The transformation behavior of ferrous sulfate was examined during hematite precipitation for iron removal in hydrometallurgical zinc.Specifically,the effects of the method used for oxygen supply(pre-crystallization o...The transformation behavior of ferrous sulfate was examined during hematite precipitation for iron removal in hydrometallurgical zinc.Specifically,the effects of the method used for oxygen supply(pre-crystallization or pre-oxidation of ferrous sulfate)and temperature(170–190℃)on the redissolution and oxidation–hydrolysis of ferrous sulfate were studied.The precipitation characteristics and phase characterization of the hematite product were investigated.The results showed that the solubility of ferrous sulfate was considerably lower at elevated temperatures.The dissolution behavior of ferrous sulfate crystals was influenced by both the concentrations of free acid and zinc sulfate and the oxydrolysis of ferrous ions.Rapid oxydrolysis of ferrous ions may serve as the dissolution driving force.Hematite precipitation proceeded via the following sequential steps:crystallization,redissolution,oxidation,and precipitation of ferrous sulfate.The dissolution of ferrous sulfate was slow,which helped to maintain a low supersaturation environment,thereby affording the production of high-grade hematite.展开更多
The effect of PEG dispersant on the magnetic separation of magnetite(Fe3O4) synthesized from ferrous sulfate solution via co-precipitation method with calcium hydroxide as the precipitant was investigated. The resul...The effect of PEG dispersant on the magnetic separation of magnetite(Fe3O4) synthesized from ferrous sulfate solution via co-precipitation method with calcium hydroxide as the precipitant was investigated. The results indicated that a PEG dispersant could significantly affect Fe3O4 recovery. Adding PEG during the preparation of Fe3O4 was unfavorable for Fe3O4 recovery. When the PEG-6000 concentration was increased from 0 to 8 g/L, the iron grade and median particle size of the Fe3O4 product decreased from 65.58% and 2.35 μm to 57.79% and 1.35 μm, respectively. However, adding PEG during the wet milling of the mixed product promoted the subsequent recovery of Fe3O4. When the amount of PEG-200 increased from 0% to 4% of the powder mass, the grade of iron in the Fe3O4 product increased from 65.58% to 68.32%. While the relative molecular mass of PEG at an amount of 4% of the powder mass increased from 200 to 20000, the grade of iron was reduced from 68.32% to 66.70%.展开更多
The preparation of microsized hematite powder from ferrous sulfate using microwave calcination was investigated based on the TG/DTG curves. The decomposition of industrial ferrous sulfate under air atmosphere was divi...The preparation of microsized hematite powder from ferrous sulfate using microwave calcination was investigated based on the TG/DTG curves. The decomposition of industrial ferrous sulfate under air atmosphere was divided into three stages, and a ferrous sulfate sample added with 15% Fe_2O_3 could strongly absorb microwave energy. Therefore, preparing hematite powder from ferrous sulfate using microwave calcination was feasible. Hematite was obtained under the following optimized conditions: calcination temperature, 850 °C; microwave power, 650 W; and sample amount, 40 g. The obtained hematite satisfied the first-grade quality requirements. The total ferrum value was more than 58%, and the total sulfur and phosphorus contents were less than 0.5% and 0.2%, respectively. X-ray powder diffraction and scanning electron microscopy were used to characterize the structure and morphology of microsized hematite powder. The particles were non-spherical in shape, and the average particle size distribution was 10.45 μm. This work provides new potential applications for waste ferrous sulfate.展开更多
