In this paper,the deformation,breakup,and coalescence of dispersed phase droplets in Newtonian liquid systems and viscoelastic liquid systems are reviewed.For Newtonian liquid systems a generally good understanding of...In this paper,the deformation,breakup,and coalescence of dispersed phase droplets in Newtonian liquid systems and viscoelastic liquid systems are reviewed.For Newtonian liquid systems a generally good understanding of dispersed phase morphology has been gained,whereas for viscoelastic liquid systems the comprehension is limited,especially for the effect of elasticity.展开更多
Artificial intelligence technology is introduced into the simulation of muzzle flow field to improve its simulation efficiency in this paper.A data-physical fusion driven framework is proposed.First,the known flow fie...Artificial intelligence technology is introduced into the simulation of muzzle flow field to improve its simulation efficiency in this paper.A data-physical fusion driven framework is proposed.First,the known flow field data is used to initialize the model parameters,so that the parameters to be trained are close to the optimal value.Then physical prior knowledge is introduced into the training process so that the prediction results not only meet the known flow field information but also meet the physical conservation laws.Through two examples,it is proved that the model under the fusion driven framework can solve the strongly nonlinear flow field problems,and has stronger generalization and expansion.The proposed model is used to solve a muzzle flow field,and the safety clearance behind the barrel side is divided.It is pointed out that the shape of the safety clearance under different launch speeds is roughly the same,and the pressure disturbance in the area within 9.2 m behind the muzzle section exceeds the safety threshold,which is a dangerous area.Comparison with the CFD results shows that the calculation efficiency of the proposed model is greatly improved under the condition of the same calculation accuracy.The proposed model can quickly and accurately simulate the muzzle flow field under various launch conditions.展开更多
Wind and sand hazards are serious in the Milan Gobi area of the Xinjiang section of the Korla Railway. In order to ensure the safe operation of railroads, there is a need for wind and sand protection in heavily sandy ...Wind and sand hazards are serious in the Milan Gobi area of the Xinjiang section of the Korla Railway. In order to ensure the safe operation of railroads, there is a need for wind and sand protection in heavily sandy areas. The wind and sand flow in the region is notably bi-directional. To shield railroads from sand, a unique sand fence made of folded linear high-density polyethylene(HDPE) is used, aligning with the principle that the dominant wind direction is perpendicular to the fence. This study employed field observations and numerical simulations to investigate the effectiveness of these HDPE sand fences in altering flow field distribution and offering protection. It also explored how these fences affect the deposition and erosion of sand particles. Findings revealed a significant reduction in wind speed near the fence corner;the minimum horizontal wind speed on the leeward side of the first sand fence(LSF) decreased dramatically from 3 m/s to 0.64 m/s. The vortex area on the LSF markedly impacted horizontal wind speeds. Within the LSF, sand deposition was a primary occurrence. As wind speeds increased, the deposition zone shrank, whereas the positive erosion zone expanded. Close to the folded corners of the HDPE sand fence, there was a notable shift from the positive erosion zone to a deposition zone. Field tests and numerical simulations confirmed the high windproof efficiency(WE) and sand resistance efficiency(SE) in the HDPE sand fence. Folded linear HDPE sheet sand fence can effectively slow down the incoming flow and reduce the sand content, thus achieving good wind and sand protection. This study provides essential theoretical guidance for the design and improvement of wind and sand protection systems in railroad engineering.展开更多
Wind-sand flow generates erosion and deposition around obstacles such as bridges and roadbeds, resulting in sand damage and endangering railway systems in sandy regions. Previous studies have mainly focused on the flo...Wind-sand flow generates erosion and deposition around obstacles such as bridges and roadbeds, resulting in sand damage and endangering railway systems in sandy regions. Previous studies have mainly focused on the flow field around roadbeds, overlooking detailed examinations of sand particle erosion and deposition patterns near bridges and roadbeds. This study employs numerical simulations to analyze the influence of varying heights and wind speeds on sand deposition and erosion characteristics at different locations: the bridge-road transition section(side piers), middle piers, and roadbeds. The results show that the side piers, experience greater accumulation than the middle piers. Similarly, the leeward side of the roadbed witnesses more deposition compared to the windward side. Another finding reveals a reduced sand deposition length as the vertical profile, in alignment with the wind direction, moves further from the bridge abutments at the same clearance height. As wind speeds rise, there’s a decline in sand deposition and a marked increase in erosion around the side piers, middle piers and roadbeds. In conclusion, a bridge clearance that’s too low can cause intense sand damage near the side piers, while an extremely high roadbed may lead to extensive surface sand deposition. Hence, railway bridges in areas prone to sandy winds should strike a balance in clearance height. This research provides valuable guidelines for determining the most suitable bridge and roadbed heights in regions affected by wind and sand.展开更多
Casting speed,casting temperature and secondary cooling water flow rate are the main process parameters affecting the DC casting process.These parameters significantly influence the flow and temperature fields during ...Casting speed,casting temperature and secondary cooling water flow rate are the main process parameters affecting the DC casting process.These parameters significantly influence the flow and temperature fields during casting,which are crucial for the quality of the ingot and can determine the success or failure of the casting operation.Numerical simulation,with the advantages of low cost,rapid execution,and visualized results,is an important method to study and optimize the DC casting process.In the present work,a simulation model of DC casting 2024 aluminum alloy was established,and the reliability of the model was verified.Then,the influence of casting parameters on flow field and temperature field was studied in detail by numerical simulation method.Results show that with the increase of casting speed,the melt flow becomes faster,the depths of slurry zone and mushy zone increase,and the variation of slurry zone depth is greater than that of mushy zone.With an increase in casting temperature,the melt flow rate increases,the depth of the slurry zone becomes shallower,and the depth of the mushy zone experiences only minor changes.The simulation results further indicate that the increase of the flow rate of the secondary cooling water slightly reduces the depths of both slurry and mushy zone.展开更多
