Flocculation flotation is the most efficient method for recovering fine-grained minerals,and its essence lies in flotation and recovery of flocs.Fundamental physical characteristics of flocs are mainly determined by t...Flocculation flotation is the most efficient method for recovering fine-grained minerals,and its essence lies in flotation and recovery of flocs.Fundamental physical characteristics of flocs are mainly determined by their apparent particle size and structure(density and morphology).Substantial researches have been conducted regarding the effect of floc characteristics on particle settling and water treatment.However,the influence of floc characteristics on flotation has not been widely studied.Based on the floc formation and flocculation flotation,this study reviews the fundamental physical characteristics of flocs from the perspectives of floc particle size and structure,summarizing the interaction between floc particle size and structure.Moreover,it thoroughly discusses the effect of floc particle size and structure on floc floatability,further revealing the influence of floc characteristics on bubble collision and adhesion and elucidating the mechanisms of interaction between flocs and bubbles.Thus,it is observed that floc particle size is not the only factor influencing flocculation flotation.Within the appropriate apparent particle size range,flocs with a compact structure exhibit higher efficiency in bubble collision and adhesion during flotation,thereby resulting in enhanced flotation performance.This study aims to provide a reference for flocculation flotation,targeting the development of more efficient and refined flocculation flotation processes in the future.展开更多
Enzymes play essential roles in the biological processes of sludge treatment. In this article, the ultrasound method to extract enzymes from sludge flocs was presented. Results showed that using ultrasound method at 2...Enzymes play essential roles in the biological processes of sludge treatment. In this article, the ultrasound method to extract enzymes from sludge flocs was presented. Results showed that using ultrasound method at 20 kHz could extract more types of enzymes than that at 40 kHz and ethylenediamine tetraacetic acid (EDTA) methods. The optimum parameters of ultrasound extraction at 20 kHz were duration of 10 min and intensity of 552 W/g TSS. Under the optimum condition, ultrasound could break the cells and extract both the extracellular and a small part of intercellular enzymes. Ultrasound intensity was apparently more susceptive to enzyme extraction than duration, suggesting that the control of intensity during ultrasound extraction was more important than that of duration. The Pearson correlation analysis between enzyme activities and cation contents revealed that the different types of enzymes had distinct cation binding characteristics.展开更多
The fractal dimensions in different topological spaces of polyferric chloride-humic acid (PFC-HA) flocs, formed in flocculating different kinds of humic acids (HA) water at different initial pH (9.0, 7.0, 5.0) a...The fractal dimensions in different topological spaces of polyferric chloride-humic acid (PFC-HA) flocs, formed in flocculating different kinds of humic acids (HA) water at different initial pH (9.0, 7.0, 5.0) and PFC dosages, were calculated by effective densitymaximum diameter, image analysis, and N2 absorption-desorption methods, respectively. The mass fractal dimensions (De) of PFC-HA floes were calculated by bi-logarithm relation of effective density with maximum diameter and Logan empirical equation. The Df value was more than 2.0 at initial pH of 7,0, which was 11% and 13% higher than those at pH 9.0 and 5.0, respecively, indicating the most compact flocs formed in flocculated HA water at initial pH of 7.0. The image analysis for those flocs indicates that after flocculating the HA water at initial pH greater than 7.0 with PFC flocculant, the fractal dimensions of D2 (logA vs. logdL) and D3 (logVsphere vs. logdL) of PFC-HA floes decreased with the increase of PFC dosages, and PFC-HA floes showed a gradually looser structure. At the optimum dosage of PFC, the D2 (logA vs. logdL) values of the flocs show 14%-43% difference with their corresponding Dr, and they even had different tendency with the change of initial pH values. However, the D2 values of the floes formed at three different initial pH in HA solution had a same tendency with the corresponding Df. Based on fractal Frenkel-Halsey-HiU (FHH) adsorption and desorption equations, the pore surface fractal dimensions (Ds) for dried powders of PFC-HA flocs formed in HA water with initial pH 9.0 and 7.0 were all close to 2.9421, and the Ds values of flocs formed at initial pH 5.0 were less than 2.3746. It indicated that the pore surface fractal dimensions of PFC-HA floes dried powder mainly show the irregularity from the mesopore-size distribution and marcopore-size distribution.展开更多
A series of laboratory investigations are conducted to analyze the effect of flocculant type on the spatial morphology and microstructural characteristics of flocs during the flocculation and settling of tailings.Four...A series of laboratory investigations are conducted to analyze the effect of flocculant type on the spatial morphology and microstructural characteristics of flocs during the flocculation and settling of tailings.Four flocculant types(i.e.,ZYZ,JYC-2,ZYD,and JYC-1)are considered in this study.The fractal characteristics and internal structures of tailings flocs with different flocculant types and settlement heights are analyzed by conducting scanning electron microscopy and X-ray micro-computed tomography scanning experiments based on the fractal theory.Results show that unclassified tailings flocs are irregular clusters with fractal characteristics,and the flocculation effect of the four flocculant types has the following trend:ZYZ>JYC-2>ZYD>JYC-1.The size and average grayscale value of tailings flocs decrease with the increase in settlement height.The average grayscale values at the top and bottom are 144 and 103,respectively.The settlement height remarkably affects the pore distribution pattern,as reflected in the constructed three-dimensional pore model of tailings flocs.The top part of flocs has relatively good penetration,whereas the bottom part of flocs has mostly dispersed pores.The number of pores increases exponentially with the increase in settlement height.By contrast,the size of pores initially increases and subsequently decreases with the increase in settlement height.展开更多
