A novel approach named aligned mixture probabilistic principal component analysis(AMPPCA) is proposed in this study for fault detection of multimode chemical processes. In order to exploit within-mode correlations,the...A novel approach named aligned mixture probabilistic principal component analysis(AMPPCA) is proposed in this study for fault detection of multimode chemical processes. In order to exploit within-mode correlations,the AMPPCA algorithm first estimates a statistical description for each operating mode by applying mixture probabilistic principal component analysis(MPPCA). As a comparison, the combined MPPCA is employed where monitoring results are softly integrated according to posterior probabilities of the test sample in each local model. For exploiting the cross-mode correlations, which may be useful but are inadvertently neglected due to separately held monitoring approaches, a global monitoring model is constructed by aligning all local models together. In this way, both within-mode and cross-mode correlations are preserved in this integrated space. Finally, the utility and feasibility of AMPPCA are demonstrated through a non-isothermal continuous stirred tank reactor and the TE benchmark process.展开更多
In the field of fault diagnosis, the state equation of nonlinear system, including the actuator and the component, has been established. When the faults in the system appear, it is difficult to observe the fault isola...In the field of fault diagnosis, the state equation of nonlinear system, including the actuator and the component, has been established. When the faults in the system appear, it is difficult to observe the fault isolation between the actuator and the component. In order to diagnose the component fault in the nonlinear systems, a novel strategy is proposed. The nonlinear state equation with only the component system is built on mathematical equations. The nonlinearity of the component equation is expanded and estimated with Taylor series. If the actuator is perfect, the anomaly of the state equations reflects the component fault. The fault feature index is defined to detect the component fault and the initial fault. The numerical examples of the component faults are simulated for multiple-input multiple-output(MIMO)nonlinear systems. The results show that the component faults,as well as the incipient faults, can be detected. Furthermore, the effectiveness of the proposed strategy is verified. This method can also provide a foundation for the component fault reconfiguration control.展开更多
Conventional principal component analysis(PCA) can obtain low-dimensional representations of original data space, but the selection of principal components(PCs) based on variance is subjective, which may lead to infor...Conventional principal component analysis(PCA) can obtain low-dimensional representations of original data space, but the selection of principal components(PCs) based on variance is subjective, which may lead to information loss and poor monitoring performance. To address dimension reduction and information preservation simultaneously, this paper proposes a novel PC selection scheme named full variable expression. On the basis of the proposed relevance of variables with each principal component, key principal components can be determined.All the key principal components serve as a low-dimensional representation of the entire original variables, preserving the information of original data space without information loss. A squared Mahalanobis distance, which is introduced as the monitoring statistic, is calculated directly in the key principal component space for fault detection. To test the modeling and monitoring performance of the proposed method, a numerical example and the Tennessee Eastman benchmark are used.展开更多
Currently, some fault prognosis technology occasionally has relatively unsatisfied performance especially for in- cipient faults in nonlinear processes duo to their large time delay and complex internal connection. To...Currently, some fault prognosis technology occasionally has relatively unsatisfied performance especially for in- cipient faults in nonlinear processes duo to their large time delay and complex internal connection. To overcome this deficiency, multivariate time delay analysis is incorporated into the high sensitive local kernel principal component analysis. In this approach, mutual information estimation and Bayesian information criterion (BIC) are separately used to acquire the correlation degree and time delay of the process variables. Moreover, in order to achieve prediction, time series prediction by back propagation (BP) network is applied whose input is multivar- iate correlated time series other than the original time series. Then the multivariate time delayed series and future values obtained by time series prediction are combined to construct the input of local kernel principal component analysis (LKPCA) model for incipient fault prognosis. The new method has been exemplified in a sim- ple nonlinear process and the complicated Tennessee Eastman (TE) benchmark process. The results indicate that the new method has suoerioritv in the fault prognosis sensitivity over other traditional fault prognosis methods.展开更多
Aircraft engine component and sensor fault detection and isolation approach was proposed,which included fault type detection module and component-sensor simultaneous fault isolation module.The approach can not only di...Aircraft engine component and sensor fault detection and isolation approach was proposed,which included fault type detection module and component-sensor simultaneous fault isolation module.The approach can not only distinguish among sensor fault,component fault and component-sensor simultaneous fault,but also isolate and locate sensor fault and the type of engine component fault when the engine component fault and the sensor faults occur simultaneously.The double-threshold mechanism has been proposed,in which the fault diagnostic threshold changed with the sensor type and the engine condition,and it greatly improved the accuracy and robustness of sensor fault diagnosis system.Simulation results show that the approach proposed can diagnose and isolate the sensor and engine component fault with improved accuracy.It effectively improves the fault diagnosis ability of aircraft engine.展开更多
