to both project operation and human life.This paper examines three large reservoirs in Sichuan Province,China.Field surveys,site monitoring data analyses and numerical simulations are used to analyze the spatial distribution and failure mechanisms of water-induced landslides in reservoir areas.First,the general rules of landslide development in the reservoir area are summarized.The first rule is that most of the landslides have rear edge elevations of 100e500 m above the normal water level of the reservoir,with volumes in the range of 106 e107 m 3.When the volume exceeds a certain amount,the number of sites at which the landscape can withstand landslides is greatly reduced.Landslide hazards mainly occur in the middle section of the reservoir and less in the annex of the dam site and the latter half of the reservoir area.The second rule is that sedimentary rocks such as sandstone are more prone to landslide hazards than other lithologies.Then,the failure mechanism of changes in the water level that reduces the stability of the slope composed of different geomaterials is analyzed by a proposed slope stability framework that considers displacement and is discussed with the monitoring results.Permeability is an essential parameter for understanding the diametrically opposed deformation behavior of landslides experiencing filling-drawdown cycles during operation.This study seeks to provide inspiration to subsequent researchers,as well as guidance to technicians,on landslide prevention and control in reservoir areas. 展开更多
关键词 Water-induced landslide Hydropower reservoir Spatial distribution Fundamental control failure mechanism
下载PDF
Instability mechanism of mining roadway passing through fault at different angles in kilometre-deep mine and control measures of roof cutting and NPR cables 被引量:2
6
作者 SUN Xiaoming WANG Jian +6 位作者 ZHAO Wenchao MING Jiang ZHANG Yong LI Zhihu MIAO Chengyu GUO Zhibiao HE Manchao 《Journal of Mountain Science》 SCIE CSCD 2024年第1期236-251,共16页
The angle α between the fault strike and the axial direction of the roadway produces different damage characteristics. In this paper, the research methodology includes theoretical analyses, numerical simulations and ... The angle α between the fault strike and the axial direction of the roadway produces different damage characteristics. In this paper, the research methodology includes theoretical analyses, numerical simulations and field experiments in the context of the Daqiang coal mine located in Shenyang, China. The stability control countermeasure of "pre-splitting cutting roof + NPR anchor cable"(PSCR-NPR) is simultaneously proposed. According to the different deformation characteristics of the roadway, the faults are innovatively classified into three types, with α of type I being 0°-30°, α of type II being 30°-60°, and α of type III being 60°-90°. The full-cycle stress evolution paths during mining roadway traverses across different types of faults are investigated by numerical simulation. Different pinch angles α lead to high stress concentration areas at different locations in the surrounding rock. The non-uniform stress field formed in the shallow surrounding rock is an important reason for the instability of the roadway. The pre-cracked cut top shifted the high stress region to the deep rock mass and formed a low stress region in the shallow rock mass. The high prestressing NPR anchor cable transforms the non-uniform stress field of the shallow surrounding rock into a uniform stress field. PSCR-NPR is applied in the fault-through roadway of Daqiang mine. The low stress area of the surrounding rock was enlarged by 3-7 times, and the cumulative convergence was reduced by 45%-50%. It provides a reference for the stability control of the deep fault-through mining roadway. 展开更多
关键词 Kilometre-deep mine Fault Mining roadway failure mechanism Pre-splitting cutting roof High pre-stress NPR anchor cable
下载PDF
Experimental studies on rock failure mechanisms under impact load by single polycrystalline diamond compact cutter
7
作者 Zhao-Sheng Ji Jin-Bao Jiang +1 位作者 Huai-Zhong Shi Bang-Min Li 《Petroleum Science》 SCIE EI CSCD 2023年第5期3100-3109,共10页