Aerobic granules seeded with activated sludge flocs and pellets (obtained from activated sludge flocs) were cultivated in two sequencing batch reactors and their characteristics were compared. Compared with granules...Aerobic granules seeded with activated sludge flocs and pellets (obtained from activated sludge flocs) were cultivated in two sequencing batch reactors and their characteristics were compared. Compared with granules seeded with activated sludge flocs, those seeded with pellets had shorter start-up time, larger diameter, better chemical oxygen demand removal efficiency, and higher hydrophobicity, suspended solid concentration, and Mg 2+ content. The different inocula led the granule surface with different microbial morphologies, but did not result in different distribution patterns of extracellular polymeric substances and cells. The anaerobic bacterium Anoxybacillus sp. was detected in the granules seeded with pellets. These results highlighted the advantage of pellet over activated sludge floc as the seed for aerobic granulation and wastewater treatment.展开更多
The excess water film theory and the properties of flocs are integrated to examine the effect of the polycarboxylate-type superplasticizer on the paste fluidity. The theory states that excess water can surround the fl...The excess water film theory and the properties of flocs are integrated to examine the effect of the polycarboxylate-type superplasticizer on the paste fluidity. The theory states that excess water can surround the flocs rather than the particles and that the cell consists of a floc and a superficial water film. Experiments on limestone powder pastes were conducted to verify the theory. The superplasticizer dosage (sp%) and the water-powder ratio by volume (Vw/Vv) were systematically varied. A sedimentation balance method was used to measure the size distribution of the flocs in the limestone powder pastes. The water film thickness (WFT) of flocs was then calculated and shown to determine the paste fluidity. Based on this WFT of flocs, the effect of the sp on the paste fluidity was determined and then compared with the effect of water.展开更多
Drinking water treatment sludge,characterized as accumulated suspended solids and organic and inorganic matter,is produced in large quantities during the coagulation process.The proper disposal,regeneration or reuse o...Drinking water treatment sludge,characterized as accumulated suspended solids and organic and inorganic matter,is produced in large quantities during the coagulation process.The proper disposal,regeneration or reuse of sludge is,therefore,a significant environmental issue.Reused sludge at low temperatures is an alternative method to enhance traditional coagulation efficiency.In the present study,the recycling mass of mixed sludge and properties of raw water (such as pH and turbidity) were systematically investigated to optimize coagulation efficiency.We determined that the appropriate dosage of mixed sludge was 60 mL/L,effective initial turbidity ranges were below 45.0 NTU,and optimal pH for DOMs and turbidity removal was 6.5-7.0 and 8.0,respectively.Furthermore,by comparing the flocs characteristics with and without recycling sludge,we found that floc structures with sludge were more irregular with average size growth to 64.7 μm from 48.1 μm.Recycling sludge was a feasible and successful method for enhancing pollutants removal,and the more irregular flocs structure after recycling might be caused by breakage of reused flocs and incorporation of powdered activated carbon into larger flocs structure.Applied during the coagulation process,recycling sludge could be significant for the treatment of low temperature and micro-polluted source water.展开更多
To investigate the nitrogen transport and conversion inside activated sludge flocs,micro-profiles of O2,NHt 4,NO-2,NO-3,and pH were measured under different operating conditions.The flocs were obtained from a laborato...To investigate the nitrogen transport and conversion inside activated sludge flocs,micro-profiles of O2,NHt 4,NO-2,NO-3,and pH were measured under different operating conditions.The flocs were obtained from a laboratory-scale sequencing batch reactor.Nitrification,as observed from interfacial ammonium and nitrate fluxes,was higher at pH 8.5,than at pH 6.5 and 7.5.At pH 8.5,heterotrophic bacteria used less oxygen than nitrifying bacteria,whereas at lower pH heterotrophic activity dominated.When the ratio of C to N was decreased from 20 to 10,the ammonium uptake increased.When dissolved oxygen(DO)concentration in the bulk liquid was decreased from 4 to 2 mg·L^(-1),nitrification decreased,and only 25%of the DO influx into the flocs was used for nitrification.This study indicated that nitrifying bacteria became more competitive at a higher DO concentration,a higher pH value(approximately 8.5)and a lower C/N.展开更多
In this paper, composite coagulants (PFS, PFSC05, PFSC1 and PFSC5), prepared by mixing polyferric sulfate (PFS) and cationic polyelectrolyte (CP) coagulants with different weight percent (Wv) of CP (Wp = 0%, ...In this paper, composite coagulants (PFS, PFSC05, PFSC1 and PFSC5), prepared by mixing polyferric sulfate (PFS) and cationic polyelectrolyte (CP) coagulants with different weight percent (Wv) of CP (Wp = 0%, 0.5%, 1% and 5%, respectively), were adopted to treat cyanide-containing wastewater. PFSC5 exhibited superior coagulation performances at optimal conditions: the removal of total cyanide (TCN) and chemical oxygen demand (COD) was 95%-97% and 50%-55%, respectively. The effects of CP on the properties and structure of flocs were investigated by laser diffraction instrument and small-angle laser light scattering (SALLS), respectively. The results show that the flocs of PFSC5 have higher growth rate, higher strength factor and lower recovery factor than other flocs. They are also much denser and more uniform owing to the higher fractal dimension (DO and less microflocs (10-100μm). Furthermore, the dense structure of the PFSC5 flocs can be restored after shear and is more resistant to hydraulic conditions. Particularly, detailed morphology evolution of the flocs was in-situ detected by on-line particle imaging. Due to strong ionic strength in wastewater, the CP in PFSC5 plays a significant role of adsorption, while the main mechanism of CP is electrostatic patch aggregation during the PFSC05 systems.展开更多
The settling and hydrodynamic properties of 3-D fractal flocs in quiescent water are investigated with a numerical model based on the Lattice Boltzmann Method (LBM), with considering the settling velocity, hydrodyna...The settling and hydrodynamic properties of 3-D fractal flocs in quiescent water are investigated with a numerical model based on the Lattice Boltzmann Method (LBM), with considering the settling velocity, hydrodynamic drag force and infra-floc flow. The comparisons of floc settling velocities and effective densities indicate that the numerical results present good agreements with observations in field and at laboratory. The results show that the drag force Fo increases with the floc size dr according to the relationship FD ∝ df^3. Moreover, the intra-floc flow field and movement of the pore water provide a better understanding of the intra-floc flow from the microscopic viewpoint. The results also indicate that the lattice Boltzmann method is a promising approach to reveal the mechanisms of the flocculation in aquatic environments.展开更多
