期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Strontium ferrite powders prepared from oily cold rolling mill sludge by solid-state reaction method 被引量:4
1
作者 Bo Liu Shen-Gen Zang +2 位作者 Jian-jun Tian De-an Pan Hang-Xin Zhu 《Rare Metals》 SCIE EI CAS CSCD 2013年第5期518-523,共6页
Oily cold rolling mill (CRM) sludge is one of the pollutants emitted by iron and steel plants. Recycling oily CRM sludge can not only reduce pollution but also bring social and environmental benefits. In this study,... Oily cold rolling mill (CRM) sludge is one of the pollutants emitted by iron and steel plants. Recycling oily CRM sludge can not only reduce pollution but also bring social and environmental benefits. In this study, using oily CRM sludge as sources of iron oxide, the strontium ferrite powders were synthesized in multiple steps including vacuum distillation, magnetic separation, oxidizing roasting, and solidstate reaction. The optimal technological conditions of vacuum distillation and oxidizing roasting were studied carefully. To consider the effects of Fe203/ SrCO3 tool ratio, calcination temperature, milling time and calcination time on magnetic properties of prepared strontium ferrite powders, the orthogonal experimental method was adopted. The maximum saturation magneti- zation (62.6 mA-m2.g-1) of the synthesized strontium ferrite powders was achieved at the Fe203/SrCO3 mol ratio of 6, 5 h milling time, 1250 ~C calcination temperature, and 1 h calcination time. Strontium ferrite powders syn- thesis method not only provides a cheap, high quality raw material for the production of strontium ferrite powders, but also effectively prevents the environmental pollution. 展开更多
关键词 Strontium ferrite powders Oily cold rolling mill sludge Solid-state reaction method RECYCLING
下载PDF
Microstructure of pre-sintered permanent magnetic strontium ferrite powder 被引量:2
2
作者 YU Hongya LIU Zhengyi ZENG Dechang 《Rare Metals》 SCIE EI CAS CSCD 2006年第z1期572-577,共6页
The microstructure and characteristics of pre-sintered strontium ferrite powder were investigated by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The present study shows that t... The microstructure and characteristics of pre-sintered strontium ferrite powder were investigated by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The present study shows that the pre-sintered strontium ferrite powder is provided with a certain particle size distribution, which results in high-density magnets. The strontium ferrite particle has a laminar hexagonal structure with a size similar to ferrite single domain. Ferric oxide phase due to an incomplete solid phase reaction in the first sintering is discovered, which will deteriorate the magnetic properties of ferrite magnet. In addition, the waste ferrite magnets with needle shape arranging along C axis in good order into the powders are found, which have no negative effects on finished product quality. 展开更多
关键词 pre-sintered permanent magnetic strontium ferrite powder TEM MICROSTRUCTURE particle size
下载PDF
Tuning of magnetic properties of aluminium-doped strontium hexaferrite powders
3
作者 马小梅 刘杰 +1 位作者 朱生志 史慧刚 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第12期344-349,共6页
M-type Al-doped strontium ferrite powders (SrA1xFe2n-xO19, n = 5.9) with nominal Al content of x = 0-2.0 are prepared by traditional ceramic technology. The phase identification of the powders, performed using x-ray... M-type Al-doped strontium ferrite powders (SrA1xFe2n-xO19, n = 5.9) with nominal Al content of x = 0-2.0 are prepared by traditional ceramic technology. The phase identification of the powders, performed using x-ray diffraction, shows the presence of purity hexaferrite structure and absence of any secondary phase. The lattice parameters decrease with increasing x. The average grain size of the powders is about 300 nm-400 nm at Al3+ ion content x = 0-2.0. The room- temperature hysteresis loops of the powders, measured by using vibrating sample magnetometer, show that the specific saturation magnetization (σs) value continuously decreases while the coercivity (Hc) value increases with increasing x, and He reaches to 9759 Oe (1 Oe = 79.5775 A/m) at x = 2.0. According to the law of approach saturation, Hc value increases with increasing Al3+ ion content, which is attributed to the saturation magnetization (Ms) decreasing more rapidly than the magnetic anisotropy constant (Kl) obtained by numerical fitting of the hysteresis loops. The distribution of Al3+ ions in the hexaferrite structure of SrAlxFe2n- xO19 is investigated by using 57Co Mtssbauer spectroscopy. The effect of Al3+ doping on static magnetic properties contributes to the improvement of magnetic anisotropy field. 展开更多
关键词 AL-DOPED strontium ferrite powders high coercivity
下载PDF
Co-precipitation/Hydrothermal Synthesis of BiFeO_3 Powder 被引量:2
4
作者 MIAO Hongyan ZHANG Qiong +1 位作者 TAN Guoqiang ZHU Gangqiang 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2008年第4期507-509,共3页
A coprecipitation/hydrothermal route was utilized to fabricate pure phase BiFeO3 powders using FeCl3·6H2O and Bi(NO3)3·5H2O as starting materials, ammonia as precipitant and NaOH as mineralizer. The synthe... A coprecipitation/hydrothermal route was utilized to fabricate pure phase BiFeO3 powders using FeCl3·6H2O and Bi(NO3)3·5H2O as starting materials, ammonia as precipitant and NaOH as mineralizer. The synthesized powders were characterized by XRD, SEM and DSC-TG analysis. In the process, single-phase BiFeO3 powders could be obtained at a hydrothermal reaction temperature of 180 ℃, with NaOH of 0.15 mol/L, in contrast to 200 ℃ and 4 mol/L for conventional hydrothermal route. Meanwhile, the micro-morphology of synthesized BiFeO3 powders changed with different reaction temperatures and concentrations of NaOH. The N6el temperature, Curie temperature and decomposition temperature of the synthesized BiFeO3 powders were detected to be 301 ℃, 828 ℃ and 964 ℃, respectively. The hydrothermal reactions mechanism to fabricate BiFeO3 powders were discussed based on the in-situ transformation process. 展开更多
关键词 CO-PRECIPITATION hydrothermal synthesis bismuth ferrite powders MULTIFERROICS
下载PDF
Heat Generation Properties in AC Magnetic Field for Ferrimagnetic R_3Fe_5O_(12) (R=Y,Sm,Gd,Dy,Ho,Er) Powder Materials Synthesized by Reverse Coprecipitation Method
5
作者 Tadahiko NISHIMORI Takashi NAOHARA +2 位作者 Tsunehiro MAEHARA Hideyuki HIRAZAWA Hiromichi AONO 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2012年第S1期600-603,共4页
R_3Fe_5O_(12)(R=Y,Sm,Gd,Dy,Ho,Er)powders synthesized by a reverse coprecipitation method were investigated for their heat generation ability in an AC magnetic field.The heat generation ability in an AC magnetic field ... R_3Fe_5O_(12)(R=Y,Sm,Gd,Dy,Ho,Er)powders synthesized by a reverse coprecipitation method were investigated for their heat generation ability in an AC magnetic field.The heat generation ability in an AC magnetic field was strongly influenced by the particle size,i.e.,calcination temperature of the precursor.The highest heat generation ability was obtained for the Y_3Fe_5O_(12)sample calcined at 1100 ℃.The heat generation ability(W.g^(-1))can be estimated using a 3.6× 10^(-4)fH^3(frequency(flkHz)and the magnetic field(H/kA·m^(-1)))for the Y_3Fe_5O_(12)sample calcined at 1100 ℃. 展开更多
关键词 heat generation AC magnetic field ferrite powder
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部