This paper analyzes the fundamental frequency impedance presents a novel transmission line pilot protection scheme characteristic of a thyristor controlled series capacitor (TCSC) and based on fault component integr...This paper analyzes the fundamental frequency impedance presents a novel transmission line pilot protection scheme characteristic of a thyristor controlled series capacitor (TCSC) and based on fault component integrated impedance (FCII) calculated for a transmission line with TCSC and controllable shunt reactor (CSR). The FCII is defined as the ratio of the sum of the fault component voltage phasors of a transmission line with TCSC and CSR to the sum of the fault component current phasors where all the phasors are determined at both line's terminals. It can be used to distinguish internal faults occurring on the line from external ones. If the fault is an external one the FCII reflects the line's capacitive impedance and has large value. If the fault is an internal one on the line the FCII reflects the impedance of the equivalent system and the line and is relatively small. The new pilot protection scheme can be easily set and has the fault phase selection ability and also it is not affected by the capacitive current and the fault transition resistance. It is not sensitive to compensation level and dynamics of TCSC and CSR. The effectiveness of the new scheme is validated against data obtained in ATP simulations and Northwest China 750 kV Project.展开更多
Purpose–The two-tank level control system is one of the real-world’s second-order system(SOS)widely used as the process control in industries.It is normally operated under the Proportional integral and derivative(PI...Purpose–The two-tank level control system is one of the real-world’s second-order system(SOS)widely used as the process control in industries.It is normally operated under the Proportional integral and derivative(PID)feedback control loop.The conventional PID controller performance degrades significantly in the existence of modeling uncertainty,faults and process disturbances.To overcome these limitations,the paper suggests an interval type-2 fuzzy logic based Tilt-Integral-Derivative Controller(IT2TID)which is modified structure of PID controller.Design/methodology/approach–In this paper,an optimization IT2TID controller design for the conical,noninteracting level control system is presented.Regarding to modern optimization context,the flower pollination algorithm(FPA),among the most coherent population-based metaheuristic optimization techniques is applied to search for the appropriate IT2FTID’s and IT2FPID’s parameters.The proposed FPA-based IT2FTID/IT2FPID design framework is considered as the constrained optimization problem.System responses obtained by the IT2FTID controller designed by the FPA will be differentiated with those acquired by the IT2FPID controller also designed by the FPA.Findings–As the results,it was found that the IT2FTID can provide the very satisfactory tracking and regulating responses of the conical two-tank noninteracting level control system superior as compared to IT2FPID significantly under the actuator and system component faults.Additionally,statistical Z-test carried out for both the controllers and an effectiveness of the proposed IT2FTID controller is proven as compared to IT2FPID and existing passive fault tolerant controller in recent literature.Originality/value–Application of new metaheuristic algorithm to optimize interval type-2 fractional order TID controller for nonlinear level control system with two type of faults.Also,proposed method will compare with other method and statistical analysis will be presented.展开更多
The setting work of backup protection using steady-state current is tedious,and mismatches occasionally occur due to the increased proportion of distributed generations(DGs)connected to the power grid.Thus,there is a ...The setting work of backup protection using steady-state current is tedious,and mismatches occasionally occur due to the increased proportion of distributed generations(DGs)connected to the power grid.Thus,there is a practical need to study a backup protection technology that does not require step-by-step setting and can be adaptively coordinated.This paper proposes an action sequence adaptive to fault positions that uses only positive sequence fault component(PSFC)voltage.Considering the influence of DGs,the unified time dial setting can be obtained by selecting specific points.The protection performance is improved by using the adjacent upstream and downstream protections to meet the coordination time interval in the case of metallic faults at the near-and far-ends of the line.Finally,the expression and implementation scheme for inverse-time backup protection(ITBP)based on the unified characteristic equation is given.Simulation results show that this scheme can adapt to DG penetration scenarios and can realize the adaptive coordination of multi-level relays.展开更多