On the basis of computational fluid dynamics,the flow field characteristics of multi-trophic artificial reefs,including the flow field distribution features of a single reef under three different velocities and the ef...On the basis of computational fluid dynamics,the flow field characteristics of multi-trophic artificial reefs,including the flow field distribution features of a single reef under three different velocities and the effect of spacing between reefs on flow scale and the flow state,were analyzed.Results indicate upwelling,slow flow,and eddy around a single reef.Maximum velocity,height,and volume of upwelling in front of a single reef were positively correlated with inflow velocity.The length and volume of slow flow increased with the increase in inflow velocity.Eddies were present both inside and backward,and vorticity was positively correlated with inflow velocity.Space between reefs had a minor influence on the maximum velocity and height of upwelling.With the increase in space from 0.5 L to 1.5 L(L is the reef lehgth),the length of slow flow in the front and back of the combined reefs increased slightly.When the space was 2.0 L,the length of the slow flow decreased.In four different spaces,eddies were present inside and at the back of each reef.The maximum vorticity was negatively correlated with space from 0.5 L to 1.5 L,but under 2.0 L space,the maximum vorticity was close to the vorticity of a single reef under the same inflow velocity.展开更多
This study aims to improve the performances of the high-pressure water descaling technology used in steel hot rolling processes.In particular,a 2050 mm hot rolling line is considered,and the problem is investigated by...This study aims to improve the performances of the high-pressure water descaling technology used in steel hot rolling processes.In particular,a 2050 mm hot rolling line is considered,and the problem is investigated by means of a fluid–structure interaction(FSI)method by which the descaling effect produced by rolling coils with different section sizes is examined.Assuming a flat fan-shaped nozzle at the entrance of the R1R2 roughing mill,the outflow field characteristics and the velocity distribution curve on the strike line(at a target distance of 30–120 mm)are determined.It is found that the velocity in the center region of the water jet with different target distances is higher than that in the boundary region.As the target distance increases,the velocity of the water jet in the central region decreases.Through comparison with experimental results,it is shown that the simulation model can accurately predict the impact position of the high-pressure water on the impact plate,thereby providing a computational scheme that can be used to optimize the nozzle space layout and improve the slabs’descent effect for different rolling specifications.展开更多
Segregated incompressible large eddy simulation and acoustic perturbation equations were used to obtain the flow field and sound field of 1:25 scale trains with three,six and eight coaches in a long tunnel,and the aer...Segregated incompressible large eddy simulation and acoustic perturbation equations were used to obtain the flow field and sound field of 1:25 scale trains with three,six and eight coaches in a long tunnel,and the aerodynamic results were verified by wind tunnel test with the same scale two-coach train model.Time-averaged drag coefficients of the head coach of three trains are similar,but at the tail coach of the multi-group trains it is much larger than that of the three-coach train.The eight-coach train presents the largest increment from the head coach to the tail coach in the standard deviation(STD)of aerodynamic force coefficients:0.0110 for drag coefficient(Cd),0.0198 for lift coefficient(Cl)and 0.0371 for side coef-ficient(Cs).Total sound pressure level at the bottom of multi-group trains presents a significant streamwise increase,which is different from the three-coach train.Tunnel walls affect the acoustic distribution at the bottom,only after the coach number reaches a certain value,and the streamwise increase in the sound pressure fluctuation of multi-group trains is strengthened by coach number.Fourier transform of the turbulent and sound pressures presents that coach number has little influence on the peak frequencies,but increases the sound pressure level values at the tail bogie cavities.Furthermore,different from the turbulent pressure,the first two sound pressure proper orthogonal decomposition(POD)modes in the bogie cavities contain 90%of the total energy,and the spatial distributions indicate that the acoustic distributions in the head and tail bogies are not related to coach number.展开更多
For the flow field in a d50 mm hydrocyclone, numerical studies based on computational fluid dynamics (CFD) simulation and experimental studies based on particle image velocimetry (PIV) measurement were carried out res...For the flow field in a d50 mm hydrocyclone, numerical studies based on computational fluid dynamics (CFD) simulation and experimental studies based on particle image velocimetry (PIV) measurement were carried out respectively. The results of two methods show that air core generally forms after 0.7 s, the similar characteristics of air core can be observed. Vortexes and axial velocity distributions obtained by numerical and experimental methods are also in good agreement. Studies of different parameters based on CFD simulation show that tangential velocity distribution inside the hydrocyclone can be regarded as a combined vortex. Axial and tangential velocities increase as the feed rate increases. The enlargement of cone angle and overflow outlet diameter can speed up the overflow discharge rate. The change of underflow outlet diameter has no significant effect on axial and tangential velocities.展开更多