Percussive drilling shows excellent potential for promoting the rate of penetration(ROP)in drilling hard formations.Polycrystalline diamond compact(PDC)bits account for most of the footage drilled in the oil and gas f... Percussive drilling shows excellent potential for promoting the rate of penetration(ROP)in drilling hard formations.Polycrystalline diamond compact(PDC)bits account for most of the footage drilled in the oil and gas fields.To reveal the rock failure mechanisms under the impact load by PDC bits,a series of drop tests with a single PDC cutter were conducted to four kinds of rocks at different back rake angles,drop heights,drop mass,and drop times.Then the morphology characteristics of the craters were obtained and quantified by using a three-dimensional profilometer.The fracture micrographs can be observed by using scanning electron microscope(SEM).The distribution and propagation process of subsurface cracks were captured in rock-like silica glass by a high-speed photography system.The results can indicate that percussive drilling has a higher efficiency and ROP when the rock fractures in brittle mode.The failure mode of rock is related with the type of rock,the impact speed,and the back rake angle of the cutter.Both the penetration depth and fragmentation volume get the maximum values at a back rake angle of about 45°.Increasing the weight and speed of falling hammer is beneficial to improving the rock breaking effects and efficiency.The subsurface cracks under the impact load by a single PDC cutter is shaped like a clamshell,and its size is much larger than the crater volume.These findings can help to shed light on the rock failure mechanisms under the impact of load by a single PDC cutter and provide a theoretical explanation for better field application of percussive drilling. 展开更多
关键词 Percussive drilling PDC cutter Drop test failure mechanism Subsurface cracks
下载PDF
Failure mechanism of a large-scale composite deposits caused by the water level increases
8
作者 ZHANG Xin TU Guo-xiang +3 位作者 LUO Qi-feng TANG Hao ZHANG Yu-lin LI An-run 《Journal of Mountain Science》 SCIE CSCD 2023年第5期1369-1384,共16页
The failure of slope caused by variations in water levels on both banks of reservoirs is common.Reservoir landslides greatly threaten the safety of reservoir area.Taking large-scale composite deposits located on the L... The failure of slope caused by variations in water levels on both banks of reservoirs is common.Reservoir landslides greatly threaten the safety of reservoir area.Taking large-scale composite deposits located on the Lancang River in Southwest China as a study case,the origin of the deposits was analyzed based on the field investigation and a multi-material model was established in the physical model test.Combined with numerical simulation,the failure mechanism of the composite deposits during reservoir water level variations was studied.The results indicate that the deformation of the large-scale composite deposits is a staged sliding mode during the impoundment process.The first slip deformation is greatly affected by the buoyancy weight-reducing effect,and the permeability of soil and variation in the water level are the factors controlling slope deformation initiation.The high water sensitivity and low permeability of fine grained soil play an important role in the re-deformation of deposits slope.During the impoundment process,the deformation trend of the deposit slope is decreasing,and vertical consolidation of soil and increasing hydrostatic pressure on the slope surface are the main reasons for deformation attenuation.It is considered that the probability of large-scale sliding of the deposits during the impoundment period is low.But the damage caused by local bank collapse of the deposit slope still needs attention.The results of this paper will further improve our understanding of the failure mechanism of composite deposits caused by water level increases and provide guidance for the construction of hydropower stations. 展开更多
关键词 Composite deposits Reservoir water level rise Physical model test Finite-differencemethod failure mechanism
下载PDF
Mechanical characteristic and failure mechanism of joint with composite sucker rod
9
作者 Yan-Wen Zhang Jia-Qi Che +4 位作者 Han-Xiang Wang Jin Zhang Feng Li Ming-Chao Du Yu-Ting Wang 《Petroleum Science》 SCIE EI CSCD 2023年第5期3172-3183,共12页
Composite sucker rods are widely used in oil fields because of light weight,high strength,and corrosion resistance.Bonded technology becomes the primary connection method of composites.However,the joints with composit... Composite sucker rods are widely used in oil fields because of light weight,high strength,and corrosion resistance.Bonded technology becomes the primary connection method of composites.However,the joints with composite sucker rods are prone to debone and fracture.The connected characteristics are less considered,so the failure mechanism of the joint is still unclear.Based on the cohesive zone model(CZM)and the Johnson-Cook constitutive model,a novel full-scale numerical model of the joint with composite sucker rod was established,and verified by pull-out experiments.The mechanical properties and slip characteristics of the joint were studied,and the damaged procession of the joint was explored.The results showed that:a)the numerical model was in good agreement with the experimental results,and the error is within 5%;b)the von Mises stress,shear stress,and interface stress distributed symmetrically along the circumferential path increased gradually from the fixed end to the loading end;c)the first-bonded interface near the loading end was damaged at first,followed by debonding of the second-bonded interface,leading to the complete shear fracture of the epoxy,and resulted in the debonding of the joint with composite sucker rod,which can provide a theoretical basis for the structural design and optimization of the joint. 展开更多