The present study was conducted to elucidate the influence of impurities in waste ferrous sulfate on its recovery of magnetite. Ferrous sulfate solution was purified by the addition of Na OH solution to precipitate im...The present study was conducted to elucidate the influence of impurities in waste ferrous sulfate on its recovery of magnetite. Ferrous sulfate solution was purified by the addition of Na OH solution to precipitate impurities, and magnetite was recovered from ferrous sulfate solution without and with purification pretreatment. Calcium hydroxide was added to the solution of ferrous sulfate as a precipitator. A mixed product of magnetite and gypsum was subsequently obtained by air oxidation and heating. Wet-milling was performed prior to magnetic separation to recover magnetite from the mixed products. The results show that with the purification pretreatment, the grade of iron in magnetite concentrate increased from 62.05% to 65.58% and the recovery rate of iron decreased from 85.35% to 80.35%. The purification pretreatment reduced the conglutination between magnetite and gypsum, which favors their subsequent magnetic separation. In summary, a higher-grade magnetite with a better crystallinity and a larger particle size of 2.35 μm was obtained with the purification pretreatment.展开更多
Background: For the WHO, anemia is a serious public health problem, with an emphasis on deprivation anemia, which has socioeconomic conditions as determining factors for its development. Among nutritional anemias, the...Background: For the WHO, anemia is a serious public health problem, with an emphasis on deprivation anemia, which has socioeconomic conditions as determining factors for its development. Among nutritional anemias, the most relevant is iron deficiency, whose main form of prevention and treatment is supplementation with ferrous sulfate dispensed in the public health system, with the need to periodically check whether the drug has the quality required by regulatory health agencies. Thus, the objective of this study was to analyze the quality of the ferrous sulfate medication, from the same laboratory, and dispensed in a basic health unit (BHU) and a commercial pharmacy (CF). Materials and Methods: An analytical, qualitative and quantitative study of ferrous sulfate heptahydrate (25 mg/mL in 100 mL syrup), carried out on 20 BHU and 10 from CF, both from the same laboratory, but in different batches. Samples were subjected to organoleptic analysis and verification of iron content, pH, volume and density. Data were compared with values recommended by the Brazilian pharmacopoeia 5th edition. Results: Three batches were evaluated: 4659 of from the CF;4574 from the BHU1, and 4576 from the BHU2, stored in accordance with RDC 304/19 of ANVISA. All showed compliance with some organoleptic characteristics;and stable values in pH (3.61 - CF;3.67 - BHU1;3.65 - BHU2), density (1.079 - CF;1.088 - BHU1;1.086 - BHU2) and individual volume (not less than 95% of the declared value). However, it was not possible to detect the odor of herbs;the average volume of batch BHU1 was below the declared value, and the iron content of both BHUs was above the maximum value of pharmacopoeia standards. Conclusion: Samples did not show full compliance with the physical and chemical parameters evaluated, suggesting deviation in the quality of the medication.展开更多
An easy preparation of tetrahydropyranyl (THP) ethers of alcohols and phenols with 3,4-dihydro-2H-pyran (DHP) in refluxing dichloromethane has been carried out in good to excellent yields under catalysis of anhydrous ...An easy preparation of tetrahydropyranyl (THP) ethers of alcohols and phenols with 3,4-dihydro-2H-pyran (DHP) in refluxing dichloromethane has been carried out in good to excellent yields under catalysis of anhydrous ferrous sulfate.展开更多
In order to develop a low-cost approach for separating macro amounts of Mo and W, the effects of parameters on the separation using FeSO4 as precipitation reagent were studied. The results show that the optimum reacti...In order to develop a low-cost approach for separating macro amounts of Mo and W, the effects of parameters on the separation using FeSO4 as precipitation reagent were studied. The results show that the optimum reaction temperature is 10 °C, and the separation factor does not further improve after a reaction time of 7 h. Moreover, slow dropping speed of the precipitation reagent is beneficial for improving the separation efficiency. When the H+/W molar ratio is below 1/1, the addition of acid to a neutral solution is favorable to the separation. For the solution with an ammonium concentration below 3 mol/L, the separation factor is high due to the high W-precipitation rate. Furthermore, the method is also effective when it is applied to industrial solution containing some other impurities. All these indicate the ferrous salts have great potential for removing W from Mo on a commercial scale.展开更多
