Experimental investigation is performed to investigate the cooling characteristics in the front zone of effusion configuration. Effects of blowing ratio,multi-hole arrangement mode,hole-to-hole pitch and jet orientati...Experimental investigation is performed to investigate the cooling characteristics in the front zone of effusion configuration. Effects of blowing ratio,multi-hole arrangement mode,hole-to-hole pitch and jet orientation angle on the adiabatic film cooling effectiveness are concentrated on. The results show that the film layer displays an obvious"developing"feature in the front zone of effusion cooling scheme,for either the staggered or inline multi-hole arrangement. The varying gradient of the laterally-averaged adiabatic cooling effectiveness along the streamwise direction is greater for the staggered arrangement than that for the inline arrangement. The holes array arranged in staggered mode with small hole-tohole pitches is in favor of obtaining developed film coverage layer rapidly.展开更多
Film cooling is introduction of a secondary fluid (coolant or injected fluid) at one or more discrete locations along a surface exposed to a high temperature environment to protect that surface not only in the immed...Film cooling is introduction of a secondary fluid (coolant or injected fluid) at one or more discrete locations along a surface exposed to a high temperature environment to protect that surface not only in the immediate region of injection but also downstream region. This paper numerically investigated the film cooling effectiveness on two types of hole geometries which are cut-shaped hole and antivortex hole. The 3D computational geometries are modeled with a single 30 deg angled hole on a flat surface. The different blowing ratios of 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5,5 and k-Epsilon turbulence model are used in this study. A two dimensional distribution of film cooling effectiveness in the downstream region of the cooling hole is performed. A comparison of spanwise averaged effectiveness is also performed in the field starts from center point of hole to X/D=-30.展开更多
A numerical investigation and experimental validation is performed to address deeper insights into the combined effect of shaped holes and Sand-Dune-shaped upstream Ramp(SDR)on enhancing the film cooling effectiveness...A numerical investigation and experimental validation is performed to address deeper insights into the combined effect of shaped holes and Sand-Dune-shaped upstream Ramp(SDR)on enhancing the film cooling effectiveness,under a wide blowing ratio range(M=0.25–1.5).Three kinds of holes(Cylindrical Hole(CH),Fan-Shaped Hole(FSH),and Crater-Shaped Hole(CSH))are taken into consideration.The SDR shows an inherent affecting mechanism on the mutual interaction of jet-in-crossflow.It aggravates the lateral spreading of cooling jet and thus improves the film cooling uniformity significantly,regardless of film-hole shape and blowing ratio.When the blowing ratio is beyond 1.0,the combined effect of shaped holes and SDR on improving film cooling effectiveness behaves more significantly.It is suggested that FSH-SDR is a most favorable film cooling scheme.For FSH-SDR case,the spatially-averaged film cooling effectiveness is increased monotonously with the increase of blowing ratio,among the present bowing ratio range.展开更多
Three-dimensional numerical computations are conducted to investigate the effects of the blowing ratio and corrugation geometry on the adiabatic film cooling effectiveness as well as the heat transfer coefficient over...Three-dimensional numerical computations are conducted to investigate the effects of the blowing ratio and corrugation geometry on the adiabatic film cooling effectiveness as well as the heat transfer coefficient over a transverse corrugated surface.It is noticeable that the adiabatic wall temperature on the wavy valley of the transverse corrugated surface is relatively lower than that on the wavy peak.Surface corrugation has a relatively obvious influence on the laterallyaveraged adiabatic film cooling effectiveness in the region where the effusion film layer is developed,but has little influence in the front region.Compared to a flat surface,the transverse corrugated surface produces a smaller adiabatic film cooling effectiveness and a higher heat transfer coefficient ratio.The effusion cooling difference between the flat and corrugated surfaces behaves more obviously under a small aspect ratio of the wavy corrugation.展开更多
The film cooling effectiveness of two turbine blades at different turbulence intensities(0.62%and 16.00%)and mass flux ratios(2.91%,5.82%,8.73%and 11.63%)is studied by using the Pressure-Sensitive Paint(PSP)measuremen...The film cooling effectiveness of two turbine blades at different turbulence intensities(0.62%and 16.00%)and mass flux ratios(2.91%,5.82%,8.73%and 11.63%)is studied by using the Pressure-Sensitive Paint(PSP)measurement technique.There are a baseline and an improved turbine blade in current work,and their film cooling hole position distribution is the same.But the hole shape on suction surface and pressure surface is changed from cylindrical hole(baseline)to laid-back fan-shaped hole(improved blade).Both blades have 5 rows of cylindrical holes at the leading edge and 4 rows of cooling-holes on the suction surface and the pressure surface.The experimental results show that the film cooling effectiveness of the improved blade is much better than the baseline.The increase in turbulence intensity will reduce the cooling effectiveness on the surface of turbine blade,but the effect of turbulence intensity becomes weaker with an increase in the mass flux ratio.Compared with the multiple rows of cylindrical holes,the cooling effectiveness of shaped holes is more influenced by the turbulence intensity at low mass flux ratio.展开更多
This article presents the data about heat transfer coefficient ratios, film cooling effectiveness and heat loads for the injection through cylindrical holes, 3-in-1 holes and fanned holes in order to characterize the ...This article presents the data about heat transfer coefficient ratios, film cooling effectiveness and heat loads for the injection through cylindrical holes, 3-in-1 holes and fanned holes in order to characterize the film cooling performance downstream of a row of holes with 45° inclination and 3 hole spacing apart. The trip wire is placed upstream at a distance of 10 times diameter of the cooling hole from the hole center to keep mainstream fully turbulent. Both inlet and outlet of 3-in-1 holes have a 15° lateral expansion. The outlet of fanned holes has a lateral expansion. CO2 is applied for secondary injection to obtain a density ratio of 1.5. Momentum flux ratio varies from 1 to 4. The results indicate that the increased momentum flux ratio significantly increases heat transfer coefficient and slightly improve film cooling effectiveness for the injection through cylindrical holes. A weak dependence of heat transfer coefficient and film cooling effectiveness, respectively, on momentum flux ratio has been identified for the injection through 3-in-1 holes. The in- crease of the momentum flux ratio decreases heat transfer coefficient and significantly increases film cooling effectiveness for the injection through fanned holes. In terms of the film cooling performance, the fanned holes are the best while the cylindrical holes are the worst among the three hole shapes under study.展开更多