关键词 Joint with composite sucker rod Numerical model Connected characteristics failure mechanism Tensile tests
下载PDF
Effect of Water Absorption on the Mechanical Property and Failure Mechanism of Hollow Glass Microspheres Composite Epoxy Resin Solid Buoyancy Materials
10
作者 DING Yue ZHAI Gang-jun +2 位作者 MA Zhe WEI Zi-hao LI Xin 《China Ocean Engineering》 SCIE EI CSCD 2023年第5期876-884,共9页
To study the water absorption of hollow glass microspheres(HGMs)composite epoxy resin solid buoyancy materials in the marine environment and its effect on the mechanical properties,the water absorption was measured by... To study the water absorption of hollow glass microspheres(HGMs)composite epoxy resin solid buoyancy materials in the marine environment and its effect on the mechanical properties,the water absorption was measured by immersing the material in distilled water for 36 days at ambient temperature and fitted to Fick’s second law.The strength of materials before and after water absorption were tested by uniaxial experiments,and the effects of the filling ratio and water absorption on the mechanical properties of the materials were analyzed and explained.Finally,the failure modes and mechanism of the hollow glass microspheres composite material were explicated from the microscopic level by scanning electron microscope(SEM).This research will help solve the problems of solid buoyancy materials in ocean engineering applications. 展开更多
关键词 solid buoyancy material water absorption mechanical property failure mechanism scanning electron microscope
下载PDF
Numerical and experimental analyses of rock failure mechanisms due to microwave treatment
11
作者 Haitham M.Ahmed Adel Ahmadihosseini +5 位作者 Ferri Hassani Mohammed A.Hefni HussinA.M.Ahmed Hussein A.Saleem Essam B.Moustafa Agus P.Sasmito 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第10期2483-2495,共13页
Despite the extensive studies conducted on the effectiveness of microwave treatment as a novel rock preconditioning method,there is yet to find reliable data on the rock failure mechanisms due to microwave heating.In ... Despite the extensive studies conducted on the effectiveness of microwave treatment as a novel rock preconditioning method,there is yet to find reliable data on the rock failure mechanisms due to microwave heating.In addition,there is no significant discussion on the energy efficiency of the method as one of the important factors among the mining and geotechnical engineers in the industry.This study presents a novel experimental method to evaluate two main rock failure mechanisms due to microwave treatment without applying any mechanical forces,i.e.distributed and concentrated heating.The result shows that the existence of a small and concentrated fraction of a strong microwave absorbing mineral will change the failure mechanism from the distributed heating to the concentrated heating,which can increase the weakening over microwave efficiency(WOME)by more than 10 folds.This observation is further investigated using the developed coupled numerical model.It is shown that at the same input energy,the existence of microwave absorbing minerals can cause major heat concentration inside the rock and increase the maximum temperature by up to three times. 展开更多
关键词 Microwave treatment Numerical modeling failure mechanism Energy efficiency Rock pre-conditioning
下载PDF
Effect of Interface Form on Creep Failure and Life of Dissimilar Metal Welds Involving Nickel-Based Weld Metal and Ferritic Base Metal
12
作者 Xiaogang Li Junfeng Nie +2 位作者 Xin Wang Kejian Li Haiquan Zhang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第1期265-285,共21页
For dissimilar metal welds(DMWs)involving nickel-based weld metal(WM)and ferritic heat resistant steel base metal(BM)in power plants,there must be an interface between WM and BM,and this interface suffers mechanical a... For dissimilar metal welds(DMWs)involving nickel-based weld metal(WM)and ferritic heat resistant steel base metal(BM)in power plants,there must be an interface between WM and BM,and this interface suffers mechanical and microstructure mismatches and is often the rupture location of premature failure.In this study,a new form of WM/BM interface form,namely double Y-type interface was designed for the DMWs.Creep behaviors and life of DMWs containing double Y-type interface and conventional I-type interface were compared by finite element analysis and creep tests,and creep failure mechanisms were investigated by stress-strain analysis and microstructure characterization.By applying double Y-type