The flow visualization technique using shear-sensitive liquid crystal is applied to the investigation of a Mach 2 internal supersonic flow with pseudo-shock wave (PSW) in a pressure-vacuum supersonic wind tunnel. It...The flow visualization technique using shear-sensitive liquid crystal is applied to the investigation of a Mach 2 internal supersonic flow with pseudo-shock wave (PSW) in a pressure-vacuum supersonic wind tunnel. It provides qualitative information mainly concerning the overall flow structure, such as the turbulent boundary layer separation, reattachment locations and the dimensionalities of the flow. Besides, it can also give understanding of the surface streamlines, vortices in separation region and the corner effect of duct flow. Two kinds of crystals with different viscosities are used in experiments to analyze the viscosity effect. Results are compared with schlieren picture, confirming the effectiveness of liquid crystal in flow-visualization.展开更多
A chromochemical reactive mass transfer technique has been employed to study local mass transfer characteristics of structured packing. This technology adopted by experiment is an Ammonia Adsorption Method (AAM) tha...A chromochemical reactive mass transfer technique has been employed to study local mass transfer characteristics of structured packing. This technology adopted by experiment is an Ammonia Adsorption Method (AAM) that yields the surface distribution of transferred mass by analyzing the color distribution on a filter paper with the results of the color chemical reaction. A digital image processing technology is applied for data visualiza-tion. The three-dimensional plot of the local mass transfer coefficients shows that there exist three peak values on different positions of a unit cell of structured packing. In order to improve mass transfer efficiency of the structured packing, one piece of baffle is added between packing sheets. As a result, the average mass transfer coefficient increases by (10 20)% and the pressure drop decreases by (15-55)%.展开更多
This paper describes flow visualization techniques employing surface oil flow and liquid crystal thermography suitable for use in impulse wind tunnels.High spatial resolution photographs of oil flow patterns and liqui...This paper describes flow visualization techniques employing surface oil flow and liquid crystal thermography suitable for use in impulse wind tunnels.High spatial resolution photographs of oil flow patterns and liquid crystal thermograms have been obtained within test times ranging from 7 to 500 ms and have been shown to be very useful for revealing the detailed features of 3-D separated flow.The results from oil flow patterns,liquid crystal thermograms,schlieren photographs and heat flux measurements are shown to be in good agreement.展开更多
A flat plate film cooling flow from a multi-exit hole configuration has been numerically simulated using both steady and unsteady Reynolds Averaged Navier Stokes (RANS and URANS) Computational Fluid Dynamics (CFD) for...A flat plate film cooling flow from a multi-exit hole configuration has been numerically simulated using both steady and unsteady Reynolds Averaged Navier Stokes (RANS and URANS) Computational Fluid Dynamics (CFD) formulations. This multi-exit hole concept, the Anti-Vortex Hole (AVH), has been developed and studied by previous research groups and shown to mitigate or counter the vorticity generated by conventional holes resulting in a more attached film cooling layer and higher film cooling effectiveness. The film cooling jets interaction with the free stream flow is a long studied area in gas turbine heat transfer. The present study numerically simulates the jet interaction with the multi-exit hole concept at a high blowing ratio (M = 2.0) and density ratio (DR = 2.0) in order to provide a more detailed, graphical explanation of the improvement in film cooling effectiveness. This paper presents a numerical study of the flow visualization of the interaction of film cooling jets with a subsonic crossflow. The contour plots of adiabatic cooling effectiveness were used to compare the multi-exit hole and conventional single hole configurations. The vortex structures in the flow were analyzed by URANS formulations and the effect of these vortices on the cooling effectiveness was investigated together with the coolant jet lift-off predictions. Quasi-Instantaneous Temperature Isosurface plots are used in the investigations of the effect of turbulence intensity on the cooling effectiveness and coolant jet coverage. The effect of varying turbulence intensity was investigated when analyzing the jets’ interaction with the cross flow and the corresponding temperatures at the wall. The results show that as the turbulence intensity is increased, the cooling flow will stay more attached to the wall and have more pronounced lateral spreading far downstream of the cooling holes.展开更多