Hybrid RANS-LES methods offer a means of reducing computational cost and setup time to simulate transitional flows. Several methods are evaluated in ANSYS CFX, including Scale-Adaptive Simulation (SAS), Shielded Detac...Hybrid RANS-LES methods offer a means of reducing computational cost and setup time to simulate transitional flows. Several methods are evaluated in ANSYS CFX, including Scale-Adaptive Simulation (SAS), Shielded Detached Eddy Simulation (SDES), Stress-Blended Eddy Simulation (SBES), and Zonal Large Eddy Simulation (ZLES), along with a no-model laminar simulation. Each is used to simulate an adiabatic flat plate film cooling experiment of a shaped hole at low Reynolds number. Adiabatic effectiveness is calculated for Blowing Ratio (BR) = 1.5 and Density Ratio (DR) = 1.5. The ZLES method and laminar simulation most accurately match experimental lateral-average adiabatic effectiveness along the streamwise direction from the trailing edge of the hole to 35 hole diameters downstream of the hole (X/D = 0 to X/D = 35), with RMS deviations of 5.1% and 4.2%, and maximum deviations of 8% and 11%, respectively. The accuracy of these models is attributed to the resolution of turbulent structures in not only the mixing region but in the upstream boundary layer as well, where the other methods utilize RANS and do not switch to LES.展开更多
This paper describes the numerical study on film cooling effectiveness and aerodynamic loss due to coolant and main stream mixing for a turbine guide vane. The effects of blowing ratio, mainstream Mach number, surface...This paper describes the numerical study on film cooling effectiveness and aerodynamic loss due to coolant and main stream mixing for a turbine guide vane. The effects of blowing ratio, mainstream Mach number, surface curvature on the cooling effectiveness and mixing loss were studied and discussed. The numerical results show that the distributions of film cooling effectiveness on the suction surface and pressure surface at the same blowing ratio(BR) are different due to local surface curvature and pressure gradient. The aerodynamic loss features for film holes on the pressure surface are also different from film holes on the suction surface.展开更多
An experimental study is made to investigate the film cooling performance of imperfect holes due to in-hole blockage over a flat plate. A specifically pyramid-shaped element is used to simulate the in-hole blockage. S...An experimental study is made to investigate the film cooling performance of imperfect holes due to in-hole blockage over a flat plate. A specifically pyramid-shaped element is used to simulate the in-hole blockage. Six in-hole blockage orientations(such as leading-inlet, leading-middle,leading-exit, trailing-inlet, trailing-middle and trailing-exit) and four blocking ratios(ranging from 0.1 to 0.4) are taken into considerations. Based on the experimental results, the influences of in-hole blockage on the film cooling effectiveness and discharge coefficient under typical blowing ratios are analyzed. It is confirmed that the in-hole blockage results in a reduction of discharge coefficient related to the perfect film cooling holes, especially for the leading-exit and trailing-inlet orientations with a big blocking ratio. However, in the view of film cooling effectiveness, the in-hole blockage shows complicated affecting roles. In general, except for the leading-exit orientation, the in-hole blockages produce detrimental influence on the film cooling effectiveness.展开更多
The film cooling performance of chevron holes with different inclination angles and exit lateral diffusion angles has been studied experimentally and numerically. The inclination angles include 35° and 55°. ...The film cooling performance of chevron holes with different inclination angles and exit lateral diffusion angles has been studied experimentally and numerically. The inclination angles include 35° and 55°. The exit lateral diffusion angles include 20° and 25°. The film cooling effectiveness, heat transfer coefficient and discharge coefficient were measured on a flat plate model by transient liquid crystal measurement technique under four blowing ratios. The results show that the large inclination angle reduces the film cooling effectiveness. The influence of diffusion angle has two aspects: the large diffusion angle leads to mainstream ingestion and decreases film cooling effectiveness at M=1.0 and 1.5; however, the large diffusion angle increases the film cooling effectiveness at high blowing ratio of 2.0, because the larger hole exit area decreases the normal momentum component of the film jet. The large inclination angle decreases the heat transfer coefficient in the right downstream region at M=0.5 and 1.0. The large diffusion angle enhances the heat transfer in the right downstream of the holes in M=0.5~1.5 conditions. The chevron hole with large inclination angle generally has the highest discharge coefficient.展开更多
This paper describes the improvement of leading edge film cooling effectiveness for a turbine inlet guide vane by using fan-shaped film cooling holes. The modification details are presented in comparison with the base...This paper describes the improvement of leading edge film cooling effectiveness for a turbine inlet guide vane by using fan-shaped film cooling holes. The modification details are presented in comparison with the base-line configuration of cylindrical holes. Numerical simulations were carried out for the base-line and modified configurations by using CFX, in which the k-ε turbulence model and scalable wall function were chosen. Contours of adiabatic film cooling effectiveness on the blade surfaces and span-wise distributions of film cooling effectiveness downstream the rows of cooling holes interested for the different cooling configurations were compared and discussed. It is showed that with the use of fan-shaped cooling holes around the leading edge, the adiabatic film cooling effectiveness can be enhanced considerably. In comparison with the cylindrical film cooling holes, up to 40% coolant mass flow can be saved by using fan-shaped cooling holes to obtain the comparable film cooling effectiveness for the studied inlet guide vane.展开更多