interface instead of conventional I-type interface,failure location of DMW could be shifted from the WM/ferritic heat-affected zone(HAZ)interface into the ferritic HAZ or even the ferritic BM,and the failure mode change improved the creep life of DMW.The interface premature failure of I-type interface DMW was related to the coupling effect of microstructure degradation,stress and strain concentrations,and oxide notch on the WM/HAZ interface.The creep failure of double Y-type interface DMW was the result of Type IV fracture due to the creep voids and micro-cracks on fine-grain boundaries in HAZ,which was a result of the matrix softening of HAZ and lack of precipitate pinning at fine-grain boundaries.The double Y-type interface form separated the stress and strain concentrations in DMW from the WM/HAZ interface,preventing the trigger effect of oxide notch on interface failure and inhibiting the interfacial microstructure cracking.It is a novel scheme to prolong creep life and enhance reliability of DMW,by means of optimizing the interface form,decoupling the damage factors from WM/HAZ interface,and then changing the failure mechanism and shifting the failure location. 展开更多
关键词 Dissimilar metal weld Nickel-based weld metal Ferritic heat resistant steel INTERFACE Creep strain MICROSTRUCTURE failure mechanism Creep life
下载PDF
Exploring mechanism of hidden,steep obliquely inclined bedding landslides using a 3DEC model:A case study of the Shanyang landslide in Shaanxi Province,China
13
作者 Jia-yun Wang Zi-long Wu +3 位作者 Xiao-ya Shi Long-wei Yang Rui-ping Liu Na Lu 《China Geology》 CAS CSCD 2024年第2期303-314,I0001-I0003,共15页
Catastrophic geological disasters frequently occur on slopes with obliquely inclined bedding structures(also referred to as obliquely inclined bedding slopes),where the apparent dip sliding is not readily visible.This... Catastrophic geological disasters frequently occur on slopes with obliquely inclined bedding structures(also referred to as obliquely inclined bedding slopes),where the apparent dip sliding is not readily visible.This phenomenon has become a focal point in landslide research.Yet,there is a lack of studies on the failure modes and mechanisms of hidden,steep obliquely inclined bedding slopes.This study investigated the Shanyang landslide in Shaanxi Province,China.Using field investigations,laboratory tests of geotechnical parameters,and the 3DEC software,this study developed a numerical model of the landslide to analyze the failure process of such slopes.The findings indicate that the Shanyang landslide primarily crept along a weak interlayer under the action of gravity.The landslide,initially following a dip angle with the support of a stable inclined rock mass,shifted direction under the influence of argillization in the weak interlayer,moving towards the apparent dip angle.The slide resistance effect of the karstic dissolution zone was increasingly significant during this process,with lateral friction being the primary resistance force.A reduction in the lateral friction due to karstic dissolution made the apparent dip sliding characteristics of the Shanyang landslide more pronounced.Notably,deformations such as bending and uplift at the slope’s foot suggest that the main slide resistance shifts from lateral friction within the karstic dissolution zone to the slope foot’s resistance force,leading to the eventual buckling failure of the landslide.This study unveils a novel failure mode of apparent dip creep-buckling in the Shanyang landslide,highlighting the critical role of lateral friction from the karstic dissolution zone in its failure mechanism.These insights offer a valuable reference for mitigating risks and preventing disasters related to obliquely inclined bedding landslides. 展开更多
关键词 LANDSLIDE Steep obliquely inclined bedding slope failure mode failure mechanism Apparent dip creep-buckling Lateral friction 3DEC model Landslide numerical model Geological hazards survey engineering
下载PDF
Microdynamic mechanical properties and fracture evolution mechanism of monzogabbro with a true triaxial multilevel disturbance method
14
作者 Zhi Zheng Bin Deng +3 位作者 Hong Liu Wei Wang Shuling Huang Shaojun Li 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第3期385-411,共27页