The characteristics of swirler flow field, including cold flow field and combustion flow field, in gas tur- bine combustor with two-stage swirler are studied by using particle image velocimetry (PIV). Velocity compo...The characteristics of swirler flow field, including cold flow field and combustion flow field, in gas tur- bine combustor with two-stage swirler are studied by using particle image velocimetry (PIV). Velocity compo- nents, fluctuation velocity, Reynolds stress and recirculation zone length are obtained, respectively. Influences of geometric parameter of primary hole, arrangement of primary hole, inlet air temperature, first-stage swirler an- gle and fuel/air ratio on flow field are investigated, respectively. The experimental results reveal that the primary recirculation zone lengths of combustion flow field are shorter than those of cold flow field, and the primary reeir- culation zone lengths decrease with the increase of inlet air temperature and fuel/air ratio. The change of the geo- metric parameter of primary hole casts an important influence on the swirler flow field in two-stage swirler com- bustor.展开更多
Based on the design of the multi-row sprocket with a new tooth profile,a cold semi-precision forging process for manufacturing 5052 aluminum alloy multi-row sprocket was presented.Through simulating the forging proces...Based on the design of the multi-row sprocket with a new tooth profile,a cold semi-precision forging process for manufacturing 5052 aluminum alloy multi-row sprocket was presented.Through simulating the forging process of 5052 aluminum alloy sprocket billet with 3D rigid-viscoplastic FEM,both the distributions of flow velocity field in axial(U_Z),radial(U_R) and circumferential(U_θ) directions and the curves of velocity component in different deformation regions were respectively obtained.By comparison and analysis of the velocity varying curves,the velocity component relation conditions for filling the die cavity were clarified.It shows that when the die cavity is almost fully filled,the circumferential velocity U_θ increases sharply,implying that U_θplays a key role in fully filling the die cavity.展开更多
A centrifugal fan with the high speed and compact dimensions is studied numerically and experimentally. The centrifugal fan consists of a shrouded impeller rotating at 34 000 r/min with a small tip clearance 0.7 mm to...A centrifugal fan with the high speed and compact dimensions is studied numerically and experimentally. The centrifugal fan consists of a shrouded impeller rotating at 34 000 r/min with a small tip clearance 0.7 mm to the fixed outer casing. Computational models with/without the tip clearance are built and the κ-ω shear stress transport (SST) turbulence model and the unstructured mesh are applied to the numerical simulation for unsteady solutions. The overall performance is measured on a standard experimental bench and the major flow feature of each component inside the centrifugal fan is numerically investigated. In the presence of the tip clearance due to the difference of static pressure between leading and trailing edges of the clearance, i. e. , leading and trailing edges of the impeller, a strong return flow exists inside the clearance passage and re-circulates the main stream inside the impeller passage, and produces the strong flow interaction, thus changing the flow field and influencing the overall performance.展开更多
Regular valveless piezoelectric pumps have rectifying elements outside their chambers to produce net flow. These rectifying elements outside the chamber will increase the overall volume of the pump and prevent its min...Regular valveless piezoelectric pumps have rectifying elements outside their chambers to produce net flow. These rectifying elements outside the chamber will increase the overall volume of the pump and prevent its minimization. Valveless piezoelectric pump with unsymmetrical slopes elements(USE), proposed in this paper, differs from other valveless pumps in that it is easy to be minimized by developing the chamber bottom as such a rectifying element. In this research, the working principle of the proposed pump was analyzed first. Numerical models were thereby established and numerical simulation was conducted to the chamber flow field with the method of time-dependent velocity. The effects of the USEs on the flow field in the chamber were shown clearly in simulation. And the particular feature of flow field in the chamber was discovered. It behaves a complex flow field, in which strong turbulent occurs companying a lot of vortexes in different directions and different sizes. This feature is just opposite to what regular piezoelectric pumps expect: a moderate flow field. The turbulent flow could be used to have different liquids stirred and well mixed in the chamber to produce homogeneous solution, emulsion or turbid liquid. Meanwhile, numerical simulation also presents the effect of the angles difference of the two slopes upon the flow field, and upon the flow rate of the pump, which fits to the theoretical analysis. Experiments with the proposed pump were also conducted to verify the numerical results. In these experiments, six USEs with different slope angles were used for efficiency tests, which proved the validity and reliability of the numerical analysis. The data obtained from numerical analysis agree well with that from the experiments. The errors ranged from 4.4% to 14.8% with their weighted average error being 9.7%.展开更多
In the water modeling experiments, three cases were considered, i. e, , a bare tundish, a tundish equipped with a turbulence inhibitor, and a rectangular tundish equipped with weirs (dams) and a turbulence inhibitor...In the water modeling experiments, three cases were considered, i. e, , a bare tundish, a tundish equipped with a turbulence inhibitor, and a rectangular tundish equipped with weirs (dams) and a turbulence inhibitor. Comparing the RTD curves, inclusion separation, and the result of the streamline experiment, it can be found that the tundish equipped with weirs (dams) and a turbulence inhibitor has a great effect on the flow field and the inclusion separation when compared with the sole use or no use of the turbulent inhibitor or weirs (dams). In addition, the enlargement of the distance between the weir and dam will result in a better effect when the tundish equipped with weirs (dam) and a turbulence inhibitor was used.展开更多