Film cooling experiments with sonic injection were conducted to investigate the effects of the number of the injection holes,the mass flow ratio,and the hole spacing on the film cooling effectiveness.The mainstream wa...Film cooling experiments with sonic injection were conducted to investigate the effects of the number of the injection holes,the mass flow ratio,and the hole spacing on the film cooling effectiveness.The mainstream was obtained by the hydrogen-oxygen combustion,entering the experimental section at a Mach number of 2.0.The nitrogen with ambient temperature was injected into the experimental section at a sonic speed.The measured mainstream recovery temperature was approximately 910K.The mass flow ratio was regulated by varying the nitrogen injection pressure.The experimental results show that for the investigated cooling surface,the cooling effectiveness increases with the increase in the number of the injection holes with other parameters held constant.For a fixed cooling configuration,the cooling effectiveness increases with the increase in the mass flow ratio.Different from the subsonic film cooling,the optimal mass flow ratio is not observed.When the hole spacing is less than 4,no obvious difference is observed on the cooling effectiveness and lateral uniformity.With the mass flow ratio increasing further,this difference becomes much smaller.The shock wave also has an effect on the cooling effectiveness.Downstream the incident point of the shock wave,the cooling effectiveness is lower than that in the case without the shock wave.展开更多
In this paper,to analyze the influences of the injection angles and aperture ratios (AR) of the primary hole and the side hole on the film cooling performance of a flat plate model,pressure sensitive paint (PSP) techn...In this paper,to analyze the influences of the injection angles and aperture ratios (AR) of the primary hole and the side hole on the film cooling performance of a flat plate model,pressure sensitive paint (PSP) technology was used to study the forward and backward jet of a single hole and four sister holes,and a numerical simulation was supplemented to explore the flow structure of the sister holes.The sister holes had a better film cooling performance than the cylindrical hole at all blowing ratios (BR).The backward jet of the primary hole or the side hole could increase the spanwise film coverage of the sister hole.In this study,with the primary hole featuring a backward jet and the side hole featuring a forward jet,the film cooling performance was the best,11.9 times higher than the areal mean film cooling efficiency of the cylindrical hole when AR=1 and BR=1.5.At a low blowing ratio,the counter-rotating vortex pair (CRVP) of the side hole could suppress the strength of the CRVP of the primary hole.At a high blowing ratio,when the primary hole featured a backward jet and the side hole featured a forward jet,the CRVP of the side hole had the optimal performance for suppressing the CRVP of the primary hole.展开更多
Transcritical film cooling was investigated by numerical study in a methane cooled methane/oxygen rocket engine.The respective time-averaged Navier-Stokes equations have been solved for the compressible steady three-d...Transcritical film cooling was investigated by numerical study in a methane cooled methane/oxygen rocket engine.The respective time-averaged Navier-Stokes equations have been solved for the compressible steady three-dimensional(3-D) flow.The flow field computations were performed using the semi-implicit method for pressure linked equation(SIMPLE) algorithm on several blocks of nonuniform collocated grid.The calculation was conducted over a pressure range of 202 650.0 Pa to 1.2×107 Pa and a temperature range of 120.0 K to 3 568.0 K.Twenty-nine different cases were simulated to calculate the impact of different factors.The results show that mass flow rate,length,diameter,number and diffused or convergence of film jet channel,injection angle and jet array arrangements have great impact on transcritical film cooling effectiveness.Furthermore,shape of the jet holes and jet and crossflow turbulence also affect the wall temperature distribution.Two rows of film arranged in different axial angles and staggered arrangement were proposed as new liquid film arrangement.Different radial angles have impact on the film cooling effectiveness in two row-jets cooled cases.The case of in-line and staggered arrangement are almost the same in the region before the second row of jets,but a staggered arrangement has a higher film cooling effectiveness from the second row of jets.展开更多
An upstream coolant injection that is different from the known leakage flow was introduced to protect the turbine endwall.This coolant is ejected tangentially from a row of cylindrical holes situated at the side of a ...An upstream coolant injection that is different from the known leakage flow was introduced to protect the turbine endwall.This coolant is ejected tangentially from a row of cylindrical holes situated at the side of a backward-facing step.In this experiment,the effects of mass flow ratio and leakage slot width on the endwall heat transfer characteristics were investigated.The dimensionless heat transfer coefficient(Nu)and adiabatic film cooling effectiveness(η)on an axisymmetric turbine endwall were measured by the stable-state thermochromic liquid crystal(TLC)technique and the pressure sensitive paint(PSP)technique,respectively.Three mass flow ratios(MFR)of 0.64%,0.85%,and 1.07%,as well as two leakage slot widths(W)of 3.93 mm,and 7.86 mm were considered.Results indicate that the injection film suppresses the strength of the passage vortex,which leads to the coolant covering almost the entire endwall.This result is more evident for the higher MFR cases,meanwhile,the corresponding averaged film cooling effectiveness is increased with the enhancement of the MFR.However,the case with a higher MFR produces a higher heat transfer coefficient distribution,especially in the region close to the leakage slot edge.Besides,when the W is lower,the endwall presents a higherηand a lower Nu for all the cases,which can guide the optimal design of the endwall.展开更多