Gortler vortices are key issues in the design of gas turbine blades. The present study deals with flow visualization over concave surface for gas turbine applications. The aim is to comprehend qualitatively the flow t...Gortler vortices are key issues in the design of gas turbine blades. The present study deals with flow visualization over concave surface for gas turbine applications. The aim is to comprehend qualitatively the flow trends, particularly the Gortler vortices formation and development. Gortler vortices have the shape of mushroom-like vortices regularly spaced at 25 mm. These vortices grow and increase in strength more rapidly along the surface in the case of the same grid of turbulence applied to the measuring section. The curvature radius of the studied blade is 0.5 m and the stream turbulence intensity level is 2.6%. The velocity field is measured by hot wire anemometer in the streamwise direction. The velocity profile is found to be highly distorted by the momentum transfer associated with Gortler vortices. The results are compared to Blasius flow and to literature data for a blade with curvature radius equal to 2 m.展开更多
An experimental investigation associated with the basic fluid mechanics in an axial flow fan is described in this paper. The flow field in the tip region has been studied by laser Doppler anemometer (LDA) and flow vis...An experimental investigation associated with the basic fluid mechanics in an axial flow fan is described in this paper. The flow field in the tip region has been studied by laser Doppler anemometer (LDA) and flow visualization technique. Some experimental data and images are interpreted to understand the complex interactions between the annulus wall boundary layer and the leakage flow. It shows that the vortex inside the blade passage is produced by the separation of annulus wall boundary layer rather than the rolling up of leakage flow.展开更多
The flow through a rotating U bend duct is investigated by means of visualization. The U bend duct has a cross section of 50 mm×50 mm and a ratio of bend mean radius R c to hydraulic diameter of the duct D of ...The flow through a rotating U bend duct is investigated by means of visualization. The U bend duct has a cross section of 50 mm×50 mm and a ratio of bend mean radius R c to hydraulic diameter of the duct D of 0.65. The rotation axis is parallel with the bend axis. Three cases with rotation number of Ro=-0.2, 0 and 0.2, respectively, are studied at a Reynolds number of 100 000. The results show that the combined effect of rotation and bend curvature strongly influences the flow field, especially in the downstream region of the bend. The evident difference among the flow patterns with different rotation number shows that the secondary flow induced by Coriolis force takes an important role in determining the flow structure.展开更多
The flow field in a typical inward-turning inlet was visualized using the Planar Laser Scattering(PLS)method in a shock tunnel with a nominal Mach number of 6.The opaque inlet,which is truncated at a series of section...The flow field in a typical inward-turning inlet was visualized using the Planar Laser Scattering(PLS)method in a shock tunnel with a nominal Mach number of 6.The opaque inlet,which is truncated at a series of sections,and the following transparent isolator,are combined to enable the optical access at different streamwise locations.The sequential PLS images provide a tomography-like flow visualization,which confirm the existence of streamwise Counter-rotating Vortex Pairs(CVPs)in both external and internal flow field of the inlet.Generation mechanisms of these CVPs are unraveled with the help of a numerical simulation,among which the cowl notch plays an important role in the generation of surface trailing CVPs along the centerline of the cowl.Moreover,the cowl shock sweeps the internal boundary layer towards the body side,which ultimately accumulates low-momentum flow on the body side in forms of a large CVP propagating downstream through the isolator.The CVPs formed in the shape-transition are responsible for the nonuniform flow field of the inward-turning inlet.This study indicates that the V-shaped cowl notch affects the downstream flow significantly and,therefore,should be examined thoroughly in practical applications.展开更多
An experimental study on the traveling crossflow instability over a 60∘swept flat plate was conducted.The Mach number is 6,the angle of attack of the model is 5∘.The traveling crossflow waves and the secondary insta...An experimental study on the traveling crossflow instability over a 60∘swept flat plate was conducted.The Mach number is 6,the angle of attack of the model is 5∘.The traveling crossflow waves and the secondary instability of the traveling crossflow waves were visualized by nano-tracer-based planar laser scattering(NPLS)technique.In the spanwise NPLS images,the traveling crossflow waves appeared as regular strikes,and the secondary instability appeared as small eddies attached to strikes.The wavelet transform was used to study the wavelength contents of the traveling crossflow waves.The most amplified wavelength is stable before the secondary instability happening,which is around 12 mm at Re_(∞)=3.45×10^(6)m^(−1).Besides,the Reynolds number effects on the boundary layer transition and traveling crossflow instability were discussed.展开更多
