期刊文献+
共找到176篇文章
< 1 2 9 >
每页显示 20 50 100
Twin model-based fault detection and tolerance approach for in-core self-powered neutron detectors
1
作者 Jing Chen Yan-Zhen Lu +2 位作者 Hao Jiang Wei-Qing Lin Yong Xu 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第8期86-99,共14页
The in-core self-powered neutron detector(SPND)acts as a key measuring device for the monitoring of parameters and evaluation of the operating conditions of nuclear reactors.Prompt detection and tolerance of faulty SP... The in-core self-powered neutron detector(SPND)acts as a key measuring device for the monitoring of parameters and evaluation of the operating conditions of nuclear reactors.Prompt detection and tolerance of faulty SPNDs are indispensable for reliable reactor management.To completely extract the correlated state information of SPNDs,we constructed a twin model based on a generalized regression neural network(GRNN)that represents the common relationships among overall signals.Faulty SPNDs were determined because of the functional concordance of the twin model and real monitoring sys-tems,which calculated the error probability distribution between the model outputs and real values.Fault detection follows a tolerance phase to reinforce the stability of the twin model in the case of massive failures.A weighted K-nearest neighbor model was employed to reasonably reconstruct the values of the faulty signals and guarantee data purity.The experimental evaluation of the proposed method showed promising results,with excellent output consistency and high detection accuracy for both single-and multiple-point faulty SPNDs.For unexpected excessive failures,the proposed tolerance approach can efficiently repair fault behaviors and enhance the prediction performance of the twin model. 展开更多
关键词 Self-powered neutron detector Twin model fault detection fault tolerance Generalized regression neural network Nuclear power plant
下载PDF
WiFi6 Dynamic Channel Optimization Method for Fault Tolerance in Power Communication Network
2
作者 Hong Zhu Lisha Gao +2 位作者 Lei Wei Guangchang Yang Sujie Shao 《Computers, Materials & Continua》 SCIE EI 2023年第6期5501-5519,共19页
As the scale of power networks has expanded,the demand for multi-service transmission has gradually increased.The emergence of WiFi6 has improved the transmission efficiency and resource utilization of wireless networ... As the scale of power networks has expanded,the demand for multi-service transmission has gradually increased.The emergence of WiFi6 has improved the transmission efficiency and resource utilization of wireless networks.However,it still cannot cope with situations such as wireless access point(AP)failure.To solve this problem,this paper combines orthogonal fre-quency division multiple access(OFDMA)technology and dynamic channel optimization technology to design a fault-tolerant WiFi6 dynamic resource optimization method for achieving high quality wireless services in a wirelessly covered network even when an AP fails.First,under the premise of AP layout with strong coverage over the whole area,a faulty AP determination method based on beacon frames(BF)is designed.Then,the maximum signal-to-interference ratio(SINR)is used as the principle to select AP reconnection for the affected users.Finally,this paper designs a dynamic access selection model(DASM)for service frames of power Internet of Things(IoTs)and a schedul-ing access optimization model(SAO-MF)based on multi-frame transmission,which enables access optimization for differentiated services.For the above mechanisms,a heuristic resource allocation algorithm is proposed in SAO-MF.Simulation results show that the method can reduce the delay by 15%and improve the throughput by 55%,ensuring high-quality communication in power wireless networks. 展开更多
关键词 WiFi6 OFDMA fault tolerance dynamic channel optimization cross-slot scheduling access
下载PDF
An Optimal Cluster Head and Gateway Node Selection with Fault Tolerance
3
作者 P.Rahul B.Kaarthick 《Intelligent Automation & Soft Computing》 SCIE 2023年第2期1595-1609,共15页