This paper presents three-dimensional numerical simulations with the established realizable k-εmodel to clarify the underlying and interacting mechanisms between the film cooling and the internal cooling.On the one h...This paper presents three-dimensional numerical simulations with the established realizable k-εmodel to clarify the underlying and interacting mechanisms between the film cooling and the internal cooling.On the one hand,the effects of three different internal cooling channels,i.e.,smooth channel,continuous ribbed channel,and truncated ribbed channel,on the film cooling effectiveness and the discharge coefficients are investigated.On the other hand,the influences of three different film cooling holes,i.e.,cylindrical hole,two elliptical holes and two circular-to-elliptical holes,on the heat transfer performances and pressure loss of the internal cooling channel are revealed.Especially,the suction effects of the film cooling holes are analyzed through setting up baselines with only internal cooling channels.Results show that the placement of ribs in the internal channel has different influences on the film cooling effectiveness with respect to different hole shapes depending on the blowing ratio.The discharge coefficient of the film hole can be improved by introducing ribs to the internal channel.Suction of film hole is helpful for enhancing the heat transfer performance and reducing the pressure loss of the internal channel.Besides,ribs instead of the suction effect of film hole play a major role to enhance the heat transfer performance in the internal cooling channel.展开更多
The secondary flow originated from the inherent pressure gradient inside the vane cascade has a strong impact on the endwall cooling performance as the crossflow sweeps the upstream coolant jet towards the suction sid...The secondary flow originated from the inherent pressure gradient inside the vane cascade has a strong impact on the endwall cooling performance as the crossflow sweeps the upstream coolant jet towards the suction side,resulting in intensifying thermal load near the pressure side endwall.Hence a novel ribbed-endwall is introduced to suppress passage crossflow.The effects of the mass flow ratio and the rib layout were examined using numerical simulations by solving the three-dimensional Reynolds-averaged Navier-Stokes(RANS)equations with the shear stress transport(SST)k-ωturbulence model.The results indicate that the ribs effectively prevent the coolant migrating from the pressure side to the suction side,helping the coolant jet to spread along the lateral orientation.Therefore,the endwall adiabatic film cooling effectiveness is substantially improved.The maximum cooling effectiveness is achieved for the case with three-ribs when the height of the rib equals one hole diameter among all cases.The area-averaged adiabatic cooling effectiveness is enhanced by 31.6%relative to the flat endwall when the mass flow ratio of coolant to mainstream equals to 0.52%.More importantly,the ribbed-endwall obtains a relatively lower level of aerodynamic loss owing to the reduced lateral migration inside the vane cascade.展开更多
This article deals with the effects of a blowing ratio measured with narrowband liquid crystal in transonic experiments on the heat transfer characteristics of trailing edge cutback. The experimental results are compa...This article deals with the effects of a blowing ratio measured with narrowband liquid crystal in transonic experiments on the heat transfer characteristics of trailing edge cutback. The experimental results are compared and contrasted in terms of available data for traditional experiments with thermocouples. It is concluded that the blowing ratio exerts rather significant effects on film cooling effectiveness distribution of the rib center line. As the blowing ratio decreases, similar to the cooling effectiveness distribution curve of the slot center line, that of the rib center line makes a clockwise rotation about the end. When the blowing ratio increases, the regular film cooling effectiveness curve of the surface becomes rather smooth. On the whole measuring surface, the most intensive heat transfer occurs at the extended borderline of the slot and the rib, neither at the rib center line nor at the slot center line. The experimental results of cooling effectiveness measured with thermocouples are lower than those with liquid crystal. In addition, the transient experiments using narrowband liquid crystal can eliminate the higher errors of Nusselt numbers in measurements with thermocouples at the slot outlet.展开更多
The existence of a gap between combustor and turbine endwall in the real gas turbine induces to the leakages phenomenon. However, the leakages could be used as a coolant to protect the endwaU surfaces from the hot gas...The existence of a gap between combustor and turbine endwall in the real gas turbine induces to the leakages phenomenon. However, the leakages could be used as a coolant to protect the endwaU surfaces from the hot gas since it could not be completely prevented. Thus, present study investigated the potential of leakage flows as a function of film cooling. In present study, the flow field at the downstream of high-pressure turbine blade has been investigated by 5-holes pitot tube. This is to reveal the aerodynamic performances under the influenced of leakage flows while the temperature measurement was conducted by thermoehromic liquid crystal (TLC). Expe- rimental has significantly captured theaerodynamics effect of leakage flows near the blade downstream. Further- more, TLC measurement illustrated that the film cooling effectiveness contours were strongly influenced by the secondary flows behavior on the endwall region. Aero-thermal results were validated by the numerical simulation adopted by commercial sottware, ANSYS CFX 13. Both experimental and numerical simulation indicated almost similar trendinaero and also thermal behavior as the amount of leakage flows increases.展开更多
基金Supported by the National Natural Science Foundation of China(51276090)
文摘Experimental investigation is performed to investigate the cooling characteristics in the front zone of effusion configuration. Effects of blowing ratio,multi-hole arrangement mode,hole-to-hole pitch and jet orientation angle on the adiabatic film cooling effectiveness are concentrated on. The results show that the film layer displays an obvious"developing"feature in the front zone of effusion cooling scheme,for either the staggered or inline multi-hole arrangement. The varying gradient of the laterally-averaged adiabatic cooling effectiveness along the streamwise direction is greater for the staggered arrangement than that for the inline arrangement. The holes array arranged in staggered mode with small hole-tohole pitches is in favor of obtaining developed film coverage layer rapidly.
