期刊文献+
共找到14篇文章
< 1 >
每页显示 20 50 100
Effects of Obstacles on Flame Propagation Behavior and Explosion Overpressure Development During Gas Explosions in a Large Closed Tube 被引量:6
1
作者 李小东 白春华 刘庆明 《Journal of Beijing Institute of Technology》 EI CAS 2007年第4期399-403,共5页
AutoReaGas was used for the simulations of premixed gas/air mixtures explosion characteristics in obstacle-filled tubes with a cross-section of 0.2 m×0.2 m and the length of 28 m. Numerical analyses provide a qua... AutoReaGas was used for the simulations of premixed gas/air mixtures explosion characteristics in obstacle-filled tubes with a cross-section of 0.2 m×0.2 m and the length of 28 m. Numerical analyses provide a quantitative description of dependence of flame propagation speed and explosion overpressure on obstacles number, blockage ratio and interval distance. Computational results indicate that the obstacles play a significant role in determining the flame transmission speed and explosion overpressure in gas explosions. With the increase of blockage ratio, the explosion overpressure gradually rises. Nevertheless, the flame speed does not always increase along with increasing blockage ratio, but subsequently begins to decrease as the blockage ratio increases to some extend. Also, the interval distance between obstacles strongly influences flame behavior and explosion overpressure. When the obstacle interval distance is equal to inner diameter of the tube, the average flame speed in the obstacle zone and the peak overpressure in tube all reach maximum values. 展开更多
关键词 gas explosion explosion overpressure flame propagation obstacles
下载PDF
Flame Propagation Characteristics of Propane-Air Mixture in Ducts with Obstacles 被引量:2
2
作者 卢捷 王成 宁建国 《Journal of Beijing Institute of Technology》 EI CAS 2004年第4期394-397,共4页
An experimental study on acceleration mechanism of flame propagation of propane-air mixture in ducts with obstacles was conducted. The acceleration mechanism of flame propagation is mainly due to the positive feedback... An experimental study on acceleration mechanism of flame propagation of propane-air mixture in ducts with obstacles was conducted. The acceleration mechanism of flame propagation is mainly due to the positive feedback of the turbulence region induced by obstacles for combustion process. It can be seen from the experimental results that the maximum explosion pressure can increase by 20%, the maximum rate of pressure rise can increase by 10 times and the flame propagation velocity can increase by 20 times when obstacles are present. 展开更多
关键词 gas explosion propane-air mixture flame propagation blockage ratio
下载PDF
Numerical simulation of excess-enthalpy combustion flame propagation of coal mine methane in ceramic foam 被引量:2
3
作者 SONG, Zhengchang LIN, Boquan 《Mining Science and Technology》 EI CAS 2010年第2期248-253,共6页
Based on the assumption of a local non-equilibrium of heat transfer between a solid matrix and gas,a mathematic model of coal mine methane combustion in a porous medium was established,as well the solid-gas boundary c... Based on the assumption of a local non-equilibrium of heat transfer between a solid matrix and gas,a mathematic model of coal mine methane combustion in a porous medium was established,as well the solid-gas boundary conditions.We simulated numerically the flame propagation characteristics.The results show that the flame velocity in ceramic foam is higher than that of free laminar flows;the maximum flame velocity depends on the combined effects of a radiation extinction coefficient and convection heat transfer in ceramic foam and rises with an increase in the chemical equivalent ratio.The radiation extinction coefficient cannot be used alone to determine the heat regeneration effects in the design of ceramic foam burners. 展开更多
关键词 COMBUSTION ceramic foam coal mine methane numerical simulation flame propagation
下载PDF
Studies on the flame propagation characteristic and thermal hazard of the premixed N2O/fuel mixtures 被引量:1
4
作者 Yu-yan Li Rong-pei Jiang +3 位作者 Zhi-peng Li Sen Xu Feng Pan Li-feng Xie 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第3期564-570,共7页
An experimental study was carried out to investigate the flame propagation and thermal hazard of the premixed N2O/fuel mixtures,including NH3,C3H8 and C2H4.The study provided the high speed video images and data about... An experimental study was carried out to investigate the flame propagation and thermal hazard of the premixed N2O/fuel mixtures,including NH3,C3H8 and C2H4.The study provided the high speed video images and data about the flame locations,propagation patterns,overpressures and the quenching diameters during the course of combustion in different channels to elucidate the dynamics of various combustion processes.The onset decomposition temperature was determined using high-performance adiabatic calorimetry.It was shown that the order of the flame acceleration rate and thermal hazard was N2O/C2H4>N2O/C3H8>N2O/NH3. 展开更多