The purpose of this study is to make clear the behavior of swirling pipe flows with non-circular section. We have investigated experimentally and numerically the swirling flows in a rectangular channel with aspect rat...The purpose of this study is to make clear the behavior of swirling pipe flows with non-circular section. We have investigated experimentally and numerically the swirling flows in a rectangular channel with aspect ratio of 1.3, which is one of the typical pipe flow with non-circular section. In this paper, experimental apparatus with water circulation system is produced, and LDV measurement of the swirling flows is performed in order to clarify the mean velocities and turbulent quantity with higher accuracy. In addition, flow visualization for movement of vortex core region in the swirling flows is carried out using tracer method. Moreover, large eddy simulation (LES) of the flow field is made and compared with the experimental results. As results of these investigations, the behavior of the swirling flows in the rectangular channel is totally discussed.展开更多
In this paper, an experimental investigation on the flow structures in a turbulent bounda- ry layer employing a special laser light sheet-Hydrogen bubble flow visualization technique is described. It is observed that ...In this paper, an experimental investigation on the flow structures in a turbulent bounda- ry layer employing a special laser light sheet-Hydrogen bubble flow visualization technique is described. It is observed that the high/low speed streaks are directly related to the hairpin or horseshoe-like vortices. This observation can give a better understanding of the physical mechanism in the turbulent boundary layer.展开更多
In the immersive flow visualization based on virtual reality,how to meet the needs of complex professional flow visualization analysis by natural human–computer interaction is a pressing problem.In order to achieve t...In the immersive flow visualization based on virtual reality,how to meet the needs of complex professional flow visualization analysis by natural human–computer interaction is a pressing problem.In order to achieve the natural and efficient human–computer interaction,we analyze the interaction requirements of flow visualization and study the characteristics of four human–computer interaction channels:hand,head,eye and voice.We give out some multimodal interaction design suggestions and then propose three multimodal interaction methods:head&hand,head&hand&eye and head&hand&eye&voice.The freedom of gestures,the stability of the head,the convenience of eyes and the rapid retrieval of voices are used to improve the accuracy and efficiency of interaction.The interaction load is balanced by multimodal interaction to reduce fatigue.The evaluation shows that our multimodal interaction has higher accuracy,faster time efficiency and much lower fatigue than the traditional joystick interaction.展开更多
In order to clarify the structure of the cold flow discharged from the counter-flow vortex tube(VT), the temperature and pressure of the cold flow were measured, and the existence and behavior of the reversed flow at ...In order to clarify the structure of the cold flow discharged from the counter-flow vortex tube(VT), the temperature and pressure of the cold flow were measured, and the existence and behavior of the reversed flow at the cold exit was studied using a simple flow visualization technique consisting of a 0.75mm-diameter needle, and an oil paint droplet. It is observed through this experiment that the Pitot pressure at the cold exit center can either be lower or higher than atmospheric pressure, depending on the inlet pressure and the cold fraction, and that a reversed flow is observed when the Pitot pressure at the cold exit center is lower than atmospheric pressure. In addition, it is observed that when reducing the cold fraction from unity at any arbitrary inlet pressure, the region of reversed and colder flow in the central part of cold exit extends in the downstream direction.展开更多
By means of ink trace visualization and topological allalysis, this paper investigates the topological structure of the flow pattern surrounding both endwalls and blade surfaces for a low aspect ratio linear rotor cas...By means of ink trace visualization and topological allalysis, this paper investigates the topological structure of the flow pattern surrounding both endwalls and blade surfaces for a low aspect ratio linear rotor cascade with tip cIearance. The structure of the flow pattern shows that most of the singular points and separation lines are located in the upper half span region of the tested cascade where the aerodynamic behaviors are deteriorated.展开更多