文摘Film cooling is introduction of a secondary fluid (coolant or injected fluid) at one or more discrete locations along a surface exposed to a high temperature environment to protect that surface not only in the immediate region of injection but also downstream region. This paper numerically investigated the film cooling effectiveness on two types of hole geometries which are cut-shaped hole and antivortex hole. The 3D computational geometries are modeled with a single 30 deg angled hole on a flat surface. The different blowing ratios of 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5,5 and k-Epsilon turbulence model are used in this study. A two dimensional distribution of film cooling effectiveness in the downstream region of the cooling hole is performed. A comparison of spanwise averaged effectiveness is also performed in the field starts from center point of hole to X/D=-30.
基金financial support for this project from the National Natural Science Foundation of China(No.U1508212)National Science and Technology Major Projects(Nos.2017-Ⅲ-0011-0025 and 2017-Ⅲ0011-0037)。
文摘A numerical investigation and experimental validation is performed to address deeper insights into the combined effect of shaped holes and Sand-Dune-shaped upstream Ramp(SDR)on enhancing the film cooling effectiveness,under a wide blowing ratio range(M=0.25–1.5).Three kinds of holes(Cylindrical Hole(CH),Fan-Shaped Hole(FSH),and Crater-Shaped Hole(CSH))are taken into consideration.The SDR shows an inherent affecting mechanism on the mutual interaction of jet-in-crossflow.It aggravates the lateral spreading of cooling jet and thus improves the film cooling uniformity significantly,regardless of film-hole shape and blowing ratio.When the blowing ratio is beyond 1.0,the combined effect of shaped holes and SDR on improving film cooling effectiveness behaves more significantly.It is suggested that FSH-SDR is a most favorable film cooling scheme.For FSH-SDR case,the spatially-averaged film cooling effectiveness is increased monotonously with the increase of blowing ratio,among the present bowing ratio range.
文摘Three-dimensional numerical computations are conducted to investigate the effects of the blowing ratio and corrugation geometry on the adiabatic film cooling effectiveness as well as the heat transfer coefficient over a transverse corrugated surface.It is noticeable that the adiabatic wall temperature on the wavy valley of the transverse corrugated surface is relatively lower than that on the wavy peak.Surface corrugation has a relatively obvious influence on the laterallyaveraged adiabatic film cooling effectiveness in the region where the effusion film layer is developed,but has little influence in the front region.Compared to a flat surface,the transverse corrugated surface produces a smaller adiabatic film cooling effectiveness and a higher heat transfer coefficient ratio.The effusion cooling difference between the flat and corrugated surfaces behaves more obviously under a small aspect ratio of the wavy corrugation.
基金supported by the National Natural Science Foundation of China(No.51936008)the Shaanxi Science Foundation for Distinguished Young Scholars(No.2021JC-11)+1 种基金the National Science and Technology Major Project(No.2017-III-0003-0027)Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University(CX2021074)。
文摘The film cooling effectiveness of two turbine blades at different turbulence intensities(0.62%and 16.00%)and mass flux ratios(2.91%,5.82%,8.73%and 11.63%)is studied by using the Pressure-Sensitive Paint(PSP)measurement technique.There are a baseline and an improved turbine blade in current work,and their film cooling hole position distribution is the same.But the hole shape on suction surface and pressure surface is changed from cylindrical hole(baseline)to laid-back fan-shaped hole(improved blade).Both blades have 5 rows of cylindrical holes at the leading edge and 4 rows of cooling-holes on the suction surface and the pressure surface.The experimental results show that the film cooling effectiveness of the improved blade is much better than the baseline.The increase in turbulence intensity will reduce the cooling effectiveness on the surface of turbine blade,but the effect of turbulence intensity becomes weaker with an increase in the mass flux ratio.Compared with the multiple rows of cylindrical holes,the cooling effectiveness of shaped holes is more influenced by the turbulence intensity at low mass flux ratio.