关键词 flame propagation flame acceleration rate Quenching diameter Thermal hazard
下载PDF
Mechanistic Insights into Effects of Outer Stage Flare Angle on Ignition and Flame Propagation of Separated Dual-Swirl Spray Flames
5
作者 YANG Siheng HUI Xin +2 位作者 ZHANG Chi QIAN Weijia GAN Xiaohua 《Journal of Thermal Science》 SCIE EI CAS CSCD 2022年第5期1642-1662,共21页
The present work investigates the effects of outer stage flare angle on ignition and kernel propagation in a centrally staged optical model combustor based on the kernel dynamics analysis and laser diagnostics of flow... The present work investigates the effects of outer stage flare angle on ignition and kernel propagation in a centrally staged optical model combustor based on the kernel dynamics analysis and laser diagnostics of flow and spray fields.Three outer stage flare angles of 8°,16°,and 25°are researched,respectively.The better ignition performances are found for larger outer stage flare angles.Key properties such as the kernel velocity,kernel trajectory extracted from 6 k Hz high-speed flame images are analyzed in combination with the flow and spray measured via Particle Image Velocimetry(PIV)and Planar Mie Scattering(PMie).Results show that the larger outer stage flare angle imposes a larger opening angle of outer swirl jet(SWJ),shifting the vortex in outer recirculation zone(ORZ)and inner recirculation zone(IRZ)upstream.The spray distribution of a smaller flare angle exhibits a fuel-lean zone near the igniter and this is attributed to the presence of low-angle outer swirl jet that prevents the fuel droplets from arriving at the igniter vicinity.The flame kernel propagates along the path where the strain rate and velocity decrease and the spray droplet density is within the flammable limits.A lower outer stage flare angle increases the strain rate and velocity at the early phase of flame propagation,leading to a longer propagation route and thus increasing the risk of ignition failure. 展开更多
关键词 spray ignition flame propagation spray distribution separated dual-swirl
原文传递
Experimental investigation on microstructure behavior of premixed methane-air flame-flow interaction in a semi-vented chamber
6
作者 任少峰 王玉杰 +1 位作者 陈先锋 陈明 《Journal of Beijing Institute of Technology》 EI CAS 2011年第3期301-305,共5页
To explore the premixed methane-air flame microstructure behavior and the flame-flow interaction, the premixed methane/air flame was studied in a semi-vented chamber. A high speed camera and schlieren images methods w... To explore the premixed methane-air flame microstructure behavior and the flame-flow interaction, the premixed methane/air flame was studied in a semi-vented chamber. A high speed camera and schlieren images methods were used to record the processes of interaction between rare- faction wave and flame. Meanwhile, a pressure sensor was utilized to catch the pressure variation in the process of flame propagation. The experiment results showed that the interference of rarefaction wave on flame caused the flame front structure change, which led to the flame transition from lami- nar to turbulent quickly. The rarefaction wave intervened in the flame by turning the flame front sur- face into dentiform structure. The violent turbulent combustion began to appear in part of the flame front and spreaded to the whole flame front surface. The rarefaction also decreased the flame propa- gation speed. 展开更多
关键词 methane-air flame micro-structure flame propagation laminax-turbulent combustion
下载PDF
Asymptotic analysis of outwardly propagating spherical flames 被引量:1
7
作者 Yun-Chao Wu Zheng Chen 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2012年第2期359-366,共8页
Asymptotic analysis is conducted for outwardly propagating spherical flames with large activation energy. The spherical flame structure consists of the preheat zone, reaction zone, and equilibrium zone. Analytical sol... Asymptotic analysis is conducted for outwardly propagating spherical flames with large activation energy. The spherical flame structure consists of the preheat zone, reaction zone, and equilibrium zone. Analytical solutions are separately obtained in these three zones and then asymp- totically matched. In the asymptotic analysis, we derive a correlation describing the spherical flame temperature and propagation speed changing with the flame radius. This cor- relation is compared with previous results derived in the limit of infinite value of activation energy. Based on this correla- tion, the properties of spherical flame propagation are inves- tigated and the effects of Lewis number on spherical flame propagation speed and extinction stretch rate are assessed. Moreover, the accuracy and performance of different mod- els used in the spherical flame method are examined. It is found that in order to get accurate laminar flame speed and Markstein length, non-linear models should be used. 展开更多