In Mobile Ad Hoc Networks(MANET),Quality of Service(QoS)is an important factor that must be analysed for the showing the better performance.The Node Quality-based Clustering Algorithm using Fuzzy-Fruit Fly Optimiza-ti... In Mobile Ad Hoc Networks(MANET),Quality of Service(QoS)is an important factor that must be analysed for the showing the better performance.The Node Quality-based Clustering Algorithm using Fuzzy-Fruit Fly Optimiza-tion for Cluster Head and Gateway Selection(NQCAFFFOCHGS)has the best network performance because it uses the Improved Weighted Clustering Algo-rithm(IWCA)to cluster the network and the FFO algorithm,which uses fuzzy-based network metrics to select the best CH and entryway.However,the major drawback of the fuzzy system was to appropriately select the membership func-tions.Also,the network metrics related to the path or link connectivity were not considered to effectively choose the CH and gateway.When learning fuzzy sets,this algorithm employs a new Continuous Action-set Learning Automata(CALA)approach that correctly modifies and chooses the fuzzy membership functions.Despite the fact that it extends the network’s lifespan,it does not assist in the detection of defective nodes in the routing route.Because of this,a new Fault Tolerance(NQCAEFFFOCHGS-FT)mechanism based on the Distributed Connectivity Restoration(DCR)mechanism is proposed,which allows the net-work to self-heal as a consequence of the algorithm’s self-healing capacity.Because of the way this method is designed,node failures may be utilised to rebuild the network topology via the use of cascaded node moves.Founded on the fractional network information and topologic overhead related with each node,the DCR is suggested as an alternative to the DCR.When compared to the NQCAFFFOCHGS algorithm,the recreation results display that the proposed NQCAEFFFOCHGS-FT algorithm improves network performance in terms of end-to-end delay,energy consumption,Packet Loss Ratio(PLR),Normalized Routing Overhead(NRO),and Balanced Load Index(BLI). 展开更多
关键词 Hybrid-manet cluster head GATEWAY node failure fault tolerance distributed connectivity restoration
下载PDF
Energy Efficient Unequal Fault Tolerance Clustering Approach
4
作者 Sowjanya Ramisetty Divya Anand +4 位作者 Kavita Sahil Verma NZ Jhanjhi Mehedi Masud Mohammed Baz 《Computer Systems Science & Engineering》 SCIE EI 2023年第5期1971-1983,共13页
For achieving Energy-Efficiency in wireless sensor networks(WSNs),different schemes have been proposed which focuses only on reducing the energy consumption.A shortest path determines for the Base Station(BS),but faul... For achieving Energy-Efficiency in wireless sensor networks(WSNs),different schemes have been proposed which focuses only on reducing the energy consumption.A shortest path determines for the Base Station(BS),but fault tolerance and energy balancing gives equal importance for improving the network lifetime.For saving energy in WSNs,clustering is considered as one of the effective methods for Wireless Sensor Networks.Because of the excessive overload,more energy consumed by cluster heads(CHs)in a cluster based WSN to receive and aggregate the information from member sensor nodes and it leads to failure.For increasing the WSNs’lifetime,the CHs selection has played a key role in energy consumption for sensor nodes.An Energy Efficient Unequal Fault Tolerant Clustering Approach(EEUFTC)is proposed for reducing the energy utilization through the intelligent methods like Particle Swarm Optimization(PSO).In this approach,an optimal Master Cluster Head(MCH)-Master data Aggregator(MDA),selection method is proposed which uses the fitness values and they evaluate based on the PSO for two optimal nodes in each cluster to act as Master Data Aggregator(MDA),and Master Cluster Head.The data from the cluster members collected by the chosen MCH exclusively and the MDA is used for collected data reception from MCH transmits to the BS.Thus,the MCH overhead reduces.During the heavy communication of data,overhead controls using the scheduling of Energy-Efficient Time Division Multiple Access(EE-TDMA).To describe the proposed method superiority based on various performance metrics,simulation and results are compared to the existing methods. 展开更多
关键词 ENERGY-EFFICIENCY unequal fault tolerant clustering approach particle swarm optimization master data aggregator energy efficient time division multiple access optimal nodes
下载PDF
SFSDA:Secure and Flexible Subset Data Aggregation with Fault Tolerance for Smart Grid
5
作者 Dong Chen Tanping Zhou +3 位作者 Xu An Wang Zichao Song Yujie Ding Xiaoyuan Yang 《Intelligent Automation & Soft Computing》 SCIE 2023年第8期2477-2497,共21页
Smart grid(SG)brings convenience to users while facing great chal-lenges in protecting personal private data.Data aggregation plays a key role in protecting personal privacy by aggregating all personal data into a sin... Smart grid(SG)brings convenience to users while facing great chal-lenges in protecting personal private data.Data aggregation plays a key role in protecting personal privacy by aggregating all personal data into a single value,preventing the leakage of personal data while ensuring its availability.Recently,a flexible subset data aggregation(FSDA)scheme based on the Pail-lier homomorphic encryption was first proposed by Zhang et al.Their scheme can dynamically adjust the size of each subset and obtain the aggregated data in the