The renewable microgrid(RMG)is a critical way to organize and utilize new energy.Its control and protection strategies during the fault are the core technologies to ensure the safe operation and stability of the syste...The renewable microgrid(RMG)is a critical way to organize and utilize new energy.Its control and protection strategies during the fault are the core technologies to ensure the safe operation and stability of the system.The traditional protection principles are unsuitable for RMGs due to the flexibility of RMG operation,the complexity of RMG topology,and the variety of fault control strategies of inverter-interfaced distributed generators(IIDGs).The traditional fault component protection principle is affected by the low voltage ride-through(LVRT)control strategy and will fail in some scenarios.In order to make the fault component protection principle available in every scenario,a current-based fault control strategy is proposed.Specific fault characteristics are generated by the grid-feeding IIDGs during the fault so they can be equivalent to the open circuits,and the fault models in additional network can be simplified.By analyzing the fault characteristics,an RMG protection strategy based on the current-based fault control of IIDGs is presented.The fault directions of feeders can be distinguished and the fault feeder can be located accurately in both grid-connected and islanded RMGs.Then,the grid-feeding IIDGs can transit to LVRT mode smoothly.Thus,IIDGs are considered comprehensively in terms of coordinating with fault control and fault characteristic generation.Finally,the experimental results of the hardware platform prove the effectiveness of the proposed current-based fault control strategy,and the simulation results based on PSCAD/EMTDC verify the correctness of the protection strategy.展开更多
Fault detection of non-linear systems is of great importance in control systems reliability.Undetected faults could lead to irreparable damage.This paper deals with fault diagnosis of helicopter system in the presence...Fault detection of non-linear systems is of great importance in control systems reliability.Undetected faults could lead to irreparable damage.This paper deals with fault diagnosis of helicopter system in the presence of uncertainties and disturbances.To deal with sensor,actuator and component faults,the observer-based diagnosis scheme which employs sliding mode observer is designed.Faults are modelled as an additive and multiplicative fault which is introduced as an abrupt and intermittent fault into the system.Observer inequality constraints and gain matrices are solved using a Lyapunov-based approach.The results display the effectiveness of the designed observer and the ability to handle faults.展开更多
This series of papers report on relay protection strategies that satisfy the demands of a strong smart grid.These strategies include ultra-high-speed transient-based fault discrimination,new co-ordination principles o...This series of papers report on relay protection strategies that satisfy the demands of a strong smart grid.These strategies include ultra-high-speed transient-based fault discrimination,new co-ordination principles of main and back-up protection to suit the diversification of the power network,optimal co-ordination between relay protection and auto-reclosure to enhance robustness of the power network.There are also new development in protection early warning and tripping functions of protection based on wide area information.In this paper the principles,algorithms and techniques of single-ended,transient-based and ultra-high-speed protection for EHV transmission lines,buses,DC transmission lines and faulty line selection for non-solid earthed networks are presented.Tests show that the methods presented can determine fault characteristics with ultra-high-speed(5 ms)and that the new principles of fault discrimination can satisfy the demand of EHV systems within a smart grid.展开更多
基金Supported by the National Natural Science Foundation of China(61374140)Shanghai Pujiang Program(12PJ1402200)
文摘A novel approach named aligned mixture probabilistic principal component analysis(AMPPCA) is proposed in this study for fault detection of multimode chemical processes. In order to exploit within-mode correlations,the AMPPCA algorithm first estimates a statistical description for each operating mode by applying mixture probabilistic principal component analysis(MPPCA). As a comparison, the combined MPPCA is employed where monitoring results are softly integrated according to posterior probabilities of the test sample in each local model. For exploiting the cross-mode correlations, which may be useful but are inadvertently neglected due to separately held monitoring approaches, a global monitoring model is constructed by aligning all local models together. In this way, both within-mode and cross-mode correlations are preserved in this integrated space. Finally, the utility and feasibility of AMPPCA are demonstrated through a non-isothermal continuous stirred tank reactor and the TE benchmark process.
基金supported by the National Natural Science Foundation of China(6117509261433016)
文摘In the field of fault diagnosis, the state equation of nonlinear system, including the actuator and the component, has been established. When the faults in the system appear, it is difficult to observe the fault isolation between the actuator and the component. In order to diagnose the component fault in the nonlinear systems, a novel strategy is proposed. The nonlinear state equation with only the component system is built on mathematical equations. The nonlinearity of the component equation is expanded and estimated with Taylor series. If the actuator is perfect, the anomaly of the state equations reflects the component fault. The fault feature index is defined to detect the component fault and the initial fault. The numerical examples of the component faults are simulated for multiple-input multiple-output(MIMO)nonlinear systems. The results show that the component faults,as well as the incipient faults, can be detected. Furthermore, the effectiveness of the proposed strategy is verified. This method can also provide a foundation for the component fault reconfiguration control.