Nitric oxide (NO) removal and sulfur dioxide (SO2) removal by sodium persulfate (Na2S2O8) were studied in a Bubble Column Reactor. The proposed reaction pathways of NO and SO2 removal are discussed. The effects ...Nitric oxide (NO) removal and sulfur dioxide (SO2) removal by sodium persulfate (Na2S2O8) were studied in a Bubble Column Reactor. The proposed reaction pathways of NO and SO2 removal are discussed. The effects of temperatures (35-90℃), Na25208 (0.05-0.5 mol·L-1), FeSO4 (0.5-5.0 m mol·L-1) and H2O2 (0.25 mol·L-1) on NO and SO2 removal were investigated. The results indicated that increased persulfate concentration led to increase in NO removal at various temperatures. SO2 was almost completely removed in the temperature range of 55-85 ℃. Fe2 + accelerated persulfate activation and enhanced NO removal efficiency. At 0.2 mol· L- 1 Na2S2O8 and 0.5-1.0 mmol· L-1Fe2 +, NO removal of 93.5%-99% was obtained at 75-90 ℃, SO2 removal was higher than 99% at all temperatures. The addition of 0.25 mol. L i H202 into 0.2 mol·L-1· Na2S2O8 solution promoted NO removal efficiency apparently until utterly decomposition of H2O2, the SO2 removal was as high as 98.4% separately at 35 ℃ and 80 ℃.展开更多
The effect of sulfate on Fischer-Tropsch synthesis performance was investigated in a slurryphase continuously stirred tank reactor (CSTR) over a Fe-Mn catalyst. The physiochemical properties of the catalyst impregna...The effect of sulfate on Fischer-Tropsch synthesis performance was investigated in a slurryphase continuously stirred tank reactor (CSTR) over a Fe-Mn catalyst. The physiochemical properties of the catalyst impregnated with different levels of sulfate were characterized by N2 physisorption, X-ray photoelectron spectroscopy (XPS), H2 (or CO) temperature-programmed reduction (TPR), Mossbauer spectroscopy, and CO2 temperature-programmed desorption (TPD). The characterization results indicated that the impregnated sulfate slightly decreased the BET surface area and pore volume of the catalyst, suppressed the catalyst reduction and carburization in CO and syngas, and decreased the catalyst surface basicity. At the same time, the addition of small amounts of sulfate improved the activities of FischerTropsch synthesis (FTS) and water gas shift (WGS), shifted the product to light hydrocarbons (C1-C11) and suppressed the formation of heavy products (C12+). Addition of SO4^2- to the catalyst improved the FTS activity at a sulfur loading of 0.05-0.80 g per 100 g Fe, and S-05 catalyst gave the highest CO conversion (62.3%), and beyond this sulfur level the activity of the catalyst decreased.展开更多
The practice ofin-situ leaching of the ion-adsorption type rare earths ore with ammonium sulfate could only leach most of rare earth in ion-exchangeable phase, but not the colloidal sediment phase. Therefore, the redu...The practice ofin-situ leaching of the ion-adsorption type rare earths ore with ammonium sulfate could only leach most of rare earth in ion-exchangeable phase, but not the colloidal sediment phase. Therefore, the reduction leaching of rare earth from the ion-adsorption type rare earths ore with ferrous sulfate was innovatively put forward. The soak leaching process and the column leaching process were investigated in the present study. It was determined that ion-exchangeable phase could be released, and part of colloidal sediment phase rare earth could be reduction leached by the cations with reduction properties. The mechanism of reduction leaching was discussed with the Eh-pH diagram of cerium. Moreover, the stronger reduction of reductive ions, the greater acidity of leaching agent solution, and the higher reductive ion concentration, could result in the higher rare earth efficiency and the bigger ce-rium partition in the leaching liquor. In the ferrous sulfate column leaching process, the rare earth leaching rate and the rare earth effi-ciency were a little higher than with (NH4)2SO4 agent, and the rare earth efficiency and the partitioning of cerium in leaching liquor could be about 102% and 5.31%, respectively. However, the ferrous sulfate leaching process revealed some problems, so compound leaching with magnesium sulfate and a small amount of ferrous sulfate was proposed to an excellent alternative leaching agent for further studies, which may realize efficiency extraction and be environment-friendly.展开更多