corresponding subset.In this paper,firstly,an efficient attack with both theorems proving and experimentative verification is launched.We find that in a specific scenario where the encrypted data constructed by a smart meter(SM)exceeds the size of one Paillier ciphertext,the malicious fog node(FN)may use the received ciphertext to obtain the reading of the SM.Secondly,to avoid the possibility of privacy disclosure under certain circumstances,additional hash functions are added to the individual encryption process.In addition,fault tolerance is very important to aggregation schemes in practical scenarios.In most of the current schemes,once some SMs failed,then they will not work.As far as we know,there is no multi-subset aggregation scheme both supports flexible subset data aggregation and fault tolerance.Finally,we construct the first secure flexible subset data aggregation(SFSDA)scheme with fault tolerance by combining the fault tolerance method with the flexible multi-subset aggregation,where FN enables the control server(CS)to finally decrypt the aggregated ciphertext by recovering equivalent ciphertexts when some SMs fail to submit their ciphertexts.Experiments show that our SFSDA scheme keeps the efficiency in implementing a flexible multi-subset aggregation function,and only has a small delay in implementing fault-tolerant data aggregation. 展开更多
关键词 Flexible subset aggregation fault tolerance privacy preservation smart grid
下载PDF
A Fault-Tolerant Mobility-Aware Caching Method in Edge Computing
6
作者 Yong Ma Han Zhao +5 位作者 Kunyin Guo Yunni Xia Xu Wang Xianhua Niu Dongge Zhu Yumin Dong 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期907-927,共21页
Mobile Edge Computing(MEC)is a technology designed for the on-demand provisioning of computing and storage services,strategically positioned close to users.In the MEC environment,frequently accessed content can be dep... Mobile Edge Computing(MEC)is a technology designed for the on-demand provisioning of computing and storage services,strategically positioned close to users.In the MEC environment,frequently accessed content can be deployed and cached on edge servers to optimize the efficiency of content delivery,ultimately enhancing the quality of the user experience.However,due to the typical placement of edge devices and nodes at the network’s periphery,these components may face various potential fault tolerance challenges,including network instability,device failures,and resource constraints.Considering the dynamic nature ofMEC,making high-quality content caching decisions for real-time mobile applications,especially those sensitive to latency,by effectively utilizing mobility information,continues to be a significant challenge.In response to this challenge,this paper introduces FT-MAACC,a mobility-aware caching solution grounded in multi-agent deep reinforcement learning and equipped with fault tolerance mechanisms.This approach comprehensively integrates content adaptivity algorithms to evaluate the priority of highly user-adaptive cached content.Furthermore,it relies on collaborative caching strategies based onmulti-agent deep reinforcement learningmodels and establishes a fault-tolerancemodel to ensure the system’s reliability,availability,and persistence.Empirical results unequivocally demonstrate that FTMAACC outperforms its peer methods in cache hit rates and transmission latency. 展开更多
关键词 Mobile edge networks MOBILITY fault tolerance cooperative caching multi-agent deep reinforcement learning content prediction
下载PDF
Quantum generative adversarial networks based on a readout error mitigation method with fault tolerant mechanism
7
作者 赵润盛 马鸿洋 +2 位作者 程涛 王爽 范兴奎 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期285-295,共11页
Readout errors caused by measurement noise are a significant source of errors in quantum circuits,which severely affect the output results and are an urgent problem to be solved in noisy-intermediate scale quantum(NIS... Readout errors caused by measurement noise are a significant source of errors in quantum circuits,which severely affect the output results and are an urgent problem to be solved in noisy-intermediate scale quantum(NISQ)computing.In this paper,we use the bit-flip averaging(BFA)method to mitigate frequent readout errors in quantum generative adversarial networks(QGAN)for image generation,which simplifies the response matrix structure by averaging the qubits for each random bit-flip in advance,successfully solving problems with high cost of measurement for traditional error mitigation methods.Our experiments were simulated in Qiskit using the handwritten digit image recognition dataset under the BFA-based method,the Kullback-Leibler(KL)divergence of the generated images converges to 0.04,0.05,and 0.1 for readout error probabilities of p=0.01,p=0.05,and p=0.1,respectively.Additionally,by evaluating the fidelity of the quantum states representing the images,we observe average fidelity values of 0.97,0.96,and 0.95 for the three readout error probabilities,respectively.These results demonstrate the robustness of the model in mitigating readout errors and provide a highly fault tolerant mechanism for image generation models. 展开更多