The finite element method (FEM) and particle image velocimetry (PIV) technique are utilized to get the flow field along the inlet passage, the chamber, the metering port and the outlet passage of spool valve at th...The finite element method (FEM) and particle image velocimetry (PIV) technique are utilized to get the flow field along the inlet passage, the chamber, the metering port and the outlet passage of spool valve at three different valve openings. For FEM numerical simulation, the stream function ψ-vorticity ω forms of continuity and Navier-Stokes equations are employed and FEM is applied to discrete the equations. Homemade simulation codes are executed to compute the values of stream function and vorticity at each node in the flow domain, then according to the correlation between stream function and velocity components, the velocity vectors of the whole field are calculated. For PIV experiment, pulse Nd: YAG laser is exploited to generate laser beam, cylindrical and spherical lenses are combined each other to produce 1.0 mm thickness laser sheet to illuminate the object plane, Polystyrene spherical particle with diameter of 30-50 μm is seeded in the fluid as a tracing particles, Kodak ES 1.0 CCD camera is employed to capture the images of interested, the images are processed with fast Fourier transform (FFT) cross-correlation algorithm and the processing results is displayed. Both results of numerical simulation and PIV experimental show that there are three main areas in the spool valve where vortex is formed. Numerical results also indicate that the valve opening have some effects on the flow structure of the valve. The investigation is helpful for qualitatively analyzing the energy loss, noise generating, steady state flow forces and even designing the geometry structure and flow passage.展开更多
Two full 3D steady mathematical models are developed by finite element method (FEM) to calcalate coupled physics fields. the electro-magnetic model is built and solved first and so is the fluid motion model with the...Two full 3D steady mathematical models are developed by finite element method (FEM) to calcalate coupled physics fields. the electro-magnetic model is built and solved first and so is the fluid motion model with the acquired electromagnetic force as source body forces in Navier-Stokes equations. Effects caused by the ferromagnetic shell, busbar system around, and open boundary problem as well as inside induced current were considered in terms of the magnetic field. Furthermore, a new modeling method is found to set up solid models and then mesh them entirely with so-called structuralized grids, namely hex-mesh. Examples of 75kA prebaked cell with two kinds of busbar arrangements are presented. Results agree with those disclosed in the literature and confirm that the coupled simulation is valid. It is also concluded that the usage of these models facilitates the consistent analysis of the electric field to magnetic field and then flow motion to the greater extent, local distributions of current density and magnetic flux density are very much dependent on the cell structure, the steel shell is a shield to reduce the magnetic field and flow pattern is two dimensional in the main body of the metal pad.展开更多
The flow fields surrounding two parallel moving bubbles rising from two identical orifices submerged in non-Newtonian fluid of carboxymethylcellulose (CMC) solution of three different mass concentration were measure...The flow fields surrounding two parallel moving bubbles rising from two identical orifices submerged in non-Newtonian fluid of carboxymethylcellulose (CMC) solution of three different mass concentration were measured experimentally by the use of particle image velocimetry (PIV). The influences of gas flowrate, solution mass concentration, orifice interval and the angle between two bubble centers line and vertical direction on the flow field surrounding bubbles were discussed respectively by analyzing the velocity vector, velocity contours as well as individual velocity components. The results show that the liquid velocity both in front of two bubbles and behind increases with gas flowrate duo to shear-thinning effect of previous bubbles, whereas decreases with the increase of CMC concentration due to the increase of drag force acting on bubbles. The effect of the orifice interval on the flow field around two moving bubbles becomes gradually obvious as the interval becomes closer. Moreover, two adjacent side-by-side bubbles repulse each other during rising, leading to the practical interval between them increased somewhat above the orifice interval. When the distance between bubbles is less than the orifice interval 10 mm, the interaction between two neighboring bubbles changed from mutual repellence to attraction with the decrease of the angle of the line of linking two bubble centers to the vertical direction.展开更多
Summary: Intraventricular hydrodynamics is considered an important component of cardiac function assessment. Vector flow mapping (VFM) is a novel flow visualization method to describe cardiac pathophysiological con...Summary: Intraventricular hydrodynamics is considered an important component of cardiac function assessment. Vector flow mapping (VFM) is a novel flow visualization method to describe cardiac pathophysiological condition. This study examined use of new VFM and flow field for assessment of left ventricular (LV) systolic hemodynamics in patients with simple hyperthyroidism (HT). Thirty-seven simple HT patients were enrolled as HT group, and 38 gender- and age-matched healthy volunteers as control group. VFM model was used to analyze LV flow field at LV apical long-axis view. The follow- ing flow parameters were measured, including peak systolic velocity (Vs), peak systolic flow (Fs), total systolic negative flow (SQ) in LV basal, middle and apical level, velocity gradient from the apex to the aortic valve (AV), and velocity according to half distance (V1/2). The velocity vector in the LV cavity, stream line and vortex distribution in the two groups were observed. The results showed that there were no significant differences in the conventional parameters such as left ventricular ejection fraction (LVEF), left ventricular end-diastolic diameter (LVEDD) and left atrium diameter (LAD) between HT group and control group (P〉0.05). Compared with the control group, a brighter flow and more vortexes were detected in HT group. Non-uniform distribution occurred in the LV flow field, and the stream lines were discontinuous in HT group. The values of Vs and Fs in three levels, SQ in middle and basal levels, AV and V1/2 were higher in HT group than in control group (P〈0.01). AV was positively correlated with serum free thyroxin (FT4) (r=0.48, P〈0.01). Stepwise multiple regression analysis showed that LVEDD, FT4, and body surface area (BSA) were the influence factors of △V. The unstable left ventricular sys- tolic hydrodynamics increased in a compensatory manner in simple PIT patients. The present study in- dicated that VFM may be used for early detection of abnormal ventricle contraction in clinical settings.展开更多
文摘In this paper,the deformation,breakup,and coalescence of dispersed phase droplets in Newtonian liquid systems and viscoelastic liquid systems are reviewed.For Newtonian liquid systems a generally good understanding of dispersed phase morphology has been gained,whereas for viscoelastic liquid systems the comprehension is limited,especially for the effect of elasticity.