文摘This article presents the data about heat transfer coefficient ratios, film cooling effectiveness and heat loads for the injection through cylindrical holes, 3-in-1 holes and fanned holes in order to characterize the film cooling performance downstream of a row of holes with 45° inclination and 3 hole spacing apart. The trip wire is placed upstream at a distance of 10 times diameter of the cooling hole from the hole center to keep mainstream fully turbulent. Both inlet and outlet of 3-in-1 holes have a 15° lateral expansion. The outlet of fanned holes has a lateral expansion. CO2 is applied for secondary injection to obtain a density ratio of 1.5. Momentum flux ratio varies from 1 to 4. The results indicate that the increased momentum flux ratio significantly increases heat transfer coefficient and slightly improve film cooling effectiveness for the injection through cylindrical holes. A weak dependence of heat transfer coefficient and film cooling effectiveness, respectively, on momentum flux ratio has been identified for the injection through 3-in-1 holes. The in- crease of the momentum flux ratio decreases heat transfer coefficient and significantly increases film cooling effectiveness for the injection through fanned holes. In terms of the film cooling performance, the fanned holes are the best while the cylindrical holes are the worst among the three hole shapes under study.
文摘Hybrid RANS-LES methods offer a means of reducing computational cost and setup time to simulate transitional flows. Several methods are evaluated in ANSYS CFX, including Scale-Adaptive Simulation (SAS), Shielded Detached Eddy Simulation (SDES), Stress-Blended Eddy Simulation (SBES), and Zonal Large Eddy Simulation (ZLES), along with a no-model laminar simulation. Each is used to simulate an adiabatic flat plate film cooling experiment of a shaped hole at low Reynolds number. Adiabatic effectiveness is calculated for Blowing Ratio (BR) = 1.5 and Density Ratio (DR) = 1.5. The ZLES method and laminar simulation most accurately match experimental lateral-average adiabatic effectiveness along the streamwise direction from the trailing edge of the hole to 35 hole diameters downstream of the hole (X/D = 0 to X/D = 35), with RMS deviations of 5.1% and 4.2%, and maximum deviations of 8% and 11%, respectively. The accuracy of these models is attributed to the resolution of turbulent structures in not only the mixing region but in the upstream boundary layer as well, where the other methods utilize RANS and do not switch to LES.
基金financially supported by the National Natural Science Foundation of China through Grant No.51336007
文摘This paper describes the numerical study on film cooling effectiveness and aerodynamic loss due to coolant and main stream mixing for a turbine guide vane. The effects of blowing ratio, mainstream Mach number, surface curvature on the cooling effectiveness and mixing loss were studied and discussed. The numerical results show that the distributions of film cooling effectiveness on the suction surface and pressure surface at the same blowing ratio(BR) are different due to local surface curvature and pressure gradient. The aerodynamic loss features for film holes on the pressure surface are also different from film holes on the suction surface.
基金the financial support for this project from the National Natural Science Foundation of China (Nos.51276090 and U1508212)
文摘An experimental study is made to investigate the film cooling performance of imperfect holes due to in-hole blockage over a flat plate. A specifically pyramid-shaped element is used to simulate the in-hole blockage. Six in-hole blockage orientations(such as leading-inlet, leading-middle,leading-exit, trailing-inlet, trailing-middle and trailing-exit) and four blocking ratios(ranging from 0.1 to 0.4) are taken into considerations. Based on the experimental results, the influences of in-hole blockage on the film cooling effectiveness and discharge coefficient under typical blowing ratios are analyzed. It is confirmed that the in-hole blockage results in a reduction of discharge coefficient related to the perfect film cooling holes, especially for the leading-exit and trailing-inlet orientations with a big blocking ratio. However, in the view of film cooling effectiveness, the in-hole blockage shows complicated affecting roles. In general, except for the leading-exit orientation, the in-hole blockages produce detrimental influence on the film cooling effectiveness.
基金Financial support from the National Basic Research Program of China "973" (Grant No. 2013CB035702)
文摘The film cooling performance of chevron holes with different inclination angles and exit lateral diffusion angles has been studied experimentally and numerically. The inclination angles include 35° and 55°. The exit lateral diffusion angles include 20° and 25°. The film cooling effectiveness, heat transfer coefficient and discharge coefficient were measured on a flat plate model by transient liquid crystal measurement technique under four blowing ratios. The results show that the large inclination angle reduces the film cooling effectiveness. The influence of diffusion angle has two aspects: the large diffusion angle leads to mainstream ingestion and decreases film cooling effectiveness at M=1.0 and 1.5; however, the large diffusion angle increases the film cooling effectiveness at high blowing ratio of 2.0, because the larger hole exit area decreases the normal momentum component of the film jet. The large inclination angle decreases the heat transfer coefficient in the right downstream region at M=0.5 and 1.0. The large diffusion angle enhances the heat transfer in the right downstream of the holes in M=0.5~1.5 conditions. The chevron hole with large inclination angle generally has the highest discharge coefficient.