Particle surface characteristics, floc recoverability and fractal structure of alum-kaolin flocs were investigated using in situ particle image velocimetry (PIV) and microbalance with or without humic acid. Experime...Particle surface characteristics, floc recoverability and fractal structure of alum-kaolin flocs were investigated using in situ particle image velocimetry (PIV) and microbalance with or without humic acid. Experimental results indicated that the zeta potential of kaolin particle surface after adsorption of humic acid was related with humic acid concentration and its acid-base buffering capacity. Adsorption of humic acid resulted in more negative electrophoresis on the particle surface. Coagulant dosages for particles to form flocs would increase with increasing humic concentration. PIV was used to evaluate floc structural fragmentation, floc surface erosion as well as recoverability after high shear. It was found that the floc size during the steady phase of growth was small, while the regrowing capability decreased in the presence of humic acid. The recoverability was closely related with floc breakage modes including floc structural fragmentation and floc surface erosion. The fractal dimensions of alum-kaolin flocs by mass-size method based on microbalance would decrease with increasing humic concentration. This study proved that humic acid had adverse influences on the performance of coagulation process.展开更多
Coagulation followed by floc separation is a key process for the removal of algal organic matter(AOM) in water treatment. Besides optimizing coagulation parameters,knowledge of the properties of AOM-flocs is essential...Coagulation followed by floc separation is a key process for the removal of algal organic matter(AOM) in water treatment. Besides optimizing coagulation parameters,knowledge of the properties of AOM-flocs is essential to maximizing AOM removal.However, the impact of AOM on the floc properties remains unclear. This study investigated how peptides/proteins derived from the cellular organic matter(COM) of the cyanobacterium Microcystis aeruginosa influenced the size, structure, and shape of flocs formed at different shear rates(G). Flocs formed by kaolinite, COM-peptides/proteins and a mixture of the same were studied, and the effect of intermolecular interactions between floc components on floc properties was assessed. The coagulation experiments were performed in a Taylor–Couette reactor, with aluminum(Al) or ferric sulphate(Fe) utilized as coagulants. Image analysis was performed to gauge floc size and obtain data on fractal dimension. It was found that floc properties were affected by the presence of the COM-peptides/proteins and the coagulant used. COM-peptides/proteins increased floc size and porosity and widened floc size distributions. The Fe coagulant produced larger and less compact flocs than Al coagulant. Moreover, the decrease in floc size that occurred in parallel with increase in shear rate was not smooth in progress. A rapid change for the kaolinite-coagulant suspension and two rapid changes for the suspensions containing COM were observed. These were attributed to various intermolecular interactions between floc components participating in coagulation at different G. Based on the results obtained, shear rates suitable for efficient separation of flocs containing COM were suggested.展开更多
The growth rate and size of floc formation is of great importance in water treatment especially in coagulation process.The floc formation kinetics and the coagulation efficiency of synthetic water were investigated by...The growth rate and size of floc formation is of great importance in water treatment especially in coagulation process.The floc formation kinetics and the coagulation efficiency of synthetic water were investigated by using an on-line continuous optical photometric dispersion analyze and the analysis of water quality.Experimental conditions such as alum dosage,pH value for coagulation,stirring intensity and initial turbidity were extensively examined.The photometric dispersion analyze results showed that coagulation of kaolin suspensions with two coagulants(alum and polyaluminium chloride) could be taken as a two-phase process:slow and rapid growth periods.Operating conditions with higher coagulant doses,appropriate pH and average shear rate might be particularly advantageous.The rate of overall floc growth was mainly determined by a combination of hydraulic and water quality conditions such as pH and turbidity.The measurement of zeta potential indicates that polyaluminium chloride exhibited higher charge-neutralizing ability than alum and achieved lower turbidities than alum for equivalent Al dosages.Under the same operating conditions,the alum showed a higher grow rate,but with smaller floc size.展开更多
Characteristics of organic matter may affect the residual aluminum after the coagulation process. This study reported the results of a survey for one drinking water treatment plant and measured the concentration of re...Characteristics of organic matter may affect the residual aluminum after the coagulation process. This study reported the results of a survey for one drinking water treatment plant and measured the concentration of residual aluminum species with different molecular weights.Survey results indicated that humic acid or organic matter whose molecular weight was smaller than 1500 Da had significant effects on residual aluminum. All the treatment processes were ineffective in removing dissolved organic matter whose molecular weight was smaller than1500 Da. These results also indicated that the addition of sand or polyacrylamide in the coagulation process could greatly decrease the concentration of humic acid, and the concentration of residual aluminum also decreased. These results revealed that for all water samples after filtration, the majority of total residual aluminum existed in the form of total dissolved aluminum, accounting for 70%–90%. The concentration of residual aluminum produced in bovine serum albumin solutions indicated that when the DOC was larger than4.0 mg/L, there were still significant differences when the solution p H value varied from 4.0 to 9.0.展开更多
Natural water bodies mostly contain cations,and the type and content of these cations are the main factors affecting the flocculation of fine-grained cohesive sediments and the floc sedimentation rate at the interface...Natural water bodies mostly contain cations,and the type and content of these cations are the main factors affecting the flocculation of fine-grained cohesive sediments and the floc sedimentation rate at the interface between clear and turbid water.From the microscopic aspect,this study examined the changing patterns of porosity and the fractal dimension of the flocs of fine-grained cohesive sediments.Sedimentation experiments under different sediment contents and electrolyte conditions were conducted,and microscopic images of the flocs were analysed using Image-Pro Plus(IPP)and MATLAB based on the fractal theory.From the macroscopic aspect,this study experimentally investigated the flocculation and sedimentation of fine-grained cohesive sediments and proposed a sedimentation rate equation by introducing an ion concentration-related parameter into an existing sedimentation rate equation(stagnation zone)based on the adsorption isotherm equation.The equation proposed in this study was validated with measured data.The calculated values were in good agreement with the measured values,with a relative error of 16%.The findings of this study provide a reference for further research on the flocculation and sedimentation of fine-grained cohesive sediments in different water bodies.展开更多