The far-field microdynamic disturbance caused by the excavation of deep mineral resources and underground engineering can induce surrounding rock damage in high-stress conditions and even lead to disasters.However,the... The far-field microdynamic disturbance caused by the excavation of deep mineral resources and underground engineering can induce surrounding rock damage in high-stress conditions and even lead to disasters.However,the mechanical properties and damage/fracture evolution mechanisms of deep rock induced by microdynamic disturbance under three-dimensional stress states are unclear.Therefore,a true triaxial multilevel disturbance test method is proposed,which can completely simulate natural geostress,excavation stress redistribution(such as stress unloading,concentration and rotation),and subsequently the microdynamic disturbance triggering damaged rock failure.Based on a dynamic true triaxial test platform,true triaxial microdynamic disturbance tests under different frequency and amplitudes were carried out on monzogabbro.The results show that increasing amplitude or decreasing frequency diminishes the failure strength of monzogabbro.Deformation modulus gradually decreases during disturbance failure.As frequency and amplitude increase,the degradation rate of deformation modulus decreases slightly,disturbance dissipated energy increases significantly,and disturbance deformation anisotropy strengthens obviously.A damage model has been proposed to quantitatively characterize the disturbance-induced damage evolution at different frequency and amplitude under true triaxial stress.Before disturbance failure,the micro-tensile crack mechanism is dominant,and the micro-shear crack mechanism increases significantly at failure.With the increase of amplitude and frequency,the micro-shear crack mechanism increases.When approaching disturbance failure,the acoustic emission fractal dimension changes from a stable value to local large oscillation,and finally increases sharply to a high value at failure.Finally,the disturbance-induced failure mechanism of surrounding rock in deep engineering is clearly elucidated. 展开更多
关键词 True triaxial disturbance test Mechanical properties Fracture evolution mechanism Disturbance-induced damage evolution failure mechanism and precursor
下载PDF
Deformation and failure mechanism of slope in three dimensions 被引量:19
15
作者 Yingfa Lu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2015年第2期109-119,共11页
Understanding three-dimensional (3D) slope deformation and failure mechanism and corresponding stability analyses are crucially important issues in geotechnical engineering. In this paper, the mecha-nisms of progressi... Understanding three-dimensional (3D) slope deformation and failure mechanism and corresponding stability analyses are crucially important issues in geotechnical engineering. In this paper, the mecha-nisms of progressive failure with thrust-type and pull-type landslides are described in detail. It is considered that the post-failure stress state and the pre-peak stress state may occur at different regions of a landslide body with deformation development, and a critical stress state element (or the soil slice block) exists between the post-failure stress state and the pre-peak stress state regions. In this regard, two sorts of failure modes are suggested for the thrust-type and three sorts for pull-type landslides, based on the characteristics of shear stress and strain (or tensile stress and strain). Accordingly, a new joint constitutive model (JCM) is proposed based on the current stability analytical theories, and it can be used to describe the mechanical behaviors of geo-materials with softening properties. Five methods, i.e. CSRM (comprehensive sliding resistance method), MTM (main thrust method), CDM (comprehensive displacement method), SDM (surplus displacement method), and MPM (main pull method), for slope stability calculation are proposed. The S-shaped curve of monitored displacement vs. time is presented for different points on the sliding surface during progressive failure process of landslide, and the rela-tionship between the displacement of different points on the sliding surface and height of landslide body is regarded as the parabolic curve. The comparisons between the predicted and observed loadedis-placement and displacementetime relations of the points on the sliding surface are conducted. The classification of stable/unstable displacementetime curves is proposed. The definition of the main sliding direction of a landslide is also suggested in such a way that the failure body of landslide (simplified as“collapse body”) is only involved in the main sliding direction, and the strike and the dip are the same as the collapse body. The rake angle is taken as the direction of the sum of sliding forces or the sum of displacements in collapse body, in which the main slip direction is dependent on progressive defor-mation. The reason of non-convergence with finite element method (FEM) in calculating the stability of slope is also numerically analyzed, in which a new method considering the slip surface associated with the boundary condition is proposed. It is known that the boundary condition of sliding surface can be described by perfect elasto-plastic model (PEPM) and JCM, and that the stress and strain of a landslide can be described properly with the JCM. 展开更多
关键词 failure mechanism New joint constitutive model(JCM) Stability analyses Boundary method by sliding surface