基金supported by the National 973 Program of China through grant number 2007CB210108
文摘This paper describes the improvement of leading edge film cooling effectiveness for a turbine inlet guide vane by using fan-shaped film cooling holes. The modification details are presented in comparison with the base-line configuration of cylindrical holes. Numerical simulations were carried out for the base-line and modified configurations by using CFX, in which the k-ε turbulence model and scalable wall function were chosen. Contours of adiabatic film cooling effectiveness on the blade surfaces and span-wise distributions of film cooling effectiveness downstream the rows of cooling holes interested for the different cooling configurations were compared and discussed. It is showed that with the use of fan-shaped cooling holes around the leading edge, the adiabatic film cooling effectiveness can be enhanced considerably. In comparison with the cylindrical film cooling holes, up to 40% coolant mass flow can be saved by using fan-shaped cooling holes to obtain the comparable film cooling effectiveness for the studied inlet guide vane.
文摘Film cooling experiments with sonic injection were conducted to investigate the effects of the number of the injection holes,the mass flow ratio,and the hole spacing on the film cooling effectiveness.The mainstream was obtained by the hydrogen-oxygen combustion,entering the experimental section at a Mach number of 2.0.The nitrogen with ambient temperature was injected into the experimental section at a sonic speed.The measured mainstream recovery temperature was approximately 910K.The mass flow ratio was regulated by varying the nitrogen injection pressure.The experimental results show that for the investigated cooling surface,the cooling effectiveness increases with the increase in the number of the injection holes with other parameters held constant.For a fixed cooling configuration,the cooling effectiveness increases with the increase in the mass flow ratio.Different from the subsonic film cooling,the optimal mass flow ratio is not observed.When the hole spacing is less than 4,no obvious difference is observed on the cooling effectiveness and lateral uniformity.With the mass flow ratio increasing further,this difference becomes much smaller.The shock wave also has an effect on the cooling effectiveness.Downstream the incident point of the shock wave,the cooling effectiveness is lower than that in the case without the shock wave.
文摘In this paper,to analyze the influences of the injection angles and aperture ratios (AR) of the primary hole and the side hole on the film cooling performance of a flat plate model,pressure sensitive paint (PSP) technology was used to study the forward and backward jet of a single hole and four sister holes,and a numerical simulation was supplemented to explore the flow structure of the sister holes.The sister holes had a better film cooling performance than the cylindrical hole at all blowing ratios (BR).The backward jet of the primary hole or the side hole could increase the spanwise film coverage of the sister hole.In this study,with the primary hole featuring a backward jet and the side hole featuring a forward jet,the film cooling performance was the best,11.9 times higher than the areal mean film cooling efficiency of the cylindrical hole when AR=1 and BR=1.5.At a low blowing ratio,the counter-rotating vortex pair (CRVP) of the side hole could suppress the strength of the CRVP of the primary hole.At a high blowing ratio,when the primary hole featured a backward jet and the side hole featured a forward jet,the CRVP of the side hole had the optimal performance for suppressing the CRVP of the primary hole.
文摘Transcritical film cooling was investigated by numerical study in a methane cooled methane/oxygen rocket engine.The respective time-averaged Navier-Stokes equations have been solved for the compressible steady three-dimensional(3-D) flow.The flow field computations were performed using the semi-implicit method for pressure linked equation(SIMPLE) algorithm on several blocks of nonuniform collocated grid.The calculation was conducted over a pressure range of 202 650.0 Pa to 1.2×107 Pa and a temperature range of 120.0 K to 3 568.0 K.Twenty-nine different cases were simulated to calculate the impact of different factors.The results show that mass flow rate,length,diameter,number and diffused or convergence of film jet channel,injection angle and jet array arrangements have great impact on transcritical film cooling effectiveness.Furthermore,shape of the jet holes and jet and crossflow turbulence also affect the wall temperature distribution.Two rows of film arranged in different axial angles and staggered arrangement were proposed as new liquid film arrangement.Different radial angles have impact on the film cooling effectiveness in two row-jets cooled cases.The case of in-line and staggered arrangement are almost the same in the region before the second row of jets,but a staggered arrangement has a higher film cooling effectiveness from the second row of jets.
基金the financial support from the National Natural Science Foundation of China(Grant No.U2241268)the National Science and Technology Major Project(Grant No.J2019-Ⅲ-0019-0063)。
文摘An upstream coolant injection that is different from the known leakage flow was introduced to protect the turbine endwall.This coolant is ejected tangentially from a row of cylindrical holes situated at the side of a backward-facing step.In this experiment,the effects of mass flow ratio and leakage slot width on the endwall heat transfer characteristics were investigated.The dimensionless heat transfer coefficient(Nu)and adiabatic film cooling effectiveness(η)on an axisymmetric turbine endwall were measured by the stable-state thermochromic liquid crystal(TLC)technique and the pressure sensitive paint(PSP)technique,respectively.Three mass flow ratios(MFR)of 0.64%,0.85%,and 1.07%,as well as two leakage slot widths(W)of 3.93 mm,and 7.86 mm were considered.Results indicate that the injection film suppresses the strength of the passage vortex,which leads to the coolant covering almost the entire endwall.This result is more evident for the higher MFR cases,meanwhile,the corresponding averaged film cooling effectiveness is increased with the enhancement of the MFR.However,the case with a higher MFR produces a higher heat transfer coefficient distribution,especially in the region close to the leakage slot edge.Besides,when the W is lower,the endwall presents a higherηand a lower Nu for all the cases,which can guide the optimal design of the endwall.