基金Supported by the Natural Science Foundation of Jiangsu Province of China(Grant No.BK20210347)Supported by the National Natural Science Foundation of China(Grant No.U2141246).
文摘Artificial intelligence technology is introduced into the simulation of muzzle flow field to improve its simulation efficiency in this paper.A data-physical fusion driven framework is proposed.First,the known flow field data is used to initialize the model parameters,so that the parameters to be trained are close to the optimal value.Then physical prior knowledge is introduced into the training process so that the prediction results not only meet the known flow field information but also meet the physical conservation laws.Through two examples,it is proved that the model under the fusion driven framework can solve the strongly nonlinear flow field problems,and has stronger generalization and expansion.The proposed model is used to solve a muzzle flow field,and the safety clearance behind the barrel side is divided.It is pointed out that the shape of the safety clearance under different launch speeds is roughly the same,and the pressure disturbance in the area within 9.2 m behind the muzzle section exceeds the safety threshold,which is a dangerous area.Comparison with the CFD results shows that the calculation efficiency of the proposed model is greatly improved under the condition of the same calculation accuracy.The proposed model can quickly and accurately simulate the muzzle flow field under various launch conditions.
基金financially supported by the Chang Jiang Scholar and Innovation Team Development Plan of China (IRT_15R29)the Basic Research Innovation Group Project of Gansu Province, China (21JR7RA347)the Natural Science Foundation of Gansu Province, China (20JR10RA231)。
文摘Wind and sand hazards are serious in the Milan Gobi area of the Xinjiang section of the Korla Railway. In order to ensure the safe operation of railroads, there is a need for wind and sand protection in heavily sandy areas. The wind and sand flow in the region is notably bi-directional. To shield railroads from sand, a unique sand fence made of folded linear high-density polyethylene(HDPE) is used, aligning with the principle that the dominant wind direction is perpendicular to the fence. This study employed field observations and numerical simulations to investigate the effectiveness of these HDPE sand fences in altering flow field distribution and offering protection. It also explored how these fences affect the deposition and erosion of sand particles. Findings revealed a significant reduction in wind speed near the fence corner;the minimum horizontal wind speed on the leeward side of the first sand fence(LSF) decreased dramatically from 3 m/s to 0.64 m/s. The vortex area on the LSF markedly impacted horizontal wind speeds. Within the LSF, sand deposition was a primary occurrence. As wind speeds increased, the deposition zone shrank, whereas the positive erosion zone expanded. Close to the folded corners of the HDPE sand fence, there was a notable shift from the positive erosion zone to a deposition zone. Field tests and numerical simulations confirmed the high windproof efficiency(WE) and sand resistance efficiency(SE) in the HDPE sand fence. Folded linear HDPE sheet sand fence can effectively slow down the incoming flow and reduce the sand content, thus achieving good wind and sand protection. This study provides essential theoretical guidance for the design and improvement of wind and sand protection systems in railroad engineering.
基金financially supported by the fellowship of the China Postdoctoral Science Foundation (2021M703466)the Natural Science Foundation of Gansu Province, China (20JR10RA231)the Natural Science Foundation of Gansu Province, China (22JR5RA050)。
文摘Wind-sand flow generates erosion and deposition around obstacles such as bridges and roadbeds, resulting in sand damage and endangering railway systems in sandy regions. Previous studies have mainly focused on the flow field around roadbeds, overlooking detailed examinations of sand particle erosion and deposition patterns near bridges and roadbeds. This study employs numerical simulations to analyze the influence of varying heights and wind speeds on sand deposition and erosion characteristics at different locations: the bridge-road transition section(side piers), middle piers, and roadbeds. The results show that the side piers, experience greater accumulation than the middle piers. Similarly, the leeward side of the roadbed witnesses more deposition compared to the windward side. Another finding reveals a reduced sand deposition length as the vertical profile, in alignment with the wind direction, moves further from the bridge abutments at the same clearance height. As wind speeds rise, there’s a decline in sand deposition and a marked increase in erosion around the side piers, middle piers and roadbeds. In conclusion, a bridge clearance that’s too low can cause intense sand damage near the side piers, while an extremely high roadbed may lead to extensive surface sand deposition. Hence, railway bridges in areas prone to sandy winds should strike a balance in clearance height. This research provides valuable guidelines for determining the most suitable bridge and roadbed heights in regions affected by wind and sand.