Intensifying effects of ferrous sulfate and pyrite on bioleaching of low-grade molybdenite concentrate were studied in this paper. The experimental results show that the oxidation dissolution of molybdenite can be acc...Intensifying effects of ferrous sulfate and pyrite on bioleaching of low-grade molybdenite concentrate were studied in this paper. The experimental results show that the oxidation dissolution of molybdenite can be accelerated with the addition of either ferrous sulfate or pyrite in bi- oleaching medium. Pyrite has better enhancing effect than ferrous sulfate, and the highest molybdenum leaching rate in pyrite-added solutions is 20.85 %, increasing by 12.64 % compared with that in 9 K leaching system. Molybdenum leaching rate does not increase linearly with the increase of the addition of either ferrous sulfate or pyrite in each type solution. Great amounts of [NH4Fe3(SO4)2(OH)6] and [KFe3(SO4)2(OH)6] with different morphologies will be deposited on molybdenite ores when the additions of Fe from ferrous sulfate or pyrite exceed that from 9 K leaching system by 0.5 times, and these deposits hinder the oxidation dissolution of molybdenite to some extent.展开更多
This study was conducted to determine the effects of maternal dietary supplementation of ferrous glycine chelate(Fe-Gly) and ferrous sulfate monohydrate(FeSO_4·H_2O) on the relative organ weight, tissue iron cont...This study was conducted to determine the effects of maternal dietary supplementation of ferrous glycine chelate(Fe-Gly) and ferrous sulfate monohydrate(FeSO_4·H_2O) on the relative organ weight, tissue iron contents, red blood cells(RBC), hemoglobin concentration(HGB) and hematocrit(HCT) in blood, as well as ferritin(Fn), serum iron(SI), and total iron binding capacity(TIBC) in serum of newborn piglets.Forty-five sows(Landrace × Large white, mean parity 3 to 4, no significant differences in BW) were randomly allotted to 9 treatments(n=5 sows/treatment): control(basal diet with no Fe supplementation), the basal diet supplemented with 50, 80, 110 or 140 mg Fe/kg as Fe-Gly, and the basal diet supplemented with 50, 80, 110 or 140 mg Fe/kg as FeSO_4·H_2O.The neonatal piglets(n=45) were used to determine the relative organ weight, tissue iron contents and blood biochemical indices.Compared with the control, the relative weight of spleen and kidney were significantly increased(P < 0.05) in the Fe-Gly groups.The iron contents in liver,spleen, kidney and femur were also found increased(P < 0.05) in the Fe-Gly groups.The RBC(d 1 and 21),HGB(d 1 and 21) and HCT(d 1 and 21) in blood and Fn(d 1) and SI(d 1 and 21) significantly increased(P < 0.05), but the TIBC(d 1 and 21) in serum decreased(P < 0.05) in the Fe-Gly groups.Moreover, the kidney relative weight, iron content in liver, spleen, kidney and femur, RBC(d 1) and HGB(d 21) in blood, and SI(d 1)in the Fe-Gly groups increased(P < 0.05) compared with the FeSO_4·H_2O treatment.Linear and quadratic responses of the kidney relative weight, the iron content in liver, spleen, kidney and femur, RBC(d 1 and 21),HGB(d 1 and 21) and HCT(d 1 and 21) in whole blood, SI(d 1) and TIBC(d 1 and 21) in the Fe-Gly groups were observed(P < 0.05).Linear responses of Fn(d 1 and 21) and SI(d 21) in the Fe-Gly groups, and spleen relative weight, HCT(d 1), Fn(d 1) and TIBC(d 1 and 21) in the FeSO_4·H_2O groups were observed(P < 0.05).These finding suggest that Fe-Gly supplemented at the level of 110 mg/kg in the diet of sows in this experiment is superior to other forms of supplementation, based on HGB concentration, the relative organ weight, tissue iron contents and blood biochemical indices of piglets.展开更多