关键词 readout errors quantum generative adversarial networks bit-flip averaging method fault tolerant mechanisms
下载PDF
T-PBFT: An EigenTrust-Based Practical Byzantine Fault Tolerance Consensus Algorithm 被引量:44
8
作者 Sheng Gao Tianyu Yu +1 位作者 Jianming Zhu Wei Cai 《China Communications》 SCIE CSCD 2019年第12期111-123,共13页
Blockchain with these characteristics of decentralized structure, transparent and credible, time-series and immutability, has been considering as a promising technology. Consensus algorithm as one of the core techniqu... Blockchain with these characteristics of decentralized structure, transparent and credible, time-series and immutability, has been considering as a promising technology. Consensus algorithm as one of the core techniques of blockchain directly affects the scalability of blockchain systems. Existing probabilistic finality blockchain consensus algorithms such as PoW, PoS, suffer from power consumptions and low efficiency;while absolute finality blockchain consensus algorithms such as PBFT, HoneyBadgerBFT, could not meet the scalability requirement in a largescale network. In this paper, we propose a novel optimized practical Byzantine fault tolerance consensus algorithm based on EigenTrust model, namely T-PBFT, which is a multi-stage consensus algorithm. It evaluates node trust by the transactions between nodes so that the high quality of nodes in the network will be selected to construct a consensus group. To reduce the probability of view change, we propose to replace a single primary node with a primary group. By group signature and mutual supervision, we can enhance the robustness of the primary group further. Finally, we analyze T-PBFT and compare it with the other Byzantine fault tolerant consensus algorithms. Theoretical analysis shows that our T-PBFT can optimize the Byzantine fault-tolerant rate,reduce the probability of view change and communication complexity. 展开更多
关键词 blockchain consensus protocol Byzantine fault tolerance trust model
下载PDF
Deep Learning Based Data Fusion for Sensor Fault Diagnosis and Tolerance in Autonomous Vehicles 被引量:3
9
作者 Huihui Pan Weichao Sun +1 位作者 Qiming Sun Huijun Gao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2021年第3期158-168,共11页
Environmental perception is one of the key technologies to realize autonomous vehicles.Autonomous vehicles are often equipped with multiple sensors to form a multi-source environmental perception system.Those sensors ... Environmental perception is one of the key technologies to realize autonomous vehicles.Autonomous vehicles are often equipped with multiple sensors to form a multi-source environmental perception system.Those sensors are very sensitive to light or background conditions,which will introduce a variety of global and local fault signals that bring great safety risks to autonomous driving system during long-term running.In this paper,a real-time data fusion network with fault diagnosis and fault tolerance mechanism is designed.By introducing prior features to realize the lightweight network,the features of the input data can be extracted in real time.A new sensor reliability evaluation method is proposed by calculating the global and local confidence of sensors.Through the temporal and spatial correlation between sensor data,the sensor redundancy is utilized to diagnose the local and global confidence level of sensor data in real time,eliminate the fault data,and ensure the accuracy and reliability of data fusion.Experiments show that the network achieves state-of-the-art results in speed and accuracy,and can accurately detect the location of the target when some sensors are out of focus or out of order.The fusion framework proposed in this paper is proved to be effective for intelligent vehicles in terms of real-time performance and reliability. 展开更多
关键词 Autonomous vehicles fault diagnosis and tolerance Object detection Data fusion
下载PDF
Excellent Practical Byzantine Fault Tolerance 被引量:1
10
作者 Huanrong Tang Yaojing Sun Jianquan Ouyang 《Journal of Cyber Security》 2020年第4期167-182,共16页