基金financially supported by the National Natural Science Foundation of China(No.51674078)。
文摘Casting speed,casting temperature and secondary cooling water flow rate are the main process parameters affecting the DC casting process.These parameters significantly influence the flow and temperature fields during casting,which are crucial for the quality of the ingot and can determine the success or failure of the casting operation.Numerical simulation,with the advantages of low cost,rapid execution,and visualized results,is an important method to study and optimize the DC casting process.In the present work,a simulation model of DC casting 2024 aluminum alloy was established,and the reliability of the model was verified.Then,the influence of casting parameters on flow field and temperature field was studied in detail by numerical simulation method.Results show that with the increase of casting speed,the melt flow becomes faster,the depths of slurry zone and mushy zone increase,and the variation of slurry zone depth is greater than that of mushy zone.With an increase in casting temperature,the melt flow rate increases,the depth of the slurry zone becomes shallower,and the depth of the mushy zone experiences only minor changes.The simulation results further indicate that the increase of the flow rate of the secondary cooling water slightly reduces the depths of both slurry and mushy zone.
基金supported by the National Natural Science Foundation of China(No.32002442)the National Key R&D Program(No.2019YFD0902101).
文摘On the basis of computational fluid dynamics,the flow field characteristics of multi-trophic artificial reefs,including the flow field distribution features of a single reef under three different velocities and the effect of spacing between reefs on flow scale and the flow state,were analyzed.Results indicate upwelling,slow flow,and eddy around a single reef.Maximum velocity,height,and volume of upwelling in front of a single reef were positively correlated with inflow velocity.The length and volume of slow flow increased with the increase in inflow velocity.Eddies were present both inside and backward,and vorticity was positively correlated with inflow velocity.Space between reefs had a minor influence on the maximum velocity and height of upwelling.With the increase in space from 0.5 L to 1.5 L(L is the reef lehgth),the length of slow flow in the front and back of the combined reefs increased slightly.When the space was 2.0 L,the length of the slow flow decreased.In four different spaces,eddies were present inside and at the back of each reef.The maximum vorticity was negatively correlated with space from 0.5 L to 1.5 L,but under 2.0 L space,the maximum vorticity was close to the vorticity of a single reef under the same inflow velocity.
基金The research was funded by Science and Technology Project of Hebei Education Department(Project Number:QN2022198).Y.C.received the grant.
文摘This study aims to improve the performances of the high-pressure water descaling technology used in steel hot rolling processes.In particular,a 2050 mm hot rolling line is considered,and the problem is investigated by means of a fluid–structure interaction(FSI)method by which the descaling effect produced by rolling coils with different section sizes is examined.Assuming a flat fan-shaped nozzle at the entrance of the R1R2 roughing mill,the outflow field characteristics and the velocity distribution curve on the strike line(at a target distance of 30–120 mm)are determined.It is found that the velocity in the center region of the water jet with different target distances is higher than that in the boundary region.As the target distance increases,the velocity of the water jet in the central region decreases.Through comparison with experimental results,it is shown that the simulation model can accurately predict the impact position of the high-pressure water on the impact plate,thereby providing a computational scheme that can be used to optimize the nozzle space layout and improve the slabs’descent effect for different rolling specifications.
基金supported by the National Natural Science Foundation of China (Grant No. 52072267)Shanghai Key Lab of Vehicle Aerodynamics and Vehicle Thermal Management Systems (Grant No. 23DZ2229029)
文摘Segregated incompressible large eddy simulation and acoustic perturbation equations were used to obtain the flow field and sound field of 1:25 scale trains with three,six and eight coaches in a long tunnel,and the aerodynamic results were verified by wind tunnel test with the same scale two-coach train model.Time-averaged drag coefficients of the head coach of three trains are similar,but at the tail coach of the multi-group trains it is much larger than that of the three-coach train.The eight-coach train presents the largest increment from the head coach to the tail coach in the standard deviation(STD)of aerodynamic force coefficients:0.0110 for drag coefficient(Cd),0.0198 for lift coefficient(Cl)and 0.0371 for side coef-ficient(Cs).Total sound pressure level at the bottom of multi-group trains presents a significant streamwise increase,which is different from the three-coach train.Tunnel walls affect the acoustic distribution at the bottom,only after the coach number reaches a certain value,and the streamwise increase in the sound pressure fluctuation of multi-group trains is strengthened by coach number.Fourier transform of the turbulent and sound pressures presents that coach number has little influence on the peak frequencies,but increases the sound pressure level values at the tail bogie cavities.Furthermore,different from the turbulent pressure,the first two sound pressure proper orthogonal decomposition(POD)modes in the bogie cavities contain 90%of the total energy,and the spatial distributions indicate that the acoustic distributions in the head and tail bogies are not related to coach number.
基金Projects(50974033,51104035)supported by the National Natural Science Foundation of China
文摘For the flow field in a d50 mm hydrocyclone, numerical studies based on computational fluid dynamics (CFD) simulation and experimental studies based on particle image velocimetry (PIV) measurement were carried out respectively. The results of two methods show that air core generally forms after 0.7 s, the similar characteristics of air core can be observed. Vortexes and axial velocity distributions obtained by numerical and experimental methods are also in good agreement. Studies of different parameters based on CFD simulation show that tangential velocity distribution inside the hydrocyclone can be regarded as a combined vortex. Axial and tangential velocities increase as the feed rate increases. The enlargement of cone angle and overflow outlet diameter can speed up the overflow discharge rate. The change of underflow outlet diameter has no significant effect on axial and tangential velocities.