Digital speckle technique uses a laser, a CCD camera, and digital processing to generate interference fringes at the television framing rate. Its most obvious advantage is that neither darkroom facilities nor photogra...Digital speckle technique uses a laser, a CCD camera, and digital processing to generate interference fringes at the television framing rate. Its most obvious advantage is that neither darkroom facilities nor photographic wet chemical processing is required. In addition, it can be used in harsh engineering environments. This paper discusses the strengths and weaknesses of three digital speckle methodologies. (1) Digital speckle pattern interferometry (DSPI) uses an optical polarization phase shifter for visualization and measurement of the density field in a flow field. (2) Digital shearing speckle interferometry (DSSI) utilizes speckle\|shearing interferometry in addition to optical polarization phase shifting. (3) Digital speckle photography (DSP) with computer reconstruction. The discussion describes the concepts, the principles and the experimental arrangements with some experimental results. The investigation shows that these three digital speckle techniques provide an excellent method for visualizing flow fields and for measuring density distributions in fluid mechanics and thermal flows.展开更多
With the development of deep learning(DL)techniques,many tasks in flow visualization that used to rely on complex analysis algorithms now can be replaced by DL methods.We reviewed the approaches to deep learning techn...With the development of deep learning(DL)techniques,many tasks in flow visualization that used to rely on complex analysis algorithms now can be replaced by DL methods.We reviewed the approaches to deep learning technology in flow visualization and discussed the technical benefits of these approaches.We also analyzed the prospects of the development of flow visualization with the help of deep learning.展开更多
The material flow in friction stir welded 2014 Al alloy has been investigated using a marker insert technique (MIT). Results of the flow visualization show that the material flow is asymmetrical during the friction ...The material flow in friction stir welded 2014 Al alloy has been investigated using a marker insert technique (MIT). Results of the flow visualization show that the material flow is asymmetrical during the friction stir welding (FSW) process and there are also significant differences in the flow patterns observed on advancing side and retreating side. On advancing side, some material transport forward and some move backward, but on retreating side, material only transport backward. At the top surface of the weld, significant material transport forward due to the action of the rotating tool shoulder. Combining the data from all the markers, a three-dituensional flow visualization, similar to the 3D image reconstruction technique, was obtained. The three-dimensional plot gives the tendency chart of material flow in friction stir welding process and from the plot it can be seen that there is a vertical, circular motion around the longitudinal axis of the weld. On the advancing side of the weld, the material is pushed downward but on the retreating side, the material is pushed toward the crown of the weld. The net result of the two relative motions in both side of the advancing and the retreating is that a circular motion comes into being. Comparatively, the material flow around the longitudinal axis is a secondary motion.展开更多
Fluid dynamics simulation is often repeated under varying conditions.This leads to a generation of large amounts of results,which are difficult to compare.To compare results under different conditions,it is effective ...Fluid dynamics simulation is often repeated under varying conditions.This leads to a generation of large amounts of results,which are difficult to compare.To compare results under different conditions,it is effective to overlap the streamlines generated from each condition in a single three-dimensional space.Streamline is a curved line,which represents a wind flow.This paper presents a technique to automatically select and visualize important streamlines that are suitable for the comparison of the simulation results.Additionally,we present an implementation to observe the flow fields in virtual reality spaces.展开更多
To better understand the multiphase fluid dynamics and associated transport processes of cavitating flows at the capillary number of 0.74 and 0.54, and to validate the numerical results, a combined computational and e...To better understand the multiphase fluid dynamics and associated transport processes of cavitating flows at the capillary number of 0.74 and 0.54, and to validate the numerical results, a combined computational and experimental investigation of flows around a hydrofoil is studied based on flow visualizations and time-resolved interface movement. The computational model is based on a modified RNG k-ε model as turbulence closure, along with a vapor-liquid mass transfer model for treating the cavitation process. Overall, favorable agreement between the numerical and experimental results is observed. It is shown that the cavi- tation structure depends on the interaction of the water-vapor mixture and the vapor among the whole cavitation stage, the interface between the vapor and the two-phase mixture exhibits substantial unsteadiness. And, the adverse motion of the interface relates to pressure and velocity fluctuations inside the cavity. In particular, the velocity in the vapor region is lower than that in the two-phase region.展开更多