基金Supported by the National Natural Science Foundation of China(No.61374140)Shanghai Pujiang Program(Project No.12PJ1402200)
文摘Conventional principal component analysis(PCA) can obtain low-dimensional representations of original data space, but the selection of principal components(PCs) based on variance is subjective, which may lead to information loss and poor monitoring performance. To address dimension reduction and information preservation simultaneously, this paper proposes a novel PC selection scheme named full variable expression. On the basis of the proposed relevance of variables with each principal component, key principal components can be determined.All the key principal components serve as a low-dimensional representation of the entire original variables, preserving the information of original data space without information loss. A squared Mahalanobis distance, which is introduced as the monitoring statistic, is calculated directly in the key principal component space for fault detection. To test the modeling and monitoring performance of the proposed method, a numerical example and the Tennessee Eastman benchmark are used.
基金Supported by the National Natural Science Foundation of China(61573051,61472021)the Natural Science Foundation of Beijing(4142039)+1 种基金Open Fund of the State Key Laboratory of Software Development Environment(SKLSDE-2015KF-01)Fundamental Research Funds for the Central Universities(PT1613-05)
文摘Currently, some fault prognosis technology occasionally has relatively unsatisfied performance especially for in- cipient faults in nonlinear processes duo to their large time delay and complex internal connection. To overcome this deficiency, multivariate time delay analysis is incorporated into the high sensitive local kernel principal component analysis. In this approach, mutual information estimation and Bayesian information criterion (BIC) are separately used to acquire the correlation degree and time delay of the process variables. Moreover, in order to achieve prediction, time series prediction by back propagation (BP) network is applied whose input is multivar- iate correlated time series other than the original time series. Then the multivariate time delayed series and future values obtained by time series prediction are combined to construct the input of local kernel principal component analysis (LKPCA) model for incipient fault prognosis. The new method has been exemplified in a sim- ple nonlinear process and the complicated Tennessee Eastman (TE) benchmark process. The results indicate that the new method has suoerioritv in the fault prognosis sensitivity over other traditional fault prognosis methods.
基金Program Sponsored for Scientific Innovation Research of College Graduate in Jiangsu Province(CX10B_108Z)
文摘Aircraft engine component and sensor fault detection and isolation approach was proposed,which included fault type detection module and component-sensor simultaneous fault isolation module.The approach can not only distinguish among sensor fault,component fault and component-sensor simultaneous fault,but also isolate and locate sensor fault and the type of engine component fault when the engine component fault and the sensor faults occur simultaneously.The double-threshold mechanism has been proposed,in which the fault diagnostic threshold changed with the sensor type and the engine condition,and it greatly improved the accuracy and robustness of sensor fault diagnosis system.Simulation results show that the approach proposed can diagnose and isolate the sensor and engine component fault with improved accuracy.It effectively improves the fault diagnosis ability of aircraft engine.
基金supported by the National Natural Science Foundation of China (Grant Nos.50877061 and 51037005)
文摘This paper analyzes the fundamental frequency impedance presents a novel transmission line pilot protection scheme characteristic of a thyristor controlled series capacitor (TCSC) and based on fault component integrated impedance (FCII) calculated for a transmission line with TCSC and controllable shunt reactor (CSR). The FCII is defined as the ratio of the sum of the fault component voltage phasors of a transmission line with TCSC and CSR to the sum of the fault component current phasors where all the phasors are determined at both line's terminals. It can be used to distinguish internal faults occurring on the line from external ones. If the fault is an external one the FCII reflects the line's capacitive impedance and has large value. If the fault is an internal one on the line the FCII reflects the impedance of the equivalent system and the line and is relatively small. The new pilot protection scheme can be easily set and has the fault phase selection ability and also it is not affected by the capacitive current and the fault transition resistance. It is not sensitive to compensation level and dynamics of TCSC and CSR. The effectiveness of the new scheme is validated against data obtained in ATP simulations and Northwest China 750 kV Project.