基金Projects(51804146,51964029,51664030,51564030)supported by the National Natural Science Foundation of ChinaProject(2018YFC1900402)supported by the National Key Research and Development Program of ChinaProject supported by the Analysis and Testing Center of Kunming University of Science and Technology,China
文摘The transformation behavior of ferrous sulfate was examined during hematite precipitation for iron removal in hydrometallurgical zinc.Specifically,the effects of the method used for oxygen supply(pre-crystallization or pre-oxidation of ferrous sulfate)and temperature(170–190℃)on the redissolution and oxidation–hydrolysis of ferrous sulfate were studied.The precipitation characteristics and phase characterization of the hematite product were investigated.The results showed that the solubility of ferrous sulfate was considerably lower at elevated temperatures.The dissolution behavior of ferrous sulfate crystals was influenced by both the concentrations of free acid and zinc sulfate and the oxydrolysis of ferrous ions.Rapid oxydrolysis of ferrous ions may serve as the dissolution driving force.Hematite precipitation proceeded via the following sequential steps:crystallization,redissolution,oxidation,and precipitation of ferrous sulfate.The dissolution of ferrous sulfate was slow,which helped to maintain a low supersaturation environment,thereby affording the production of high-grade hematite.
基金Project(2016JJ6017) supported by Hunan Provincial Natural Science Foundation of,ChinaProject(15C0245) supported by the Research Foundation of Education Bureau of Hunan Province,ChinaProject(2013A090100013) supported by the Special Foundation of Major Science&Technology Program of Guangdong Province,China
文摘The effect of PEG dispersant on the magnetic separation of magnetite(Fe3O4) synthesized from ferrous sulfate solution via co-precipitation method with calcium hydroxide as the precipitant was investigated. The results indicated that a PEG dispersant could significantly affect Fe3O4 recovery. Adding PEG during the preparation of Fe3O4 was unfavorable for Fe3O4 recovery. When the PEG-6000 concentration was increased from 0 to 8 g/L, the iron grade and median particle size of the Fe3O4 product decreased from 65.58% and 2.35 μm to 57.79% and 1.35 μm, respectively. However, adding PEG during the wet milling of the mixed product promoted the subsequent recovery of Fe3O4. When the amount of PEG-200 increased from 0% to 4% of the powder mass, the grade of iron in the Fe3O4 product increased from 65.58% to 68.32%. While the relative molecular mass of PEG at an amount of 4% of the powder mass increased from 200 to 20000, the grade of iron was reduced from 68.32% to 66.70%.
基金Project(2013AA064003)supported by the National Technology Research and Development Program of ChinaProject(51564033)supported by the National Natural Science Foundation of ChinaProject(2016FA023)supported by the Yunnan Applied Basic Research(CNMRCUXT1403)State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization,Kunming University of Science and Technology,China
文摘The preparation of microsized hematite powder from ferrous sulfate using microwave calcination was investigated based on the TG/DTG curves. The decomposition of industrial ferrous sulfate under air atmosphere was divided into three stages, and a ferrous sulfate sample added with 15% Fe_2O_3 could strongly absorb microwave energy. Therefore, preparing hematite powder from ferrous sulfate using microwave calcination was feasible. Hematite was obtained under the following optimized conditions: calcination temperature, 850 °C; microwave power, 650 W; and sample amount, 40 g. The obtained hematite satisfied the first-grade quality requirements. The total ferrum value was more than 58%, and the total sulfur and phosphorus contents were less than 0.5% and 0.2%, respectively. X-ray powder diffraction and scanning electron microscopy were used to characterize the structure and morphology of microsized hematite powder. The particles were non-spherical in shape, and the average particle size distribution was 10.45 μm. This work provides new potential applications for waste ferrous sulfate.