With the rapid development of blockchain technology,more and more people are paying attention to the consensus mechanism of blockchain.Practical Byzantine Fault Tolerance(PBFT),as the first efficient consensus algorit... With the rapid development of blockchain technology,more and more people are paying attention to the consensus mechanism of blockchain.Practical Byzantine Fault Tolerance(PBFT),as the first efficient consensus algorithm solving the Byzantine Generals Problem,plays an important role.But PBFT also has its problems.First,it runs in a completely closed environment,and any node can't join or exit without rebooting the system.Second,the communication complexity in the network is as high as O(n2),which makes the algorithm only applicable to small-scale networks.For these problems,this paper proposes an Optimized consensus algorithm,Excellent Practical Byzantine Fault Tolerance(EPBFT),in which nodes can dynamically participate in the network by combining a view change protocol with a node's add or quit request.Besides,in each round of consensus,the algorithm will randomly select a coordination node.Through the cooperation of the primary and the coordination node,we reduce the network communication complexity to O(n).Besides,we have added a reputation credit mechanism and a wrong node removal protocol to the algorithm for clearing the faulty nodes in time and improving the robustness of the system.Finally,we design experiments to compare the performance of the PBFT and EPBFT algorithms.Through experimental,we found that compared with the PBFT algorithm,the EPBFT algorithm has a lower delay,communication complexity,better scalability,and more practical. 展开更多
关键词 Byzantine fault tolerance distributed consensus PBFT blockchain PBFT optimization
下载PDF
Analysis and modeling of resistive switching mechanism oriented to fault tolerance of resistive memory based on memristor
11
作者 黄达 吴俊杰 唐玉华 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第3期602-607,共6页
With the progress of the semiconductor industry, resistive memories, especially the memristor, have drawn increasing attention. The resistive memory based on memrsitor has not been commercialized mainly because of dat... With the progress of the semiconductor industry, resistive memories, especially the memristor, have drawn increasing attention. The resistive memory based on memrsitor has not been commercialized mainly because of data error. Currently, there are more studies focused on fault tolerance of resistive memory. This paper studies the resistive switching mechanism which may have time-varying characteristics. Resistive switching mechanism is analyzed and its respective circuit model is established based on the memristor Spice model. 展开更多
关键词 resistive RAM fault tolerance resistive switching mechanism circuit model
下载PDF
Fault Tolerance in the Joint EDF-RMS Algorithm: A Comparative Simulation Study
12
作者 Rashmi Sharma Nitin Nitin Deepak Dahiya 《Computers, Materials & Continua》 SCIE EI 2022年第9期5197-5213,共17页
Failure is a systemic error that affects overall system performance and may eventually crash across the entire configuration.In Real-Time Systems(RTS),deadline is the key to successful completion of the program.If tas... Failure is a systemic error that affects overall system performance and may eventually crash across the entire configuration.In Real-Time Systems(RTS),deadline is the key to successful completion of the program.If tasks effectively meet the deadline,it means the system is working in pristine order.However,missing the deadline means a systemic fault due to which the system can crash(hard RTS)or degrade inclusive performance(soft RTS).To fine-tune the RTS,tolerance is the critical issue and must be handled with extreme care.This article explains the context of fault tolerance with improvised Joint EDF-RMS algorithm in RTS.The backup method has been derived to prevent the system from being recursively migrating the same task.If any task migrates three times,this migrated task will get shifted to the backup queue.This backup queue assigns the task to a backup processor and is destined for final execution.For performance evaluation purposes,a relative graph between fault and failure rates,failure and total processor utilization along with other averages have been evaluated.Furthermore,these archived results are compared with fault-tolerant Earliest Deadline First(EDF)and Rate Monotonic Scheduling(RMS)algorithms independently in relatively similar conditions.These comparisons show better performance against overloading conditions. 展开更多
关键词 fault tolerance joint edf-rms algorithm real-time systems(RTS) distributed systems migration
下载PDF
CF-BFT:A Dual-Mode Byzantine Fault-Tolerant Protocol Based on Node Authentication
13
作者 Zhiruo Zhang Feng Wang +2 位作者 Yang Liu Yang Lu Xinlei Liu 《Computers, Materials & Continua》 SCIE EI 2023年第9期3113-3129,共17页