A three-dimensional,two-phase,five-component mathematical model has been developed to describe flow characteristics of clay particles and flocs in the profile control process,in which the clay particle suspension is i...A three-dimensional,two-phase,five-component mathematical model has been developed to describe flow characteristics of clay particles and flocs in the profile control process,in which the clay particle suspension is injected into the formation to react with residual polymer.This model considers the reaction of clay particles with residual polymer,apparent viscosity of the mixture,retention of clay particles and flocs,as well as the decline in porosity and permeability caused by the retention of clay particles and flocs.A finite difference method is used to discretize the equation for each component in the model.The Runge-Kutta method is used to solve the polymer flow equation,and operator splitting algorithms are used to split the flow equation for clay particles into a hyperbolic equation for convection and a parabolic equation for diffusion,which effectively ensures excellent precision,high speed and good stability.The numerical simulation had been applied successfully in the 4-P1920 unit of the Lamadian Oilfield to forecast the blocking capacity of clay particle suspension and to optimize the injection parameters.展开更多
Efficient thickening of tailings is a prerequisite for the metal mine tailings backfill and surface disposal operation.The effective collision of ultrafine tailings particles in suspension with flocculant molecules is...Efficient thickening of tailings is a prerequisite for the metal mine tailings backfill and surface disposal operation.The effective collision of ultrafine tailings particles in suspension with flocculant molecules is essential for flocs aggregates formation and settling.Unreasonable feeding speed and flocculant adding method will lead to the failure of effective dispersion of flocculant and high particle content in thickener overflow.In this work,the effect of turbulence intensity and flocculant adding method on floc size,strength,and movement characteristics are analysed.Aiming to solve the turbidity increased,a pilot-scale continuous thickening test was carried out.Taking a single particle and multiple flocs of full tailings as the research object,the particle iterative settlement model of flocs was established.The influence of turbulence intensity on collision effect is studied by tracking and simulating particle trajectory.The results show that in the process of single particle settlement,chaos appears in the iterative process owing to particle adhesion which caused by micro action.When the turbulence intensity is 25.99%,the maximum particle size of tailings floc is 6.21 mm and the maximum sedimentation rate is 5.284 cm·s^(−1).The tailings floc presents a multi-scale structure of particle-force chain system when hindered settling,and the interweaving of strong and weak force chains constitutes the topological structure of particles.The results are applied to a thicker in plant,the flocculant addition mode and feed rate are optimized,and the flocs settling speed and overflow clarity are improved.展开更多
This study was conducted to evaluate the ef fect of replacing soybean meal(SBM) by low protein ?oc meal(LPFM; 24% CP) in tilapia diets on growth performance, feed utilization and ?sh chemical composition. Three isonit...This study was conducted to evaluate the ef fect of replacing soybean meal(SBM) by low protein ?oc meal(LPFM; 24% CP) in tilapia diets on growth performance, feed utilization and ?sh chemical composition. Three isonitrogenous and isocaloric diets were formulated; control diet(C; without LPFM),FM 25(25% of SBM protein was substituted by LPFM) and FM 50(50% of SBM protein was substituted by LPFM). Nine 55 l circular plastic tanks were stocked by 12 ?sh to form three experimental groups.No dif ferences in tilapia performance were observed between the control and the FM 25 diet. Chemical composition of ?sh did not dif fer signi?cantly among treatments except for protein and selenium contents where the highest values were recorded in the control treatment. The highest mineral content was recorded in ?oc collected from the control tanks, while calcium content showed its highest value in ?oc collected from FM 50 e ? uent. These data indicate that replacing soybean meal with LPFM up to 25%, had no negative ef fect on growth performance and potentially may improve the system sustainability. Meanwhile, the adverse ef fect of more inclusion of LPFM in tilapia diet may be attributed to the higher content of ash. In other word,minerals seem to cause more energy utilization in ?sh fed ?oc meal since it is needed to maintain osmotic homeostasis.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.52174239 and 52204284)。
文摘Flocculation flotation is the most efficient method for recovering fine-grained minerals,and its essence lies in flotation and recovery of flocs.Fundamental physical characteristics of flocs are mainly determined by their apparent particle size and structure(density and morphology).Substantial researches have been conducted regarding the effect of floc characteristics on particle settling and water treatment.However,the influence of floc characteristics on flotation has not been widely studied.Based on the floc formation and flocculation flotation,this study reviews the fundamental physical characteristics of flocs from the perspectives of floc particle size and structure,summarizing the interaction between floc particle size and structure.Moreover,it thoroughly discusses the effect of floc particle size and structure on floc floatability,further revealing the influence of floc characteristics on bubble collision and adhesion and elucidating the mechanisms of interaction between flocs and bubbles.Thus,it is observed that floc particle size is not the only factor influencing flocculation flotation.Within the appropriate apparent particle size range,flocs with a compact structure exhibit higher efficiency in bubble collision and adhesion during flotation,thereby resulting in enhanced flotation performance.This study aims to provide a reference for flocculation flotation,targeting the development of more efficient and refined flocculation flotation processes in the future.