关键词 Propagating spherical flames Asymptotic anal- ysis Lewis number Stretch rate
下载PDF
Explosion characteristics of aluminum-based activated fuels containing fluorine 被引量:2
8
作者 Jin-tao Xu Lei Huang +4 位作者 Hai-peng Jiang Tian-jiao Zhang Feng-qi Zhao Jian-kan Zhang Wei Gao 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第2期34-43,共10页
Measuring the dust explosion characteristics of aluminum-based activated fuels was a prerequisite for developing effective prevention and control measures.In this paper,ignition sensitivity,flame propagation behaviors... Measuring the dust explosion characteristics of aluminum-based activated fuels was a prerequisite for developing effective prevention and control measures.In this paper,ignition sensitivity,flame propagation behaviors and explosion severity of aluminum/polytetrafluoroethylene(Al/PTFE)compositions including 2 PT(2.80 wt.%F),4 PT(7.18 wt.%F)and 8 PT(11.90 wt.%F)were studied.When the content of F increased from 2.80 wt.%to 11.90 wt.%,the minimum explosive concentration MEC decreased from380 g/m^(3)to 140 g/m^(3),due to the dual effects of increased internal active aluminum and enhanced reactivity.The average flame propagation velocities increased as the percentage of F increased.The maximum explosion pressure Pmof 500 g/m3aluminum-based activated fuels increased from 247 k Pa to299 kPa.Scanning electron microscopy demonstrated that with the increase of PTFE content,the reaction was more complete.On this basis,the explosion mechanism of aluminum-based activated fuels was revealed. 展开更多
关键词 Aluminum-based activated fuels Ignition sensitivity flame propagation Explosion severity Explosion mechanism
下载PDF
Experimental Study on the Influence Mechanism of Carbon Fiber/Epoxy Composite Reinforcement and Matrix on Its Fire Performance
9
作者 Lei Zhang Haiyan Wang +3 位作者 Junpeng Zhang Zhi Wang Zuohui Xu Xinyu Gao 《Journal of Renewable Materials》 SCIE EI 2020年第3期219-237,共19页
The effects of the number of layers,the arrangement of carbon fiber(CF)tow and the epoxy resin(ER)matrix on the fire performance of carbon fiber/epoxy composites(CFEC)were studied by a variety of experimental methods.... The effects of the number of layers,the arrangement of carbon fiber(CF)tow and the epoxy resin(ER)matrix on the fire performance of carbon fiber/epoxy composites(CFEC)were studied by a variety of experimental methods.The results show that the number of layers of CF tow has influence on the combustion characteristics and fire propagation of the composites.The arrangement of CF tow has influence on flame propagation rate and high temperature mechanicalproperties.The mechanism of the influence of the number of layers of CF tow on the composite is mainly due to the different thermal capacity of ER matrix.The effect of the arrangement of CF tow on the fire performance of the composite is mainly due to the inhibition and obstruction of the tow on the combustion of ER matrix.The influence on the high temperature mechanicalproperties is mainly due to the different arrangement direction of CF tow.The fitting equation of the mechanicalproperties of the samples was obtained.This equation could be used to predict the samples’tensile strength from 25°C to 150℃by comparing with the experimental results.Taking the carbon fiber woven cloth(C)applied in the fuselage material as an example,combining the influencing factors of various parameters in the fire field,some suggestions are put forward combined with the research conclusion. 展开更多
关键词 MATRIX REINFORCEMENT mechanicalproperties flame propagation combustion characteristics carbon fiber tow
下载PDF
Pilot Combustion Characteristics of RP-3 Kerosene in a Trapped-Vortex Cavity with Radial Bluff-Body Flameholder
10
作者 ZHANG Yuxuan HE Xiaomin 《Journal of Thermal Science》 SCIE EI CAS CSCD 2023年第1期468-487,共20页