The consensus protocol is one of the core technologies in blockchain,which plays a crucial role in ensuring the block generation rate,consistency,and safety of the blockchain system.Blockchain systems mainly adopt the... The consensus protocol is one of the core technologies in blockchain,which plays a crucial role in ensuring the block generation rate,consistency,and safety of the blockchain system.Blockchain systems mainly adopt the Byzantine Fault Tolerance(BFT)protocol,which often suffers fromslow consensus speed and high communication consumption to prevent Byzantine nodes from disrupting the consensus.In this paper,this paper proposes a new dual-mode consensus protocol based on node identity authentication.It divides the consensus process into two subprotocols:Check_BFT and Fast_BFT.In Check_BFT,the replicas authenticate the primary’s identity by monitoring its behaviors.First,assume that the systemis in a pessimistic environment,Check_BFT protocol detects whether the current environment is safe and whether the primary is an honest node;Enter the fast consensus stage after confirming the environmental safety,and implement Fast_BFT protocol.It is assumed that there are 3f+1 nodes in total.If more than 2f+1 nodes identify that the primary is honest,it will enter the Fast_BFT process.In Fast_BFT,the primary is allowed to handle transactions alone,and the replicas can only receive the messages sent by the primary.The experimental results show that the CF-BFT protocol significantly reduces the communication overhead and improves the throughput and scalability of the consensus protocol.Compared with the SAZyzz protocol,the throughput is increased by 3 times in the best case and 60%in the worst case. 展开更多
关键词 Blockchain consensus protocol DUAL-MODE Byzantine fault tolerance distributed system
下载PDF
Novel Double Modular Redundancy Based Fault-Tolerant FIR Filter for Image Denoising
14
作者 V.S.Vaisakhi D.Surendran 《Computer Systems Science & Engineering》 SCIE EI 2023年第7期181-193,共13页
In signal processing and communication systems,digital filters are widely employed.In some circumstances,the reliability of those systems is crucial,necessitating the use of fault tolerant filter implementations.Many ... In signal processing and communication systems,digital filters are widely employed.In some circumstances,the reliability of those systems is crucial,necessitating the use of fault tolerant filter implementations.Many strategies have been presented throughout the years to achieve fault tolerance by utilising the structure and properties of the filters.As technology advances,more complicated systems with several filters become possible.Some of the filters in those complicated systems frequently function in parallel,for example,by applying the same filter to various input signals.Recently,a simple strategy for achieving fault tolerance that takes advantage of the availability of parallel filters was given.Many fault-tolerant ways that take advantage of the filter’s structure and properties have been proposed throughout the years.The primary idea is to use structured authentication scan chains to study the internal states of finite impulse response(FIR)components in order to detect and recover the exact state of faulty modules through the state of non-faulty modules.Finally,a simple solution of Double modular redundancy(DMR)based fault tolerance was developed that takes advantage of the availability of parallel filters for image denoising.This approach is expanded in this short to display how parallel filters can be protected using error correction codes(ECCs)in which each filter is comparable to a bit in a standard ECC.“Advanced error recovery for parallel systems,”the suggested technique,can find and eliminate hidden defects in FIR modules,and also restore the system from multiple failures impacting two FIR modules.From the implementation,Xilinx ISE 14.7 was found to have given significant error reduction capability in the fault calculations and reduction in the area which reduces the cost of implementation.Faults were introduced in all the outputs of the functional filters and found that the fault in every output is corrected. 展开更多
关键词 fault tolerance FILTERS efficiency REDUNDANCY image denoising error correction codes double modular redundancy
下载PDF
Gorilla Troops Optimizer Based Fault Tolerant Aware Scheduling Scheme for Cloud Environment
15
作者 R.Rengaraj K.Latha 《Intelligent Automation & Soft Computing》 SCIE 2023年第2期1923-1937,共15页