基金financially supported by the Special Project on the Integration of Industry, Education and Research of Guangdong Province, China (No. 20013A090100013)by the High Technology Research and Development Program of Xinjiang Uygur Autonomous Region of China (No. 201407300993)
文摘The present study was conducted to elucidate the influence of impurities in waste ferrous sulfate on its recovery of magnetite. Ferrous sulfate solution was purified by the addition of Na OH solution to precipitate impurities, and magnetite was recovered from ferrous sulfate solution without and with purification pretreatment. Calcium hydroxide was added to the solution of ferrous sulfate as a precipitator. A mixed product of magnetite and gypsum was subsequently obtained by air oxidation and heating. Wet-milling was performed prior to magnetic separation to recover magnetite from the mixed products. The results show that with the purification pretreatment, the grade of iron in magnetite concentrate increased from 62.05% to 65.58% and the recovery rate of iron decreased from 85.35% to 80.35%. The purification pretreatment reduced the conglutination between magnetite and gypsum, which favors their subsequent magnetic separation. In summary, a higher-grade magnetite with a better crystallinity and a larger particle size of 2.35 μm was obtained with the purification pretreatment.
文摘Background: For the WHO, anemia is a serious public health problem, with an emphasis on deprivation anemia, which has socioeconomic conditions as determining factors for its development. Among nutritional anemias, the most relevant is iron deficiency, whose main form of prevention and treatment is supplementation with ferrous sulfate dispensed in the public health system, with the need to periodically check whether the drug has the quality required by regulatory health agencies. Thus, the objective of this study was to analyze the quality of the ferrous sulfate medication, from the same laboratory, and dispensed in a basic health unit (BHU) and a commercial pharmacy (CF). Materials and Methods: An analytical, qualitative and quantitative study of ferrous sulfate heptahydrate (25 mg/mL in 100 mL syrup), carried out on 20 BHU and 10 from CF, both from the same laboratory, but in different batches. Samples were subjected to organoleptic analysis and verification of iron content, pH, volume and density. Data were compared with values recommended by the Brazilian pharmacopoeia 5th edition. Results: Three batches were evaluated: 4659 of from the CF;4574 from the BHU1, and 4576 from the BHU2, stored in accordance with RDC 304/19 of ANVISA. All showed compliance with some organoleptic characteristics;and stable values in pH (3.61 - CF;3.67 - BHU1;3.65 - BHU2), density (1.079 - CF;1.088 - BHU1;1.086 - BHU2) and individual volume (not less than 95% of the declared value). However, it was not possible to detect the odor of herbs;the average volume of batch BHU1 was below the declared value, and the iron content of both BHUs was above the maximum value of pharmacopoeia standards. Conclusion: Samples did not show full compliance with the physical and chemical parameters evaluated, suggesting deviation in the quality of the medication.
文摘An easy preparation of tetrahydropyranyl (THP) ethers of alcohols and phenols with 3,4-dihydro-2H-pyran (DHP) in refluxing dichloromethane has been carried out in good to excellent yields under catalysis of anhydrous ferrous sulfate.
基金Project (2007AA06Z129) supported by the National High-tech Research and Development Program of China
文摘In order to develop a low-cost approach for separating macro amounts of Mo and W, the effects of parameters on the separation using FeSO4 as precipitation reagent were studied. The results show that the optimum reaction temperature is 10 °C, and the separation factor does not further improve after a reaction time of 7 h. Moreover, slow dropping speed of the precipitation reagent is beneficial for improving the separation efficiency. When the H+/W molar ratio is below 1/1, the addition of acid to a neutral solution is favorable to the separation. For the solution with an ammonium concentration below 3 mol/L, the separation factor is high due to the high W-precipitation rate. Furthermore, the method is also effective when it is applied to industrial solution containing some other impurities. All these indicate the ferrous salts have great potential for removing W from Mo on a commercial scale.