基金Supported by the National Natural Science Foundation of China(50906040)the Nanjing University of Aeronautics and Astronautics Research Funding(NZ2012107,NS2010052)~~
文摘The characteristics of swirler flow field, including cold flow field and combustion flow field, in gas tur- bine combustor with two-stage swirler are studied by using particle image velocimetry (PIV). Velocity compo- nents, fluctuation velocity, Reynolds stress and recirculation zone length are obtained, respectively. Influences of geometric parameter of primary hole, arrangement of primary hole, inlet air temperature, first-stage swirler an- gle and fuel/air ratio on flow field are investigated, respectively. The experimental results reveal that the primary recirculation zone lengths of combustion flow field are shorter than those of cold flow field, and the primary reeir- culation zone lengths decrease with the increase of inlet air temperature and fuel/air ratio. The change of the geo- metric parameter of primary hole casts an important influence on the swirler flow field in two-stage swirler com- bustor.
基金Projects(51175363,51274149)supported by the National Natural Science Foundation of China
文摘Based on the design of the multi-row sprocket with a new tooth profile,a cold semi-precision forging process for manufacturing 5052 aluminum alloy multi-row sprocket was presented.Through simulating the forging process of 5052 aluminum alloy sprocket billet with 3D rigid-viscoplastic FEM,both the distributions of flow velocity field in axial(U_Z),radial(U_R) and circumferential(U_θ) directions and the curves of velocity component in different deformation regions were respectively obtained.By comparison and analysis of the velocity varying curves,the velocity component relation conditions for filling the die cavity were clarified.It shows that when the die cavity is almost fully filled,the circumferential velocity U_θ increases sharply,implying that U_θplays a key role in fully filling the die cavity.
文摘A centrifugal fan with the high speed and compact dimensions is studied numerically and experimentally. The centrifugal fan consists of a shrouded impeller rotating at 34 000 r/min with a small tip clearance 0.7 mm to the fixed outer casing. Computational models with/without the tip clearance are built and the κ-ω shear stress transport (SST) turbulence model and the unstructured mesh are applied to the numerical simulation for unsteady solutions. The overall performance is measured on a standard experimental bench and the major flow feature of each component inside the centrifugal fan is numerically investigated. In the presence of the tip clearance due to the difference of static pressure between leading and trailing edges of the clearance, i. e. , leading and trailing edges of the impeller, a strong return flow exists inside the clearance passage and re-circulates the main stream inside the impeller passage, and produces the strong flow interaction, thus changing the flow field and influencing the overall performance.
基金supported by National Natural Science Foundation of China (Grant No. 50575007, Grant No. 50775109)
文摘Regular valveless piezoelectric pumps have rectifying elements outside their chambers to produce net flow. These rectifying elements outside the chamber will increase the overall volume of the pump and prevent its minimization. Valveless piezoelectric pump with unsymmetrical slopes elements(USE), proposed in this paper, differs from other valveless pumps in that it is easy to be minimized by developing the chamber bottom as such a rectifying element. In this research, the working principle of the proposed pump was analyzed first. Numerical models were thereby established and numerical simulation was conducted to the chamber flow field with the method of time-dependent velocity. The effects of the USEs on the flow field in the chamber were shown clearly in simulation. And the particular feature of flow field in the chamber was discovered. It behaves a complex flow field, in which strong turbulent occurs companying a lot of vortexes in different directions and different sizes. This feature is just opposite to what regular piezoelectric pumps expect: a moderate flow field. The turbulent flow could be used to have different liquids stirred and well mixed in the chamber to produce homogeneous solution, emulsion or turbid liquid. Meanwhile, numerical simulation also presents the effect of the angles difference of the two slopes upon the flow field, and upon the flow rate of the pump, which fits to the theoretical analysis. Experiments with the proposed pump were also conducted to verify the numerical results. In these experiments, six USEs with different slope angles were used for efficiency tests, which proved the validity and reliability of the numerical analysis. The data obtained from numerical analysis agree well with that from the experiments. The errors ranged from 4.4% to 14.8% with their weighted average error being 9.7%.
文摘In the water modeling experiments, three cases were considered, i. e, , a bare tundish, a tundish equipped with a turbulence inhibitor, and a rectangular tundish equipped with weirs (dams) and a turbulence inhibitor. Comparing the RTD curves, inclusion separation, and the result of the streamline experiment, it can be found that the tundish equipped with weirs (dams) and a turbulence inhibitor has a great effect on the flow field and the inclusion separation when compared with the sole use or no use of the turbulent inhibitor or weirs (dams). In addition, the enlargement of the distance between the weir and dam will result in a better effect when the tundish equipped with weirs (dam) and a turbulence inhibitor was used.