In cloud computing(CC),resources are allocated and offered to the cli-ents transparently in an on-demand way.Failures can happen in CC environment and the cloud resources are adaptable tofluctuations in the performance... In cloud computing(CC),resources are allocated and offered to the cli-ents transparently in an on-demand way.Failures can happen in CC environment and the cloud resources are adaptable tofluctuations in the performance delivery.Task execution failure becomes common in the CC environment.Therefore,fault-tolerant scheduling techniques in CC environment are essential for handling performance differences,resourcefluxes,and failures.Recently,several intelli-gent scheduling approaches have been developed for scheduling tasks in CC with no consideration of fault tolerant characteristics.With this motivation,this study focuses on the design of Gorilla Troops Optimizer Based Fault Tolerant Aware Scheduling Scheme(GTO-FTASS)in CC environment.The proposed GTO-FTASS model aims to schedule the tasks and allocate resources by considering fault tolerance into account.The GTO-FTASS algorithm is based on the social intelligence nature of gorilla troops.Besides,the GTO-FTASS model derives afitness function involving two parameters such as expected time of completion(ETC)and failure probability of executing a task.In addition,the presented fault detector can trace the failed tasks or VMs and then schedule heal submodule in sequence with a remedial or retrieval scheduling model.The experimental vali-dation of the GTO-FTASS model has been performed and the results are inspected under several aspects.Extensive comparative analysis reported the better outcomes of the GTO-FTASS model over the recent approaches. 展开更多
关键词 Cloud computing gorilla troops optimizer task scheduling fault tolerant task completion time failure probability
下载PDF
Control Strategies for Digital Twin Systems
16
作者 Guo-Ping Liu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第1期170-180,共11页
With the continuous breakthrough in information technology and its integration into practical applications, industrial digital twins are expected to accelerate their development in the near future. This paper studies ... With the continuous breakthrough in information technology and its integration into practical applications, industrial digital twins are expected to accelerate their development in the near future. This paper studies various control strategies for digital twin systems from the viewpoint of practical applications.To make full use of advantages of digital twins for control systems, an architecture of digital twin control systems, adaptive model tracking scheme, performance prediction scheme, performance retention scheme, and fault tolerant control scheme are proposed. Those schemes are detailed to deal with different issues on model tracking, performance prediction, performance retention, and fault tolerant control of digital twin systems. Also, the stability of digital twin control systems is analysed. The proposed schemes for digital twin control systems are illustrated by examples. 展开更多
关键词 Digital twin control systems fault tolerant control model tracking performance prediction performance retention
下载PDF
Reliability Analysis of Varietal Hypercube
17
作者 Guiyu Shi Ganghua Xie Yinkui Li 《Applied Mathematics》 2024年第4期279-286,共8页
Connectivity is a vital metric to explore fault tolerance and reliability of network structure based on a graph model. Let be a connected graph. A connected graph G is called supper-κ (resp. supper-λ) if every minim... Connectivity is a vital metric to explore fault tolerance and reliability of network structure based on a graph model. Let be a connected graph. A connected graph G is called supper-κ (resp. supper-λ) if every minimum vertex cut (edge cut) of G is the set of neighbors of some vertex in G. The g-component connectivity of a graph G, denoted by , is the minimum number of vertices whose removal from G results in a disconnected graph with at least g components or a graph with fewer than g vertices. The g-component edge connectivity can be defined similarly. In this paper, we determine the g-component (edge) connectivity of varietal hypercube for small g. 展开更多
关键词 Interconnection Networks fault tolerance g-Component Connectivity
下载PDF
Data-based Fault Tolerant Control for Affine Nonlinear Systems Through Particle Swarm Optimized Neural Networks 被引量:13
18
作者 Haowei Lin Bo Zhao +1 位作者 Derong Liu Cesare Alippi 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2020年第4期954-964,共11页