This study experimentally analyzes the nonlinear flow characteristics and channelization of fluid through rough-walled fractures during the shear process using a shear-flow-visualization apparatus.A series of fluid fl...This study experimentally analyzes the nonlinear flow characteristics and channelization of fluid through rough-walled fractures during the shear process using a shear-flow-visualization apparatus.A series of fluid flow and visualization tests is performed on four transparent fracture specimens with various shear displacements of 1 mm,3 mm,5 mm,7 mm and 10 mm under a normal stress of 0.5 MPa.Four granite fractures with different roughnesses are selected and quantified using variogram fractal dimensions.The obtained results show that the critical Reynolds number tends to increase with increasing shear displacement but decrease with increasing roughness of fracture surface.The flow paths are more tortuous at the beginning of shear because of the wide distribution of small contact spots.As the shear displacement continues to increase,preferential flow paths are more distinctly observed due to the decrease in the number of contact spots caused by shear dilation;yet the area of single contacts in-creases.Based on the experimental results,an empirical mathematical equation is proposed to quantify the critical Reynolds number using the contact area ratio and fractal dimension.展开更多
文摘The flow visualization technique using shear-sensitive liquid crystal is applied to the investigation of a Mach 2 internal supersonic flow with pseudo-shock wave (PSW) in a pressure-vacuum supersonic wind tunnel. It provides qualitative information mainly concerning the overall flow structure, such as the turbulent boundary layer separation, reattachment locations and the dimensionalities of the flow. Besides, it can also give understanding of the surface streamlines, vortices in separation region and the corner effect of duct flow. Two kinds of crystals with different viscosities are used in experiments to analyze the viscosity effect. Results are compared with schlieren picture, confirming the effectiveness of liquid crystal in flow-visualization.
文摘A chromochemical reactive mass transfer technique has been employed to study local mass transfer characteristics of structured packing. This technology adopted by experiment is an Ammonia Adsorption Method (AAM) that yields the surface distribution of transferred mass by analyzing the color distribution on a filter paper with the results of the color chemical reaction. A digital image processing technology is applied for data visualiza-tion. The three-dimensional plot of the local mass transfer coefficients shows that there exist three peak values on different positions of a unit cell of structured packing. In order to improve mass transfer efficiency of the structured packing, one piece of baffle is added between packing sheets. As a result, the average mass transfer coefficient increases by (10 20)% and the pressure drop decreases by (15-55)%.
文摘This paper describes flow visualization techniques employing surface oil flow and liquid crystal thermography suitable for use in impulse wind tunnels.High spatial resolution photographs of oil flow patterns and liquid crystal thermograms have been obtained within test times ranging from 7 to 500 ms and have been shown to be very useful for revealing the detailed features of 3-D separated flow.The results from oil flow patterns,liquid crystal thermograms,schlieren photographs and heat flux measurements are shown to be in good agreement.
文摘A flat plate film cooling flow from a multi-exit hole configuration has been numerically simulated using both steady and unsteady Reynolds Averaged Navier Stokes (RANS and URANS) Computational Fluid Dynamics (CFD) formulations. This multi-exit hole concept, the Anti-Vortex Hole (AVH), has been developed and studied by previous research groups and shown to mitigate or counter the vorticity generated by conventional holes resulting in a more attached film cooling layer and higher film cooling effectiveness. The film cooling jets interaction with the free stream flow is a long studied area in gas turbine heat transfer. The present study numerically simulates the jet interaction with the multi-exit hole concept at a high blowing ratio (M = 2.0) and density ratio (DR = 2.0) in order to provide a more detailed, graphical explanation of the improvement in film cooling effectiveness. This paper presents a numerical study of the flow visualization of the interaction of film cooling jets with a subsonic crossflow. The contour plots of adiabatic cooling effectiveness were used to compare the multi-exit hole and conventional single hole configurations. The vortex structures in the flow were analyzed by URANS formulations and the effect of these vortices on the cooling effectiveness was investigated together with the coolant jet lift-off predictions. Quasi-Instantaneous Temperature Isosurface plots are used in the investigations of the effect of turbulence intensity on the cooling effectiveness and coolant jet coverage. The effect of varying turbulence intensity was investigated when analyzing the jets’ interaction with the cross flow and the corresponding temperatures at the wall. The results show that as the turbulence intensity is increased, the cooling flow will stay more attached to the wall and have more pronounced lateral spreading far downstream of the cooling holes.