The structure of the trapped-vortex cavity and radial flameholder can maintain stable combustion under severe conditions,such as sub-atmospheric pressure and high inlet velocity.This article reports a complete study o... The structure of the trapped-vortex cavity and radial flameholder can maintain stable combustion under severe conditions,such as sub-atmospheric pressure and high inlet velocity.This article reports a complete study of combustion characteristics for this design.The flow field of the physical model was obtained by numerical simulation.The pilot combustion characteristics,including the combustion process,combustion efficiency,and wall temperature distribution,were studied by experiments.The pilot combustion can be divided into three modes under different fuel flow rates and inlet conditions.In“cavity maintained(CM)”mode,pilot flame exists at both sides of the cavity zone,rotating with the main vortex.In“cavity-flameholder maintained(CFM)”mode,the combustion process occurs both inside the cavity and behind the flameholder.While in“flameholder maintained(FM)”mode,the cavity will quench,and the combustion is maintained by the radial flameholder only.Due to the difference in the flow field,the flame pattern and propagation direction vary under different combustion modes.The combustion efficiency,influenced by combustion modes,shows an increase-decrease-increase curve.The wall temperature distribution is also affected;the cavity wall temperature decreases under large fuel flux while the temperature of the burner-back plate continues to rise to a maximum value. 展开更多
关键词 CAVITY spray combustion flame propagation combustion efficiency wall temperature
原文传递
Transient process of methane-oxygen diffusion flame-street establishment in a microchannel
11
作者 Xin KANG Yu WANG 《Frontiers in Energy》 SCIE CSCD 2022年第6期988-999,共12页
“Flame-street”is an interesting diffusion flame behavior in which a series of flame-segments is separately distributed along the mixing layer in a narrow channel.This experimental phenomenon was experimentally and n... “Flame-street”is an interesting diffusion flame behavior in which a series of flame-segments is separately distributed along the mixing layer in a narrow channel.This experimental phenomenon was experimentally and numerically investigated with the focus on the steady-state,thermo-chemical flame structures in previous literature.In the present paper,the dynamic formation process of a methane-oxygen diffusion flame-street structure was simulated with a reacting flow solver developed based on the open-source framework OpenFOAM.By imposing a certain amount of ignition-energy near the channel outlet,a reaction-kernel was formed and bifurcated.Subsequently,three separate flames were consecutively generated from this kernel and propagated within the channel.The whole process was completed within 15 ms and all the discrete flames were eventually in a steady-state.Interestingly,different propagation features were observed for the three flame segments:The leading flame experienced a flame shape/type change from a tribrachial structure in its fastpropagating phase to a long,trailing diffusion tail after being anchored to the inlet.The successive flame had a much lower propagation speed,keeping its two wing-like(fuel-lean premixed and fuel-rich premixed)structure while moving toward its stabilization location,which was approximately in the middle of the channel.The last flame,after the ignition source was turned-off,was immediately convected a bit downstream,and eventually featured a similar two-branch-like structure as the second one.Moreover,chemical insights for the premixed and diffusion branches of the leading flame were also provided with the change of significance of some key elementary reactions focused on,in order to attain a detailed profiling of the flame-type transition.This paper is a first-ever one discussing the transient formation of flame-streets in literature and is believed to be useful for obtaining a comprehensive understanding of this unique flame characteristics from a dynamic point of view. 展开更多
关键词 MICRO-COMBUSTION flame-street diffusion flame mixing layer flame propagation speed
原文传递
Research on combustion characteristics of scramjet combustor with different flight dynamic pressure conditions
12
作者 Junlong Zhang Guangjun Feng +2 位作者 Haotian Bai Kangshuai Lv Wen Bao 《Propulsion and Power Research》 SCIE 2023年第1期69-82,共14页
Combustion characteristics in a scramjet combustor equipped with a thin strut were observed and discussed in this paper.A series of numerical simulations were carried out under different flight dynamic pressure condit... Combustion characteristics in a scramjet combustor equipped with a thin strut were observed and discussed in this paper.A series of numerical simulations were carried out under different flight dynamic pressure conditions.The parameters of cold flow field and combustion field were used to analyze the combustion characteristics.Based on the basic data,the mixing efficiency,characteristics of flame establishment and propagation as well as combustion field characteristics were discussed in this paper.The influence laws of lower dynamic pressure conditions were further revealed to optimize combustor performance.Results indicated that properly reducing the flight dynamic pressure can enhance the mixing of kerosene.The diffusion of kerosene determined the distribution of combustion zone and heat release.Then,the influencing factor that affected the chemical reaction rate was revealed to shorten chemical reaction time.And the higher flight Mach number made the flame propagation velocity faster and the combustion stability stronger.The fuel mixing became the main factor and low dynamic pressure had little effect on laminar flame propagation velocity under high Mach number conditions.The investigations in this paper are helpful for understanding the combustion characteristics under low dynamic pressure conditions. 展开更多