In this paper, a data-based fault tolerant control(FTC) scheme is investigated for unknown continuous-time(CT)affine nonlinear systems with actuator faults. First, a neural network(NN) identifier based on particle swa... In this paper, a data-based fault tolerant control(FTC) scheme is investigated for unknown continuous-time(CT)affine nonlinear systems with actuator faults. First, a neural network(NN) identifier based on particle swarm optimization(PSO) is constructed to model the unknown system dynamics. By utilizing the estimated system states, the particle swarm optimized critic neural network(PSOCNN) is employed to solve the Hamilton-Jacobi-Bellman equation(HJBE) more efficiently.Then, a data-based FTC scheme, which consists of the NN identifier and the fault compensator, is proposed to achieve actuator fault tolerance. The stability of the closed-loop system under actuator faults is guaranteed by the Lyapunov stability theorem. Finally, simulations are provided to demonstrate the effectiveness of the developed method. 展开更多
关键词 Adaptive dynamic programming(ADP) critic neural network data-based fault tolerant control(FTC) particle swarm optimization(PSO)
下载PDF
Observer-based backstepping longitudinal control for carrier-based UAV with actuator faults 被引量:9
19
作者 Fengying Zheng Ziyang Zhen Huajun Gong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2017年第2期322-337,共16页
The paper presents the longitudinal control for the carrier-based unmanned aerial vehicle (UAV) system with unmeasured states, actuator faults, control input constraints, and external disturbances. By combining output... The paper presents the longitudinal control for the carrier-based unmanned aerial vehicle (UAV) system with unmeasured states, actuator faults, control input constraints, and external disturbances. By combining output state observer, adaptive fuzzy control, and constraint backstepping technology, a robust fault tolerant control approach is proposed. An output state observer with fuzzy logic systems is developed to estimate unmeasured states, and command filters rather than differentiations of virtual control law are used to solve the computational complexity problem in traditional backstepping. Additionally, a robust term is introduced to offset the fuzzy adaptive estimation error and external disturbance, and an appropriate fault controller structure with matching conditions obtained from fault compensation is proposed. Based on the Lyapunov theory, the designed control program is illustrated to guarantee that all the closed-loop signals of the given system are bounded, and the output errors converge to a small neighborhood of zero. A carrier-based UAV nonlinear longitudinal model is employed to testify the feasibility and validity of the control scheme. The simulation results show that all the controllers can perform at a satisfactory level of reference tracking despite the existence of unknown aerodynamic parameters and actuator faults. ? 2017 Beijing Institute of Aerospace Information. 展开更多
关键词 Actuators Aircraft control BACKSTEPPING Control system analysis Control theory Controllers Error compensation fault tolerance Flight control systems Fuzzy control Fuzzy filters Fuzzy logic State estimation Three term control systems Unmanned aerial vehicles (UAV)
下载PDF
Fault tolerant control based on stochastic distribution via RBF neural networks 被引量:9
20
作者 Zakwan Skaf Hong Wang Lei Guo 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第1期63-69,共7页
A new fault tolerant control(FTC) via a controller reconfiguration approach for general stochastic nonlinear systems is studied.Different from the formulation of classical FTC methods,it is supposed that the measure... A new fault tolerant control(FTC) via a controller reconfiguration approach for general stochastic nonlinear systems is studied.Different from the formulation of classical FTC methods,it is supposed that the measured information for the FTC is the probability density functions(PDFs) of the system output rather than its measured value.A radial basis functions(RBFs) neural network technique is proposed so that the output PDFs can be formulated in terms of the dynamic weighings of the RBFs neural network.As a result,the nonlinear FTC problem subject to dynamic relation between the input and the output PDFs can be transformed into a nonlinear FTC problem subject to dynamic relation between the control input and the weights of the RBFs neural network approximation to the output PDFs.The FTC design consists of two steps.The first step is fault detection and diagnosis(FDD),which can produce an alarm when there is a fault in the system and also locate which component has a fault.The second step is to adapt the controller to the faulty case so that the system is able to achieve its target.A linear matrix inequality(LMI) based feasible FTC method is applied such that the fault can be detected and diagnosed.An illustrated example is included to demonstrate the efficiency of the proposed algorithm,and satisfactory results have been obtained. 展开更多
关键词 probability density function(PDF) nonlinear stochastic system fault tolerant control(FTC).
下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部