文摘The finite element method (FEM) and particle image velocimetry (PIV) technique are utilized to get the flow field along the inlet passage, the chamber, the metering port and the outlet passage of spool valve at three different valve openings. For FEM numerical simulation, the stream function ψ-vorticity ω forms of continuity and Navier-Stokes equations are employed and FEM is applied to discrete the equations. Homemade simulation codes are executed to compute the values of stream function and vorticity at each node in the flow domain, then according to the correlation between stream function and velocity components, the velocity vectors of the whole field are calculated. For PIV experiment, pulse Nd: YAG laser is exploited to generate laser beam, cylindrical and spherical lenses are combined each other to produce 1.0 mm thickness laser sheet to illuminate the object plane, Polystyrene spherical particle with diameter of 30-50 μm is seeded in the fluid as a tracing particles, Kodak ES 1.0 CCD camera is employed to capture the images of interested, the images are processed with fast Fourier transform (FFT) cross-correlation algorithm and the processing results is displayed. Both results of numerical simulation and PIV experimental show that there are three main areas in the spool valve where vortex is formed. Numerical results also indicate that the valve opening have some effects on the flow structure of the valve. The investigation is helpful for qualitatively analyzing the energy loss, noise generating, steady state flow forces and even designing the geometry structure and flow passage.
基金the National High Technical Reasearch and Development Programme of China (No. 2003AA327140) the National Natural Science Foundation of China (No. 50374081).
文摘Two full 3D steady mathematical models are developed by finite element method (FEM) to calcalate coupled physics fields. the electro-magnetic model is built and solved first and so is the fluid motion model with the acquired electromagnetic force as source body forces in Navier-Stokes equations. Effects caused by the ferromagnetic shell, busbar system around, and open boundary problem as well as inside induced current were considered in terms of the magnetic field. Furthermore, a new modeling method is found to set up solid models and then mesh them entirely with so-called structuralized grids, namely hex-mesh. Examples of 75kA prebaked cell with two kinds of busbar arrangements are presented. Results agree with those disclosed in the literature and confirm that the coupled simulation is valid. It is also concluded that the usage of these models facilitates the consistent analysis of the electric field to magnetic field and then flow motion to the greater extent, local distributions of current density and magnetic flux density are very much dependent on the cell structure, the steel shell is a shield to reduce the magnetic field and flow pattern is two dimensional in the main body of the metal pad.
基金Supported by the National Natural Science Foundation of China (20476073), the State Key Laboratory of Chemical Engineering (SKL-ChE-08B03) and the Programs of Introducing Talents of Discipline to Universities 0306006).
文摘The flow fields surrounding two parallel moving bubbles rising from two identical orifices submerged in non-Newtonian fluid of carboxymethylcellulose (CMC) solution of three different mass concentration were measured experimentally by the use of particle image velocimetry (PIV). The influences of gas flowrate, solution mass concentration, orifice interval and the angle between two bubble centers line and vertical direction on the flow field surrounding bubbles were discussed respectively by analyzing the velocity vector, velocity contours as well as individual velocity components. The results show that the liquid velocity both in front of two bubbles and behind increases with gas flowrate duo to shear-thinning effect of previous bubbles, whereas decreases with the increase of CMC concentration due to the increase of drag force acting on bubbles. The effect of the orifice interval on the flow field around two moving bubbles becomes gradually obvious as the interval becomes closer. Moreover, two adjacent side-by-side bubbles repulse each other during rising, leading to the practical interval between them increased somewhat above the orifice interval. When the distance between bubbles is less than the orifice interval 10 mm, the interaction between two neighboring bubbles changed from mutual repellence to attraction with the decrease of the angle of the line of linking two bubble centers to the vertical direction.
基金supported by Independent Innovation Fund of Huazhong University of Science and Technology for Clinical Skills,China(No.2015-01-18-53028)
文摘Summary: Intraventricular hydrodynamics is considered an important component of cardiac function assessment. Vector flow mapping (VFM) is a novel flow visualization method to describe cardiac pathophysiological condition. This study examined use of new VFM and flow field for assessment of left ventricular (LV) systolic hemodynamics in patients with simple hyperthyroidism (HT). Thirty-seven simple HT patients were enrolled as HT group, and 38 gender- and age-matched healthy volunteers as control group. VFM model was used to analyze LV flow field at LV apical long-axis view. The follow- ing flow parameters were measured, including peak systolic velocity (Vs), peak systolic flow (Fs), total systolic negative flow (SQ) in LV basal, middle and apical level, velocity gradient from the apex to the aortic valve (AV), and velocity according to half distance (V1/2). The velocity vector in the LV cavity, stream line and vortex distribution in the two groups were observed. The results showed that there were no significant differences in the conventional parameters such as left ventricular ejection fraction (LVEF), left ventricular end-diastolic diameter (LVEDD) and left atrium diameter (LAD) between HT group and control group (P〉0.05). Compared with the control group, a brighter flow and more vortexes were detected in HT group. Non-uniform distribution occurred in the LV flow field, and the stream lines were discontinuous in HT group. The values of Vs and Fs in three levels, SQ in middle and basal levels, AV and V1/2 were higher in HT group than in control group (P〈0.01). AV was positively correlated with serum free thyroxin (FT4) (r=0.48, P〈0.01). Stepwise multiple regression analysis showed that LVEDD, FT4, and body surface area (BSA) were the influence factors of △V. The unstable left ventricular sys- tolic hydrodynamics increased in a compensatory manner in simple PIT patients. The present study in- dicated that VFM may be used for early detection of abnormal ventricle contraction in clinical settings.