下载PDF
Physical model test and numerical simulation on the failure mechanism of the roadway in layered soft rocks 被引量:11
16
作者 Xiaoming Sun Chengwei Zhao +3 位作者 Yong Zhang Feng Chen Shangkun Zhang Kaiyuan Zhang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2021年第2期291-302,共12页
To explore the failure mechanism of roadway in layered soft rocks,a physical model with the physically finite elemental slab assemblage(PFESA)method was established.Infrared thermography and a video camera were employ... To explore the failure mechanism of roadway in layered soft rocks,a physical model with the physically finite elemental slab assemblage(PFESA)method was established.Infrared thermography and a video camera were employed to capture thermal responses and deformation.The model results showed that layered soft roadway suffered from large deformation.A three-dimensional distinct element code(3 DEC)model with tetrahedral blocks was built to capture the characteristics of roadway deformation,stress,and cracks.The results showed two failure patterns,layer bending fracture and layer slipping after excavation.The layer bending fracture occurred at positions where the normal direction of layers pointed to the inside of the roadway and the layer slipping occurred in the ribs.Six schemes were proposed to investigate the effects of layered soft rocks.The results showed that the deformation of ribs was obviously larger than that of the roof and floor when the roadway passed through three types of strata.When the roadway was completely in a coal seam,the change of deformation in ribs was not obvious,while the deformation in the roof and floor increased obviously.These results can provide guidance for excavation and support design of roadways in layered soft rocks. 展开更多
关键词 failure mechanism Physical model test 3DEC Layered soft rocks Large deformation
下载PDF
Mechanical Behavior and Failure Mechanism of Recycled Semi-flexible Pavement Material 被引量:8
17
作者 丁庆军 ZHAO Mingyu +1 位作者 SHEN Fan ZHANG Xiaoqiang 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2015年第5期981-988,共8页
The mechanical behavior and failure mechanism of recycled semi-flexible pavement material were investigated by different scales method. The macroscopic mechanical behavior of samples was studied by static and dynamic ... The mechanical behavior and failure mechanism of recycled semi-flexible pavement material were investigated by different scales method. The macroscopic mechanical behavior of samples was studied by static and dynamic splitting tensile tests on mechanics testing system(MTS). The mechanical analysis in micro scale was carried out by material image analysis method and finite element analysis system. The strains of recycled semi-flexible pavement material on samples surface and in each phase materials were obtained. The test results reveal that the performance of recovered asphalt binder was the major determinant on the structural stability of recycled semi-flexible pavement material. The asphalt binder with high viscoelasticity could delay the initial cracking time and reduce the residual strain under cyclic loading conditions. The failure possibility order of each phase in recycled semi-flexible pavement material was asphalt binder, reclaimed aggregate, cement paste and virgin aggregate. 展开更多
关键词 semi-flexible pavement RAP recycling technology failure mechanism mechanical behavior
下载PDF
Bearing behavior and failure mechanism of squeezed branch piles 被引量:10
18
作者 Minxia Zhang Ping Xu +1 位作者 Wenjie Cui Youbin Gao 《Journal of Rock Mechanics and Geotechnical Engineering》 CSCD 2018年第5期935-946,共12页
The current practice for the design of squeezed branch piles is mainly based on the calculated bearing capacity of circular piles. Insufficient considerations of the load-transfer mechanism, branch effect and failure ... The current practice for the design of squeezed branch piles is mainly based on the calculated bearing capacity of circular piles. Insufficient considerations of the load-transfer mechanism, branch effect and failure mechanism, as well as overreliance on pile load tests, have led to conservative designs and limited application. This study performs full-scale field load tests on instrumented squeezed branch piles and shows that the shaft force curves have obvious drop steps at the branch position, indicating that the branches can effectively share the pile top load. The effects of branch position, spacing, number and diameter on the pile bearing capacity are analyzed numerically. The numerical results indicate that the squeezed branch piles have two types of failure mechanisms, i.e. individual branch failure mechanism and cylindrical failure mechanism. Further research should focus on the development of the calculation method to determine the bearing capacities of squeezed branch piles considering these two failure mechanisms. 展开更多