文摘Purpose–The two-tank level control system is one of the real-world’s second-order system(SOS)widely used as the process control in industries.It is normally operated under the Proportional integral and derivative(PID)feedback control loop.The conventional PID controller performance degrades significantly in the existence of modeling uncertainty,faults and process disturbances.To overcome these limitations,the paper suggests an interval type-2 fuzzy logic based Tilt-Integral-Derivative Controller(IT2TID)which is modified structure of PID controller.Design/methodology/approach–In this paper,an optimization IT2TID controller design for the conical,noninteracting level control system is presented.Regarding to modern optimization context,the flower pollination algorithm(FPA),among the most coherent population-based metaheuristic optimization techniques is applied to search for the appropriate IT2FTID’s and IT2FPID’s parameters.The proposed FPA-based IT2FTID/IT2FPID design framework is considered as the constrained optimization problem.System responses obtained by the IT2FTID controller designed by the FPA will be differentiated with those acquired by the IT2FPID controller also designed by the FPA.Findings–As the results,it was found that the IT2FTID can provide the very satisfactory tracking and regulating responses of the conical two-tank noninteracting level control system superior as compared to IT2FPID significantly under the actuator and system component faults.Additionally,statistical Z-test carried out for both the controllers and an effectiveness of the proposed IT2FTID controller is proven as compared to IT2FPID and existing passive fault tolerant controller in recent literature.Originality/value–Application of new metaheuristic algorithm to optimize interval type-2 fractional order TID controller for nonlinear level control system with two type of faults.Also,proposed method will compare with other method and statistical analysis will be presented.
基金supported in part by the National Natural Science Foundation of China(NSFC-UKRI_EPSRC)(No.52061635105)in part by the Science and Technology Program of SGCC(No.5100-202040327A-0-0-00).
文摘The setting work of backup protection using steady-state current is tedious,and mismatches occasionally occur due to the increased proportion of distributed generations(DGs)connected to the power grid.Thus,there is a practical need to study a backup protection technology that does not require step-by-step setting and can be adaptively coordinated.This paper proposes an action sequence adaptive to fault positions that uses only positive sequence fault component(PSFC)voltage.Considering the influence of DGs,the unified time dial setting can be obtained by selecting specific points.The protection performance is improved by using the adjacent upstream and downstream protections to meet the coordination time interval in the case of metallic faults at the near-and far-ends of the line.Finally,the expression and implementation scheme for inverse-time backup protection(ITBP)based on the unified characteristic equation is given.Simulation results show that this scheme can adapt to DG penetration scenarios and can realize the adaptive coordination of multi-level relays.
基金supported by the Fundamental Research Funds for the Central Universities(No.22120210164).
文摘The renewable microgrid(RMG)is a critical way to organize and utilize new energy.Its control and protection strategies during the fault are the core technologies to ensure the safe operation and stability of the system.The traditional protection principles are unsuitable for RMGs due to the flexibility of RMG operation,the complexity of RMG topology,and the variety of fault control strategies of inverter-interfaced distributed generators(IIDGs).The traditional fault component protection principle is affected by the low voltage ride-through(LVRT)control strategy and will fail in some scenarios.In order to make the fault component protection principle available in every scenario,a current-based fault control strategy is proposed.Specific fault characteristics are generated by the grid-feeding IIDGs during the fault so they can be equivalent to the open circuits,and the fault models in additional network can be simplified.By analyzing the fault characteristics,an RMG protection strategy based on the current-based fault control of IIDGs is presented.The fault directions of feeders can be distinguished and the fault feeder can be located accurately in both grid-connected and islanded RMGs.Then,the grid-feeding IIDGs can transit to LVRT mode smoothly.Thus,IIDGs are considered comprehensively in terms of coordinating with fault control and fault characteristic generation.Finally,the experimental results of the hardware platform prove the effectiveness of the proposed current-based fault control strategy,and the simulation results based on PSCAD/EMTDC verify the correctness of the protection strategy.
文摘Fault detection of non-linear systems is of great importance in control systems reliability.Undetected faults could lead to irreparable damage.This paper deals with fault diagnosis of helicopter system in the presence of uncertainties and disturbances.To deal with sensor,actuator and component faults,the observer-based diagnosis scheme which employs sliding mode observer is designed.Faults are modelled as an additive and multiplicative fault which is introduced as an abrupt and intermittent fault into the system.Observer inequality constraints and gain matrices are solved using a Lyapunov-based approach.The results display the effectiveness of the designed observer and the ability to handle faults.
文摘This series of papers report on relay protection strategies that satisfy the demands of a strong smart grid.These strategies include ultra-high-speed transient-based fault discrimination,new co-ordination principles of main and back-up protection to suit the diversification of the power network,optimal co-ordination between relay protection and auto-reclosure to enhance robustness of the power network.There are also new development in protection early warning and tripping functions of protection based on wide area information.In this paper the principles,algorithms and techniques of single-ended,transient-based and ultra-high-speed protection for EHV transmission lines,buses,DC transmission lines and faulty line selection for non-solid earthed networks are presented.Tests show that the methods presented can determine fault characteristics with ultra-high-speed(5 ms)and that the new principles of fault discrimination can satisfy the demand of EHV systems within a smart grid.