基金Supported by the National Natural Science Foundation of China(21536009)Science and Technology Plan Projects of Shaanxi Province(2017ZDCXL-GY-10-03)
文摘Nitric oxide (NO) removal and sulfur dioxide (SO2) removal by sodium persulfate (Na2S2O8) were studied in a Bubble Column Reactor. The proposed reaction pathways of NO and SO2 removal are discussed. The effects of temperatures (35-90℃), Na25208 (0.05-0.5 mol·L-1), FeSO4 (0.5-5.0 m mol·L-1) and H2O2 (0.25 mol·L-1) on NO and SO2 removal were investigated. The results indicated that increased persulfate concentration led to increase in NO removal at various temperatures. SO2 was almost completely removed in the temperature range of 55-85 ℃. Fe2 + accelerated persulfate activation and enhanced NO removal efficiency. At 0.2 mol· L- 1 Na2S2O8 and 0.5-1.0 mmol· L-1Fe2 +, NO removal of 93.5%-99% was obtained at 75-90 ℃, SO2 removal was higher than 99% at all temperatures. The addition of 0.25 mol. L i H202 into 0.2 mol·L-1· Na2S2O8 solution promoted NO removal efficiency apparently until utterly decomposition of H2O2, the SO2 removal was as high as 98.4% separately at 35 ℃ and 80 ℃.
基金the National Natural Science Foundation of China(20590360)and the Natural Science Foundation of Shanxi Province(2006021014).
文摘The effect of sulfate on Fischer-Tropsch synthesis performance was investigated in a slurryphase continuously stirred tank reactor (CSTR) over a Fe-Mn catalyst. The physiochemical properties of the catalyst impregnated with different levels of sulfate were characterized by N2 physisorption, X-ray photoelectron spectroscopy (XPS), H2 (or CO) temperature-programmed reduction (TPR), Mossbauer spectroscopy, and CO2 temperature-programmed desorption (TPD). The characterization results indicated that the impregnated sulfate slightly decreased the BET surface area and pore volume of the catalyst, suppressed the catalyst reduction and carburization in CO and syngas, and decreased the catalyst surface basicity. At the same time, the addition of small amounts of sulfate improved the activities of FischerTropsch synthesis (FTS) and water gas shift (WGS), shifted the product to light hydrocarbons (C1-C11) and suppressed the formation of heavy products (C12+). Addition of SO4^2- to the catalyst improved the FTS activity at a sulfur loading of 0.05-0.80 g per 100 g Fe, and S-05 catalyst gave the highest CO conversion (62.3%), and beyond this sulfur level the activity of the catalyst decreased.
基金Project supported by National Science and Technology Support Program of China(2015BAB16B01)Training Program of Major Academic and Technical Leaders in Jiangxi Province(20142BCB22005)Top Youth Talent Training Program of "Gan Po 555 Talents Project" of Jiangxi Province
文摘The practice ofin-situ leaching of the ion-adsorption type rare earths ore with ammonium sulfate could only leach most of rare earth in ion-exchangeable phase, but not the colloidal sediment phase. Therefore, the reduction leaching of rare earth from the ion-adsorption type rare earths ore with ferrous sulfate was innovatively put forward. The soak leaching process and the column leaching process were investigated in the present study. It was determined that ion-exchangeable phase could be released, and part of colloidal sediment phase rare earth could be reduction leached by the cations with reduction properties. The mechanism of reduction leaching was discussed with the Eh-pH diagram of cerium. Moreover, the stronger reduction of reductive ions, the greater acidity of leaching agent solution, and the higher reductive ion concentration, could result in the higher rare earth efficiency and the bigger ce-rium partition in the leaching liquor. In the ferrous sulfate column leaching process, the rare earth leaching rate and the rare earth effi-ciency were a little higher than with (NH4)2SO4 agent, and the rare earth efficiency and the partitioning of cerium in leaching liquor could be about 102% and 5.31%, respectively. However, the ferrous sulfate leaching process revealed some problems, so compound leaching with magnesium sulfate and a small amount of ferrous sulfate was proposed to an excellent alternative leaching agent for further studies, which may realize efficiency extraction and be environment-friendly.