基金supported by the Hi-Tech Research and Development Program (863) of China (No.2006AA06Z384).
文摘Enzymes play essential roles in the biological processes of sludge treatment. In this article, the ultrasound method to extract enzymes from sludge flocs was presented. Results showed that using ultrasound method at 20 kHz could extract more types of enzymes than that at 40 kHz and ethylenediamine tetraacetic acid (EDTA) methods. The optimum parameters of ultrasound extraction at 20 kHz were duration of 10 min and intensity of 552 W/g TSS. Under the optimum condition, ultrasound could break the cells and extract both the extracellular and a small part of intercellular enzymes. Ultrasound intensity was apparently more susceptive to enzyme extraction than duration, suggesting that the control of intensity during ultrasound extraction was more important than that of duration. The Pearson correlation analysis between enzyme activities and cation contents revealed that the different types of enzymes had distinct cation binding characteristics.
基金supported by the National Natural Science Foundation of China (No. 20407004, 50578012, 50178009)the High-Tech Research and Development Program (863) of China (No. 2007AA06Z301)+2 种基金the Fok Ying Tung Education Foundation of National Education Ministry of China (No. 91078)the Beijing Municipal Commission of Education Project, Program for New Cen- tury Excellent Talents in University (No. NCET-06-0120)the Beijing Nova of Science and Technology, Beijing Key Subject (No. XK100220555).
文摘The fractal dimensions in different topological spaces of polyferric chloride-humic acid (PFC-HA) flocs, formed in flocculating different kinds of humic acids (HA) water at different initial pH (9.0, 7.0, 5.0) and PFC dosages, were calculated by effective densitymaximum diameter, image analysis, and N2 absorption-desorption methods, respectively. The mass fractal dimensions (De) of PFC-HA floes were calculated by bi-logarithm relation of effective density with maximum diameter and Logan empirical equation. The Df value was more than 2.0 at initial pH of 7,0, which was 11% and 13% higher than those at pH 9.0 and 5.0, respecively, indicating the most compact flocs formed in flocculated HA water at initial pH of 7.0. The image analysis for those flocs indicates that after flocculating the HA water at initial pH greater than 7.0 with PFC flocculant, the fractal dimensions of D2 (logA vs. logdL) and D3 (logVsphere vs. logdL) of PFC-HA floes decreased with the increase of PFC dosages, and PFC-HA floes showed a gradually looser structure. At the optimum dosage of PFC, the D2 (logA vs. logdL) values of the flocs show 14%-43% difference with their corresponding Dr, and they even had different tendency with the change of initial pH values. However, the D2 values of the floes formed at three different initial pH in HA solution had a same tendency with the corresponding Df. Based on fractal Frenkel-Halsey-HiU (FHH) adsorption and desorption equations, the pore surface fractal dimensions (Ds) for dried powders of PFC-HA flocs formed in HA water with initial pH 9.0 and 7.0 were all close to 2.9421, and the Ds values of flocs formed at initial pH 5.0 were less than 2.3746. It indicated that the pore surface fractal dimensions of PFC-HA floes dried powder mainly show the irregularity from the mesopore-size distribution and marcopore-size distribution.
基金This work was financially supported by the National Natural Science Foundation of China(Nos.51974012 and 51804017)the National Key Research and Development Program of China(No.2018YFC0604602)+1 种基金the Fundamental Research Funds for the Central Universities,China(No.FRF-BD-19-005A)the Opening Fund of State Key Laboratory of Nonlinear Mechanics(No.LNM202009).
文摘A series of laboratory investigations are conducted to analyze the effect of flocculant type on the spatial morphology and microstructural characteristics of flocs during the flocculation and settling of tailings.Four flocculant types(i.e.,ZYZ,JYC-2,ZYD,and JYC-1)are considered in this study.The fractal characteristics and internal structures of tailings flocs with different flocculant types and settlement heights are analyzed by conducting scanning electron microscopy and X-ray micro-computed tomography scanning experiments based on the fractal theory.Results show that unclassified tailings flocs are irregular clusters with fractal characteristics,and the flocculation effect of the four flocculant types has the following trend:ZYZ>JYC-2>ZYD>JYC-1.The size and average grayscale value of tailings flocs decrease with the increase in settlement height.The average grayscale values at the top and bottom are 144 and 103,respectively.The settlement height remarkably affects the pore distribution pattern,as reflected in the constructed three-dimensional pore model of tailings flocs.The top part of flocs has relatively good penetration,whereas the bottom part of flocs has mostly dispersed pores.The number of pores increases exponentially with the increase in settlement height.By contrast,the size of pores initially increases and subsequently decreases with the increase in settlement height.