文摘Gortler vortices are key issues in the design of gas turbine blades. The present study deals with flow visualization over concave surface for gas turbine applications. The aim is to comprehend qualitatively the flow trends, particularly the Gortler vortices formation and development. Gortler vortices have the shape of mushroom-like vortices regularly spaced at 25 mm. These vortices grow and increase in strength more rapidly along the surface in the case of the same grid of turbulence applied to the measuring section. The curvature radius of the studied blade is 0.5 m and the stream turbulence intensity level is 2.6%. The velocity field is measured by hot wire anemometer in the streamwise direction. The velocity profile is found to be highly distorted by the momentum transfer associated with Gortler vortices. The results are compared to Blasius flow and to literature data for a blade with curvature radius equal to 2 m.
文摘An experimental investigation associated with the basic fluid mechanics in an axial flow fan is described in this paper. The flow field in the tip region has been studied by laser Doppler anemometer (LDA) and flow visualization technique. Some experimental data and images are interpreted to understand the complex interactions between the annulus wall boundary layer and the leakage flow. It shows that the vortex inside the blade passage is produced by the separation of annulus wall boundary layer rather than the rolling up of leakage flow.
文摘The flow through a rotating U bend duct is investigated by means of visualization. The U bend duct has a cross section of 50 mm×50 mm and a ratio of bend mean radius R c to hydraulic diameter of the duct D of 0.65. The rotation axis is parallel with the bend axis. Three cases with rotation number of Ro=-0.2, 0 and 0.2, respectively, are studied at a Reynolds number of 100 000. The results show that the combined effect of rotation and bend curvature strongly influences the flow field, especially in the downstream region of the bend. The evident difference among the flow patterns with different rotation number shows that the secondary flow induced by Coriolis force takes an important role in determining the flow structure.
基金supported by the National Natural Science Foundation of China(Nos.11772325,11872356 and 11621202)。
文摘The flow field in a typical inward-turning inlet was visualized using the Planar Laser Scattering(PLS)method in a shock tunnel with a nominal Mach number of 6.The opaque inlet,which is truncated at a series of sections,and the following transparent isolator,are combined to enable the optical access at different streamwise locations.The sequential PLS images provide a tomography-like flow visualization,which confirm the existence of streamwise Counter-rotating Vortex Pairs(CVPs)in both external and internal flow field of the inlet.Generation mechanisms of these CVPs are unraveled with the help of a numerical simulation,among which the cowl notch plays an important role in the generation of surface trailing CVPs along the centerline of the cowl.Moreover,the cowl shock sweeps the internal boundary layer towards the body side,which ultimately accumulates low-momentum flow on the body side in forms of a large CVP propagating downstream through the isolator.The CVPs formed in the shape-transition are responsible for the nonuniform flow field of the inward-turning inlet.This study indicates that the V-shaped cowl notch affects the downstream flow significantly and,therefore,should be examined thoroughly in practical applications.
基金This work was supported by the National Key Research and Development Plan of China(Grant 2019YFA0405300)the National Natural Science Foundation of China(Grants 11832018,12002375,11527802)the Project of National University of Defense Technology(ZK20-12).
文摘An experimental study on the traveling crossflow instability over a 60∘swept flat plate was conducted.The Mach number is 6,the angle of attack of the model is 5∘.The traveling crossflow waves and the secondary instability of the traveling crossflow waves were visualized by nano-tracer-based planar laser scattering(NPLS)technique.In the spanwise NPLS images,the traveling crossflow waves appeared as regular strikes,and the secondary instability appeared as small eddies attached to strikes.The wavelet transform was used to study the wavelength contents of the traveling crossflow waves.The most amplified wavelength is stable before the secondary instability happening,which is around 12 mm at Re_(∞)=3.45×10^(6)m^(−1).Besides,the Reynolds number effects on the boundary layer transition and traveling crossflow instability were discussed.