基金financially supported by the National Natural Science Foundation of China(Nos.51304151 and 51174062)the High-Tech Research and Development Program of China(No.2012AA061501)
文摘Intensifying effects of ferrous sulfate and pyrite on bioleaching of low-grade molybdenite concentrate were studied in this paper. The experimental results show that the oxidation dissolution of molybdenite can be accelerated with the addition of either ferrous sulfate or pyrite in bi- oleaching medium. Pyrite has better enhancing effect than ferrous sulfate, and the highest molybdenum leaching rate in pyrite-added solutions is 20.85 %, increasing by 12.64 % compared with that in 9 K leaching system. Molybdenum leaching rate does not increase linearly with the increase of the addition of either ferrous sulfate or pyrite in each type solution. Great amounts of [NH4Fe3(SO4)2(OH)6] and [KFe3(SO4)2(OH)6] with different morphologies will be deposited on molybdenite ores when the additions of Fe from ferrous sulfate or pyrite exceed that from 9 K leaching system by 0.5 times, and these deposits hinder the oxidation dissolution of molybdenite to some extent.
基金supported by funds from the Agriculture Research System in Shandong Province (Project No.SDAIT-08-05)
文摘This study was conducted to determine the effects of maternal dietary supplementation of ferrous glycine chelate(Fe-Gly) and ferrous sulfate monohydrate(FeSO_4·H_2O) on the relative organ weight, tissue iron contents, red blood cells(RBC), hemoglobin concentration(HGB) and hematocrit(HCT) in blood, as well as ferritin(Fn), serum iron(SI), and total iron binding capacity(TIBC) in serum of newborn piglets.Forty-five sows(Landrace × Large white, mean parity 3 to 4, no significant differences in BW) were randomly allotted to 9 treatments(n=5 sows/treatment): control(basal diet with no Fe supplementation), the basal diet supplemented with 50, 80, 110 or 140 mg Fe/kg as Fe-Gly, and the basal diet supplemented with 50, 80, 110 or 140 mg Fe/kg as FeSO_4·H_2O.The neonatal piglets(n=45) were used to determine the relative organ weight, tissue iron contents and blood biochemical indices.Compared with the control, the relative weight of spleen and kidney were significantly increased(P < 0.05) in the Fe-Gly groups.The iron contents in liver,spleen, kidney and femur were also found increased(P < 0.05) in the Fe-Gly groups.The RBC(d 1 and 21),HGB(d 1 and 21) and HCT(d 1 and 21) in blood and Fn(d 1) and SI(d 1 and 21) significantly increased(P < 0.05), but the TIBC(d 1 and 21) in serum decreased(P < 0.05) in the Fe-Gly groups.Moreover, the kidney relative weight, iron content in liver, spleen, kidney and femur, RBC(d 1) and HGB(d 21) in blood, and SI(d 1)in the Fe-Gly groups increased(P < 0.05) compared with the FeSO_4·H_2O treatment.Linear and quadratic responses of the kidney relative weight, the iron content in liver, spleen, kidney and femur, RBC(d 1 and 21),HGB(d 1 and 21) and HCT(d 1 and 21) in whole blood, SI(d 1) and TIBC(d 1 and 21) in the Fe-Gly groups were observed(P < 0.05).Linear responses of Fn(d 1 and 21) and SI(d 21) in the Fe-Gly groups, and spleen relative weight, HCT(d 1), Fn(d 1) and TIBC(d 1 and 21) in the FeSO_4·H_2O groups were observed(P < 0.05).These finding suggest that Fe-Gly supplemented at the level of 110 mg/kg in the diet of sows in this experiment is superior to other forms of supplementation, based on HGB concentration, the relative organ weight, tissue iron contents and blood biochemical indices of piglets.