基金supported by the National Natural Science Foundation of China(No.20977066)the National Key Project for Water Pollution Control(No.2008ZX07316-002,2008ZX07317-003)the Specialized Research Fund for Doctoral Program of Higher Education of China(No.200802470029)
文摘Aerobic granules seeded with activated sludge flocs and pellets (obtained from activated sludge flocs) were cultivated in two sequencing batch reactors and their characteristics were compared. Compared with granules seeded with activated sludge flocs, those seeded with pellets had shorter start-up time, larger diameter, better chemical oxygen demand removal efficiency, and higher hydrophobicity, suspended solid concentration, and Mg 2+ content. The different inocula led the granule surface with different microbial morphologies, but did not result in different distribution patterns of extracellular polymeric substances and cells. The anaerobic bacterium Anoxybacillus sp. was detected in the granules seeded with pellets. These results highlighted the advantage of pellet over activated sludge floc as the seed for aerobic granulation and wastewater treatment.
基金supported by the National High-Tech Research and Development Program of China("863" Project)(Grant No.2012AA06A112)the National Natural Science Foundation of China(Grant No.51239006)the National Key Laboratory in China(Grant No.2012-Ky-02)
文摘The excess water film theory and the properties of flocs are integrated to examine the effect of the polycarboxylate-type superplasticizer on the paste fluidity. The theory states that excess water can surround the flocs rather than the particles and that the cell consists of a floc and a superficial water film. Experiments on limestone powder pastes were conducted to verify the theory. The superplasticizer dosage (sp%) and the water-powder ratio by volume (Vw/Vv) were systematically varied. A sedimentation balance method was used to measure the size distribution of the flocs in the limestone powder pastes. The water film thickness (WFT) of flocs was then calculated and shown to determine the paste fluidity. Based on this WFT of flocs, the effect of the sp on the paste fluidity was determined and then compared with the effect of water.
基金supported by the Important Project of Science and Technology for Water Pollution Control and Treatment (No:2009ZX07424-005-01)
文摘Drinking water treatment sludge,characterized as accumulated suspended solids and organic and inorganic matter,is produced in large quantities during the coagulation process.The proper disposal,regeneration or reuse of sludge is,therefore,a significant environmental issue.Reused sludge at low temperatures is an alternative method to enhance traditional coagulation efficiency.In the present study,the recycling mass of mixed sludge and properties of raw water (such as pH and turbidity) were systematically investigated to optimize coagulation efficiency.We determined that the appropriate dosage of mixed sludge was 60 mL/L,effective initial turbidity ranges were below 45.0 NTU,and optimal pH for DOMs and turbidity removal was 6.5-7.0 and 8.0,respectively.Furthermore,by comparing the flocs characteristics with and without recycling sludge,we found that floc structures with sludge were more irregular with average size growth to 64.7 μm from 48.1 μm.Recycling sludge was a feasible and successful method for enhancing pollutants removal,and the more irregular flocs structure after recycling might be caused by breakage of reused flocs and incorporation of powdered activated carbon into larger flocs structure.Applied during the coagulation process,recycling sludge could be significant for the treatment of low temperature and micro-polluted source water.
基金This work was supported by Program for Changjiang Scholars and Innovative Research Team in University(No.IRT0853)State Commission of Science Technology of China(No.2009ZX07212-002)+1 种基金State Key Laboratory of Western Architecture and Technology(No.10KF08)Foundation of Shaanxi Educational Committee(No.11JK0759).
文摘To investigate the nitrogen transport and conversion inside activated sludge flocs,micro-profiles of O2,NHt 4,NO-2,NO-3,and pH were measured under different operating conditions.The flocs were obtained from a laboratory-scale sequencing batch reactor.Nitrification,as observed from interfacial ammonium and nitrate fluxes,was higher at pH 8.5,than at pH 6.5 and 7.5.At pH 8.5,heterotrophic bacteria used less oxygen than nitrifying bacteria,whereas at lower pH heterotrophic activity dominated.When the ratio of C to N was decreased from 20 to 10,the ammonium uptake increased.When dissolved oxygen(DO)concentration in the bulk liquid was decreased from 4 to 2 mg·L^(-1),nitrification decreased,and only 25%of the DO influx into the flocs was used for nitrification.This study indicated that nitrifying bacteria became more competitive at a higher DO concentration,a higher pH value(approximately 8.5)and a lower C/N.
基金supported by the National Natural Science Foundation of China(51108441)the National Key Technologies R&D Program of China(2011BAC06B09)the Special Foundation of the President of the Chinese Academy of Sciences
文摘In this paper, composite coagulants (PFS, PFSC05, PFSC1 and PFSC5), prepared by mixing polyferric sulfate (PFS) and cationic polyelectrolyte (CP) coagulants with different weight percent (Wv) of CP (Wp = 0%, 0.5%, 1% and 5%, respectively), were adopted to treat cyanide-containing wastewater. PFSC5 exhibited superior coagulation performances at optimal conditions: the removal of total cyanide (TCN) and chemical oxygen demand (COD) was 95%-97% and 50%-55%, respectively. The effects of CP on the properties and structure of flocs were investigated by laser diffraction instrument and small-angle laser light scattering (SALLS), respectively. The results show that the flocs of PFSC5 have higher growth rate, higher strength factor and lower recovery factor than other flocs. They are also much denser and more uniform owing to the higher fractal dimension (DO and less microflocs (10-100μm). Furthermore, the dense structure of the PFSC5 flocs can be restored after shear and is more resistant to hydraulic conditions. Particularly, detailed morphology evolution of the flocs was in-situ detected by on-line particle imaging. Due to strong ionic strength in wastewater, the CP in PFSC5 plays a significant role of adsorption, while the main mechanism of CP is electrostatic patch aggregation during the PFSC05 systems.