关键词 Low flight dynamic pressure Fuel mixing characteristics flame propagation characteristics Combustion characteristics
原文传递
Recent progress in electric-field assisted combustion: a brief review
13
作者 Hecong LIU Weiwei CAI 《Frontiers in Energy》 SCIE CSCD 2022年第6期883-899,共17页
The control of combustion is a hot and classical topic.Among the combustion technologies,electric-field assisted combustion is an advanced technology that enjoys major advantages such as fast response and low power co... The control of combustion is a hot and classical topic.Among the combustion technologies,electric-field assisted combustion is an advanced technology that enjoys major advantages such as fast response and low power consumption compared with thermal power.However,its fundamental principle and impacts on the flames are complicated due to the coupling between physics,chemistry,and electromagnetics.In the last two decades,tremendous efforts have been made to understand electric-field assisted combustion.New observations have been reported based on different combustion systems and improved diagnostics.The main impacts,including flame stabilization,emission reduction,and flame propagation,have been revealed by both simulative and experimental studies.These findings significantly facilitate the application of electric-field assisted combustion.This brief review is intended to provide a comprehensive overview of the recent progress of this combustion technology and further point out research opportunities worth investigation. 展开更多
关键词 electric field COMBUSTION flame stabilization emission reduction flame propagation
原文传递
Effect of inlet-valve structures on thrust of airbreathing pulse detonation engines 被引量:1
14
作者 Wenjuan Chen Wei Fan +2 位作者 Feiteng Luo Gaohu Tang Yaosong Long 《Propulsion and Power Research》 SCIE 2021年第4期332-346,共15页
Experimental studies were conducted in order to improve the understanding of the thrust generation and the pressure/flame reverse propagation of the air-breathing pulse detonation engines(APDEs)with self-designed inle... Experimental studies were conducted in order to improve the understanding of the thrust generation and the pressure/flame reverse propagation of the air-breathing pulse detonation engines(APDEs)with self-designed inlets and valves structures.The present experimental research utilized a gasoline/air APDE(with 68 mm inner-diameter,2050 mm length and maximum operating frequency not less than 40 Hz which was as a benchmark structure)at different operating frequencies,with freestream air inflow of 1.1 atm and 0℃.The theoretical equivalence ratio of gasoline/air was 1.Two kinds of inlets with centerbody or without were considered and combined with two kinds of self-designed valves(the elastic-valve and the convergent aero-valve)specially designed for comparative experiments.During the test,the inflow parameters,the pressure along the longitudinal direction inside the engine and the thrust force were measured for the APDE operating characteristic analysis,including the detonation combustion,the aerodynamic drag,the pressure/flame reverse propagation and the thrust generation.The research results indicate that:The inlet centerbody does not increase drag but plays a positive effect on airflow stability and operation matching.The elastic-valve and the convergent aero-valve,though increase the inlet aerodynamic drag,have obvious effects on suppressing the detonation wave and pressure forward propagation,resulting in effective thrust increase.Effects of the convergent aero-valve are the best when the flow choked,while the effects of elastic-valve are better and continuously stable in a wider range of frequency.The wmaximum nondimensional thrust increases with the elastic-valve is reached about 1.12 at the frequency of 8-9 Hz,and about 0.97 with the convergent aero-valve at the frequency of 7 Hz.The maximum fuel specific impulse is 2514.6 s when using the convergent aerovalve.And this study provides technical reserve for the APDE optimization design. 展开更多
关键词 Air-breathing pulse detonation engine Elastic-valve Convergent aero-valve Thrust augmentation Pressure/flame reverse propagation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部