基金two Grants-in-aid for Science Research with No. l1750808 fromMinistry of Education of JaPan and No. 98KK-023from MAZDA Fou
文摘The purpose of this study is to make clear the behavior of swirling pipe flows with non-circular section. We have investigated experimentally and numerically the swirling flows in a rectangular channel with aspect ratio of 1.3, which is one of the typical pipe flow with non-circular section. In this paper, experimental apparatus with water circulation system is produced, and LDV measurement of the swirling flows is performed in order to clarify the mean velocities and turbulent quantity with higher accuracy. In addition, flow visualization for movement of vortex core region in the swirling flows is carried out using tracer method. Moreover, large eddy simulation (LES) of the flow field is made and compared with the experimental results. As results of these investigations, the behavior of the swirling flows in the rectangular channel is totally discussed.
文摘In this paper, an experimental investigation on the flow structures in a turbulent bounda- ry layer employing a special laser light sheet-Hydrogen bubble flow visualization technique is described. It is observed that the high/low speed streaks are directly related to the hairpin or horseshoe-like vortices. This observation can give a better understanding of the physical mechanism in the turbulent boundary layer.
基金supported in part by the National Natural Science Foundation of China(No.61872304,No.61802320)the State Key Laboratory of Aerodynamics(SKLA20200203)the National Numerical Windtunnel Project(NNW2019ZT6-A17).
文摘In the immersive flow visualization based on virtual reality,how to meet the needs of complex professional flow visualization analysis by natural human–computer interaction is a pressing problem.In order to achieve the natural and efficient human–computer interaction,we analyze the interaction requirements of flow visualization and study the characteristics of four human–computer interaction channels:hand,head,eye and voice.We give out some multimodal interaction design suggestions and then propose three multimodal interaction methods:head&hand,head&hand&eye and head&hand&eye&voice.The freedom of gestures,the stability of the head,the convenience of eyes and the rapid retrieval of voices are used to improve the accuracy and efficiency of interaction.The interaction load is balanced by multimodal interaction to reduce fatigue.The evaluation shows that our multimodal interaction has higher accuracy,faster time efficiency and much lower fatigue than the traditional joystick interaction.
文摘In order to clarify the structure of the cold flow discharged from the counter-flow vortex tube(VT), the temperature and pressure of the cold flow were measured, and the existence and behavior of the reversed flow at the cold exit was studied using a simple flow visualization technique consisting of a 0.75mm-diameter needle, and an oil paint droplet. It is observed through this experiment that the Pitot pressure at the cold exit center can either be lower or higher than atmospheric pressure, depending on the inlet pressure and the cold fraction, and that a reversed flow is observed when the Pitot pressure at the cold exit center is lower than atmospheric pressure. In addition, it is observed that when reducing the cold fraction from unity at any arbitrary inlet pressure, the region of reversed and colder flow in the central part of cold exit extends in the downstream direction.
文摘By means of ink trace visualization and topological allalysis, this paper investigates the topological structure of the flow pattern surrounding both endwalls and blade surfaces for a low aspect ratio linear rotor cascade with tip cIearance. The structure of the flow pattern shows that most of the singular points and separation lines are located in the upper half span region of the tested cascade where the aerodynamic behaviors are deteriorated.
文摘Digital speckle technique uses a laser, a CCD camera, and digital processing to generate interference fringes at the television framing rate. Its most obvious advantage is that neither darkroom facilities nor photographic wet chemical processing is required. In addition, it can be used in harsh engineering environments. This paper discusses the strengths and weaknesses of three digital speckle methodologies. (1) Digital speckle pattern interferometry (DSPI) uses an optical polarization phase shifter for visualization and measurement of the density field in a flow field. (2) Digital shearing speckle interferometry (DSSI) utilizes speckle\|shearing interferometry in addition to optical polarization phase shifting. (3) Digital speckle photography (DSP) with computer reconstruction. The discussion describes the concepts, the principles and the experimental arrangements with some experimental results. The investigation shows that these three digital speckle techniques provide an excellent method for visualizing flow fields and for measuring density distributions in fluid mechanics and thermal flows.