基金supported by the National Natural Science Foundation of China (Grant Nos. 50779046, 50279029)
文摘The settling and hydrodynamic properties of 3-D fractal flocs in quiescent water are investigated with a numerical model based on the Lattice Boltzmann Method (LBM), with considering the settling velocity, hydrodynamic drag force and infra-floc flow. The comparisons of floc settling velocities and effective densities indicate that the numerical results present good agreements with observations in field and at laboratory. The results show that the drag force Fo increases with the floc size dr according to the relationship FD ∝ df^3. Moreover, the intra-floc flow field and movement of the pore water provide a better understanding of the intra-floc flow from the microscopic viewpoint. The results also indicate that the lattice Boltzmann method is a promising approach to reveal the mechanisms of the flocculation in aquatic environments.
基金supported by the National Natural Science Foundation of China (No. 20721140019, U0773002)the National High Technology Research and Development Program (863) of China (No. 2002AA601120)
文摘Particle surface characteristics, floc recoverability and fractal structure of alum-kaolin flocs were investigated using in situ particle image velocimetry (PIV) and microbalance with or without humic acid. Experimental results indicated that the zeta potential of kaolin particle surface after adsorption of humic acid was related with humic acid concentration and its acid-base buffering capacity. Adsorption of humic acid resulted in more negative electrophoresis on the particle surface. Coagulant dosages for particles to form flocs would increase with increasing humic concentration. PIV was used to evaluate floc structural fragmentation, floc surface erosion as well as recoverability after high shear. It was found that the floc size during the steady phase of growth was small, while the regrowing capability decreased in the presence of humic acid. The recoverability was closely related with floc breakage modes including floc structural fragmentation and floc surface erosion. The fractal dimensions of alum-kaolin flocs by mass-size method based on microbalance would decrease with increasing humic concentration. This study proved that humic acid had adverse influences on the performance of coagulation process.
基金funded by the Czech Science Foundation, under Project No. 1805007S, with institutional support RVO: 67985874the Center for Geosphere Dynamics (UNCE/SCI/006)
文摘Coagulation followed by floc separation is a key process for the removal of algal organic matter(AOM) in water treatment. Besides optimizing coagulation parameters,knowledge of the properties of AOM-flocs is essential to maximizing AOM removal.However, the impact of AOM on the floc properties remains unclear. This study investigated how peptides/proteins derived from the cellular organic matter(COM) of the cyanobacterium Microcystis aeruginosa influenced the size, structure, and shape of flocs formed at different shear rates(G). Flocs formed by kaolinite, COM-peptides/proteins and a mixture of the same were studied, and the effect of intermolecular interactions between floc components on floc properties was assessed. The coagulation experiments were performed in a Taylor–Couette reactor, with aluminum(Al) or ferric sulphate(Fe) utilized as coagulants. Image analysis was performed to gauge floc size and obtain data on fractal dimension. It was found that floc properties were affected by the presence of the COM-peptides/proteins and the coagulant used. COM-peptides/proteins increased floc size and porosity and widened floc size distributions. The Fe coagulant produced larger and less compact flocs than Al coagulant. Moreover, the decrease in floc size that occurred in parallel with increase in shear rate was not smooth in progress. A rapid change for the kaolinite-coagulant suspension and two rapid changes for the suspensions containing COM were observed. These were attributed to various intermolecular interactions between floc components participating in coagulation at different G. Based on the results obtained, shear rates suitable for efficient separation of flocs containing COM were suggested.
基金supported by the National Natural Science Foundation of China (No. 51078148,41173103)
文摘The growth rate and size of floc formation is of great importance in water treatment especially in coagulation process.The floc formation kinetics and the coagulation efficiency of synthetic water were investigated by using an on-line continuous optical photometric dispersion analyze and the analysis of water quality.Experimental conditions such as alum dosage,pH value for coagulation,stirring intensity and initial turbidity were extensively examined.The photometric dispersion analyze results showed that coagulation of kaolin suspensions with two coagulants(alum and polyaluminium chloride) could be taken as a two-phase process:slow and rapid growth periods.Operating conditions with higher coagulant doses,appropriate pH and average shear rate might be particularly advantageous.The rate of overall floc growth was mainly determined by a combination of hydraulic and water quality conditions such as pH and turbidity.The measurement of zeta potential indicates that polyaluminium chloride exhibited higher charge-neutralizing ability than alum and achieved lower turbidities than alum for equivalent Al dosages.Under the same operating conditions,the alum showed a higher grow rate,but with smaller floc size.
基金supported by the National Natural Science Foundation of China(Nos.51608515,51025830,51008293,51578527,41201498,51138008,51138010,51308008,21677156)
文摘Characteristics of organic matter may affect the residual aluminum after the coagulation process. This study reported the results of a survey for one drinking water treatment plant and measured the concentration of residual aluminum species with different molecular weights.Survey results indicated that humic acid or organic matter whose molecular weight was smaller than 1500 Da had significant effects on residual aluminum. All the treatment processes were ineffective in removing dissolved organic matter whose molecular weight was smaller than1500 Da. These results also indicated that the addition of sand or polyacrylamide in the coagulation process could greatly decrease the concentration of humic acid, and the concentration of residual aluminum also decreased. These results revealed that for all water samples after filtration, the majority of total residual aluminum existed in the form of total dissolved aluminum, accounting for 70%–90%. The concentration of residual aluminum produced in bovine serum albumin solutions indicated that when the DOC was larger than4.0 mg/L, there were still significant differences when the solution p H value varied from 4.0 to 9.0.