基金supported by the National Natural Science Foundation of China (51676163)the Fundamental Research Fund of Shenzhen City of China(JCYJ20170306155153048)+3 种基金the National 111 Project under Grant No. B18041the China Scholarship Council (CSC)provided by the Swedish National Infrastructure for Computing (SNIC) at LUNARCpartially funded by the Swedish Research Council
文摘This paper presents three-dimensional numerical simulations with the established realizable k-εmodel to clarify the underlying and interacting mechanisms between the film cooling and the internal cooling.On the one hand,the effects of three different internal cooling channels,i.e.,smooth channel,continuous ribbed channel,and truncated ribbed channel,on the film cooling effectiveness and the discharge coefficients are investigated.On the other hand,the influences of three different film cooling holes,i.e.,cylindrical hole,two elliptical holes and two circular-to-elliptical holes,on the heat transfer performances and pressure loss of the internal cooling channel are revealed.Especially,the suction effects of the film cooling holes are analyzed through setting up baselines with only internal cooling channels.Results show that the placement of ribs in the internal channel has different influences on the film cooling effectiveness with respect to different hole shapes depending on the blowing ratio.The discharge coefficient of the film hole can be improved by introducing ribs to the internal channel.Suction of film hole is helpful for enhancing the heat transfer performance and reducing the pressure loss of the internal channel.Besides,ribs instead of the suction effect of film hole play a major role to enhance the heat transfer performance in the internal cooling channel.
基金the support of National Natural Science Foundation of China(No.52006178)National Key R&D Program of China(No.Y2019-Ⅷ-0007-0168)+3 种基金the Fundamental Research Funds for the Central Universitiesthe Innovation Capacity Support Plan in Shaanxi Province of China(Grant No.2023-CX-TD-19)the Swedish Research Council(VR)the Swedish National Energy Agency(EM).
文摘The secondary flow originated from the inherent pressure gradient inside the vane cascade has a strong impact on the endwall cooling performance as the crossflow sweeps the upstream coolant jet towards the suction side,resulting in intensifying thermal load near the pressure side endwall.Hence a novel ribbed-endwall is introduced to suppress passage crossflow.The effects of the mass flow ratio and the rib layout were examined using numerical simulations by solving the three-dimensional Reynolds-averaged Navier-Stokes(RANS)equations with the shear stress transport(SST)k-ωturbulence model.The results indicate that the ribs effectively prevent the coolant migrating from the pressure side to the suction side,helping the coolant jet to spread along the lateral orientation.Therefore,the endwall adiabatic film cooling effectiveness is substantially improved.The maximum cooling effectiveness is achieved for the case with three-ribs when the height of the rib equals one hole diameter among all cases.The area-averaged adiabatic cooling effectiveness is enhanced by 31.6%relative to the flat endwall when the mass flow ratio of coolant to mainstream equals to 0.52%.More importantly,the ribbed-endwall obtains a relatively lower level of aerodynamic loss owing to the reduced lateral migration inside the vane cascade.
文摘This article deals with the effects of a blowing ratio measured with narrowband liquid crystal in transonic experiments on the heat transfer characteristics of trailing edge cutback. The experimental results are compared and contrasted in terms of available data for traditional experiments with thermocouples. It is concluded that the blowing ratio exerts rather significant effects on film cooling effectiveness distribution of the rib center line. As the blowing ratio decreases, similar to the cooling effectiveness distribution curve of the slot center line, that of the rib center line makes a clockwise rotation about the end. When the blowing ratio increases, the regular film cooling effectiveness curve of the surface becomes rather smooth. On the whole measuring surface, the most intensive heat transfer occurs at the extended borderline of the slot and the rib, neither at the rib center line nor at the slot center line. The experimental results of cooling effectiveness measured with thermocouples are lower than those with liquid crystal. In addition, the transient experiments using narrowband liquid crystal can eliminate the higher errors of Nusselt numbers in measurements with thermocouples at the slot outlet.
基金Hitachi Ltd., Japan for the financial support in this study
文摘The existence of a gap between combustor and turbine endwall in the real gas turbine induces to the leakages phenomenon. However, the leakages could be used as a coolant to protect the endwaU surfaces from the hot gas since it could not be completely prevented. Thus, present study investigated the potential of leakage flows as a function of film cooling. In present study, the flow field at the downstream of high-pressure turbine blade has been investigated by 5-holes pitot tube. This is to reveal the aerodynamic performances under the influenced of leakage flows while the temperature measurement was conducted by thermoehromic liquid crystal (TLC). Expe- rimental has significantly captured theaerodynamics effect of leakage flows near the blade downstream. Further- more, TLC measurement illustrated that the film cooling effectiveness contours were strongly influenced by the secondary flows behavior on the endwall region. Aero-thermal results were validated by the numerical simulation adopted by commercial sottware, ANSYS CFX 13. Both experimental and numerical simulation indicated almost similar trendinaero and also thermal behavior as the amount of leakage flows increases.