关键词 Squeezed branch piles Field test Bearing behavior failure mechanism Numerical simulation
下载PDF
Experimental study on the deformation behaviour,energy evolution law and failure mechanism of tectonic coal subjected to cyclic loads 被引量:5
19
作者 Deyi Gao Shuxun Sang +4 位作者 Shiqi Liu Jian Wu Jishi Geng Wang Tao Tengmin Sun 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2022年第6期1301-1313,共13页
Compared to intact coal,tectonic coal exhibits unique characteristics.The deformation behaviours under cyclic loading with different confining pressures and loading rates are monitored by MTS815 test system,and the me... Compared to intact coal,tectonic coal exhibits unique characteristics.The deformation behaviours under cyclic loading with different confining pressures and loading rates are monitored by MTS815 test system,and the mechanical and energy properties are analysed using experimental data.The results show that the stress-strain curve could be divided into four stages in a single cycle.The elastic strain and elastic energy density increase linearly with deviatoric stress and are proportional to the confining pressure and loading rate;irreversible strain and dissipated energy density increase exponentially with deviatoric stress,inversely proportional to the confining pressure and loading rate.The internal structure of tectonic coal is divided into three types,all of which are damaged under different deviatoric stress levels,thereby explaining the segmentation phenomenon of stress-strain curve of tectonic coal in the cyclic loading process.Tectonic coal exhibits nonlinear energy storage characteristics,which verifies why the tectonic coal is prone to coal and gas outburst from the principle of energy dissipation.In addition,the damage mechanism of tectonic coal is described from the point of energy distribution by introducing the concepts of crushing energy and friction energy. 展开更多
关键词 Tectonic coal Cyclic loading Deformation behaviour Energy evolution failure mechanism
下载PDF
Flow-slide characteristics and failure mechanism of shallow landslides in granite residual soil under heavy rainfall 被引量:4
20
作者 BAI Hui-lin FENG Wen-kai +7 位作者 LI Shuang-quan YE Long-zhen WU Zhong-teng HU Rui DAI Hong-chuan HU Yun-peng YI Xiao-yu DENG Peng-cheng 《Journal of Mountain Science》 SCIE CSCD 2022年第6期1541-1557,共17页
Affected by typhoons over years, Fujian Province in Southeast China has developed a large number of shallow landslides, causing a long-term concern for the local government. The study on shallow landslide is not only ... Affected by typhoons over years, Fujian Province in Southeast China has developed a large number of shallow landslides, causing a long-term concern for the local government. The study on shallow landslide is not only helpful to the local government in disaster prevention, but also the theoretical basis of regional early warning technology. To determine the whole-process characteristics and failure mechanisms of flow-slide failure of granite residual soil slopes, we conducted a detailed hazard investigation in Minqing County, Fujian Province, which was impacted by Typhoon Lupit-induced heavy rainfall in August 2021. Based on the investigation and preliminary analysis results, we conducted indoor artificial rainfall physical model tests and obtained the whole-process characteristics of flow-slide failure of granite residual soil landslides. Under the action of heavy rainfall, a granite residual soil slope experiences initial deformation at the slope toe and exhibits development characteristics of continuous traction deformation toward the middle and upper parts of the slope. The critical volumetric water content during slope failure is approximately 53%. Granite residual soil is in a state of high volumetric water content under heavy rainfall conditions, and the shear strength decreases, resulting in a decrease in stability and finally failure occurrence. The new free face generated after failure constitutes an adverse condition for continued traction deformation and failure. As the soil permeability(cm/h) is less than the rainfall intensity(mm/h), and it is difficult for rainwater to continuously infiltrate in short-term rainfall, the influence depth of heavy rainfall is limited. The load of loose deposits at the slope foot also limits the development of deep deformation and failure. With the continuous effect of heavy rainfall, the surface runoff increases gradually, and the influence mode changes from instability failure caused by rainfall infiltration to erosion and scouring of surface runoff on slope surface. Transportation of loose materials by surface runoff is an important reason for prominent siltation in disaster-prone areas. 展开更多
关键词 Granite residual soil Flow slide process failure mechanism Artificial rainfall Critical volumetric water content
下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部