基金funded by The Nature Foundation of Inner Mongolia Autonomous Region 2021MS05042The National Natural Science Foundation of China project 51969021,52169016The Major Science and Technology Projects of Inner Mongolia Autonomous Region 2021ZD0008.
文摘Natural water bodies mostly contain cations,and the type and content of these cations are the main factors affecting the flocculation of fine-grained cohesive sediments and the floc sedimentation rate at the interface between clear and turbid water.From the microscopic aspect,this study examined the changing patterns of porosity and the fractal dimension of the flocs of fine-grained cohesive sediments.Sedimentation experiments under different sediment contents and electrolyte conditions were conducted,and microscopic images of the flocs were analysed using Image-Pro Plus(IPP)and MATLAB based on the fractal theory.From the macroscopic aspect,this study experimentally investigated the flocculation and sedimentation of fine-grained cohesive sediments and proposed a sedimentation rate equation by introducing an ion concentration-related parameter into an existing sedimentation rate equation(stagnation zone)based on the adsorption isotherm equation.The equation proposed in this study was validated with measured data.The calculated values were in good agreement with the measured values,with a relative error of 16%.The findings of this study provide a reference for further research on the flocculation and sedimentation of fine-grained cohesive sediments in different water bodies.
基金support from the National High Technology Research and Development Program of China (863 Program) ( 2007AA06200)"Taishan Scholars" Construction Project (No. ts20070704)
文摘A three-dimensional,two-phase,five-component mathematical model has been developed to describe flow characteristics of clay particles and flocs in the profile control process,in which the clay particle suspension is injected into the formation to react with residual polymer.This model considers the reaction of clay particles with residual polymer,apparent viscosity of the mixture,retention of clay particles and flocs,as well as the decline in porosity and permeability caused by the retention of clay particles and flocs.A finite difference method is used to discretize the equation for each component in the model.The Runge-Kutta method is used to solve the polymer flow equation,and operator splitting algorithms are used to split the flow equation for clay particles into a hyperbolic equation for convection and a parabolic equation for diffusion,which effectively ensures excellent precision,high speed and good stability.The numerical simulation had been applied successfully in the 4-P1920 unit of the Lamadian Oilfield to forecast the blocking capacity of clay particle suspension and to optimize the injection parameters.
基金funded by the National Natural Science Foundation of China (No. 51834001)
文摘Efficient thickening of tailings is a prerequisite for the metal mine tailings backfill and surface disposal operation.The effective collision of ultrafine tailings particles in suspension with flocculant molecules is essential for flocs aggregates formation and settling.Unreasonable feeding speed and flocculant adding method will lead to the failure of effective dispersion of flocculant and high particle content in thickener overflow.In this work,the effect of turbulence intensity and flocculant adding method on floc size,strength,and movement characteristics are analysed.Aiming to solve the turbidity increased,a pilot-scale continuous thickening test was carried out.Taking a single particle and multiple flocs of full tailings as the research object,the particle iterative settlement model of flocs was established.The influence of turbulence intensity on collision effect is studied by tracking and simulating particle trajectory.The results show that in the process of single particle settlement,chaos appears in the iterative process owing to particle adhesion which caused by micro action.When the turbulence intensity is 25.99%,the maximum particle size of tailings floc is 6.21 mm and the maximum sedimentation rate is 5.284 cm·s^(−1).The tailings floc presents a multi-scale structure of particle-force chain system when hindered settling,and the interweaving of strong and weak force chains constitutes the topological structure of particles.The results are applied to a thicker in plant,the flocculant addition mode and feed rate are optimized,and the flocs settling speed and overflow clarity are improved.
基金Supported by the Science&Technology Development Fund(STDF)in Egypt under title of "Development of biofloc technology for high intensive and organic production of tilapia,mullet and freshwater shrimp under desert conditions"(No.5671)
文摘This study was conducted to evaluate the ef fect of replacing soybean meal(SBM) by low protein ?oc meal(LPFM; 24% CP) in tilapia diets on growth performance, feed utilization and ?sh chemical composition. Three isonitrogenous and isocaloric diets were formulated; control diet(C; without LPFM),FM 25(25% of SBM protein was substituted by LPFM) and FM 50(50% of SBM protein was substituted by LPFM). Nine 55 l circular plastic tanks were stocked by 12 ?sh to form three experimental groups.No dif ferences in tilapia performance were observed between the control and the FM 25 diet. Chemical composition of ?sh did not dif fer signi?cantly among treatments except for protein and selenium contents where the highest values were recorded in the control treatment. The highest mineral content was recorded in ?oc collected from the control tanks, while calcium content showed its highest value in ?oc collected from FM 50 e ? uent. These data indicate that replacing soybean meal with LPFM up to 25%, had no negative ef fect on growth performance and potentially may improve the system sustainability. Meanwhile, the adverse ef fect of more inclusion of LPFM in tilapia diet may be attributed to the higher content of ash. In other word,minerals seem to cause more energy utilization in ?sh fed ?oc meal since it is needed to maintain osmotic homeostasis.