文摘With the development of deep learning(DL)techniques,many tasks in flow visualization that used to rely on complex analysis algorithms now can be replaced by DL methods.We reviewed the approaches to deep learning technology in flow visualization and discussed the technical benefits of these approaches.We also analyzed the prospects of the development of flow visualization with the help of deep learning.
文摘The material flow in friction stir welded 2014 Al alloy has been investigated using a marker insert technique (MIT). Results of the flow visualization show that the material flow is asymmetrical during the friction stir welding (FSW) process and there are also significant differences in the flow patterns observed on advancing side and retreating side. On advancing side, some material transport forward and some move backward, but on retreating side, material only transport backward. At the top surface of the weld, significant material transport forward due to the action of the rotating tool shoulder. Combining the data from all the markers, a three-dituensional flow visualization, similar to the 3D image reconstruction technique, was obtained. The three-dimensional plot gives the tendency chart of material flow in friction stir welding process and from the plot it can be seen that there is a vertical, circular motion around the longitudinal axis of the weld. On the advancing side of the weld, the material is pushed downward but on the retreating side, the material is pushed toward the crown of the weld. The net result of the two relative motions in both side of the advancing and the retreating is that a circular motion comes into being. Comparatively, the material flow around the longitudinal axis is a secondary motion.
文摘Fluid dynamics simulation is often repeated under varying conditions.This leads to a generation of large amounts of results,which are difficult to compare.To compare results under different conditions,it is effective to overlap the streamlines generated from each condition in a single three-dimensional space.Streamline is a curved line,which represents a wind flow.This paper presents a technique to automatically select and visualize important streamlines that are suitable for the comparison of the simulation results.Additionally,we present an implementation to observe the flow fields in virtual reality spaces.
基金supported by the National Natural Science Foundation of China (50679001)NASA Constellation University Institutes Program
文摘To better understand the multiphase fluid dynamics and associated transport processes of cavitating flows at the capillary number of 0.74 and 0.54, and to validate the numerical results, a combined computational and experimental investigation of flows around a hydrofoil is studied based on flow visualizations and time-resolved interface movement. The computational model is based on a modified RNG k-ε model as turbulence closure, along with a vapor-liquid mass transfer model for treating the cavitation process. Overall, favorable agreement between the numerical and experimental results is observed. It is shown that the cavi- tation structure depends on the interaction of the water-vapor mixture and the vapor among the whole cavitation stage, the interface between the vapor and the two-phase mixture exhibits substantial unsteadiness. And, the adverse motion of the interface relates to pressure and velocity fluctuations inside the cavity. In particular, the velocity in the vapor region is lower than that in the two-phase region.
基金This study has been partially funded by National Key Research and Development Program of China(Grant No.2020YFA0711800)the National Natural Science Foundation of China(Grant No.51979272)the Natural Science Foundation of Shandong Province,China(Grant No.ZR2021QE069).
文摘This study experimentally analyzes the nonlinear flow characteristics and channelization of fluid through rough-walled fractures during the shear process using a shear-flow-visualization apparatus.A series of fluid flow and visualization tests is performed on four transparent fracture specimens with various shear displacements of 1 mm,3 mm,5 mm,7 mm and 10 mm under a normal stress of 0.5 MPa.Four granite fractures with different roughnesses are selected and quantified using variogram fractal dimensions.The obtained results show that the critical Reynolds number tends to increase with increasing shear displacement but decrease with increasing roughness of fracture surface.The flow paths are more tortuous at the beginning of shear because of the wide distribution of small contact spots.As the shear displacement continues to increase,preferential flow paths are more distinctly observed due to the decrease in the number of contact spots caused by shear dilation;yet the area of single contacts in-creases.Based on the experimental results,an empirical mathematical equation is proposed to quantify the critical Reynolds number using the contact area ratio and fractal dimension.