The influence of the structure and running parameters of a novel spiral oil wedge hybrid journal bearing on the fluid flow trace is investigated. The governing equation of the flow trace of lubricant is set up, and th...The influence of the structure and running parameters of a novel spiral oil wedge hybrid journal bearing on the fluid flow trace is investigated. The governing equation of the flow trace of lubricant is set up, and the simulation is carried out by using finite difference method. The results show that the lubricant flow status and end leakage quantity are greatly influenced by spiral angle,and that the rotating speed has little influence on the flow status. With advisable geometry design, the separation of lubricant between different oil wedges can be obtained, which can decrease the temperature rise effectively.展开更多
The magnetic fluid is used as working medium in pilot stage of electro-hydraulic servoamplifier. Utilizing the magnetization viscous character of the fluid, a new type of electro-hydraulicservo amplifier without any m...The magnetic fluid is used as working medium in pilot stage of electro-hydraulic servoamplifier. Utilizing the magnetization viscous character of the fluid, a new type of electro-hydraulicservo amplifier without any moving parts in its pilot stage has been developed. This research provides a way for improving the frequency property and reliability of electro-hydraulic servoelements.展开更多
We present a workflow linking coupled fluid-flow and geomechanical simulation with seismic modelling to predict seismic anisotropy induced by non-hydrostatic stress changes. We generate seismic models from coupled sim...We present a workflow linking coupled fluid-flow and geomechanical simulation with seismic modelling to predict seismic anisotropy induced by non-hydrostatic stress changes. We generate seismic models from coupled simulations to examine the relationship between reservoir geometry, stress path and seismic anisotropy. The results indicate that geometry influences the evolution of stress,which leads to stress-induced seismic anisotropy. Although stress anisotropy is high for the small reservoir, the effect of stress arching and the ability of the side-burden to support the excess load limit the overall change in effective stress and hence seismic anisotropy. For the extensive reservoir, stress anisotropy and induced seismic anisotropy are high. The extensive and elongate reservoirs experience significant compaction, where the inefficiency of the developed stress arching in the side-burden cannot support the excess load.The elongate reservoir displays significant stress asymmetry,with seismic anisotropy developing predominantly along the long-edge of the reservoir. We show that the link betweenstress path parameters and seismic anisotropy is complex,where the anisotropic symmetry is controlled not only by model geometry but also the nonlinear rock physics model used. Nevertheless, a workflow has been developed to model seismic anisotropy induced by non-hydrostatic stress changes, allowing field observations of anisotropy to be linked with geomechanical models.展开更多
A simple and rapid Supercritical Fluid Chromatography (SFC) method has been developed to isolate and characterize R-Isomer of Ezetimi be by using normal phase Chiral Cel OD-H with 250 mm × 30 mm, 5 microns column...A simple and rapid Supercritical Fluid Chromatography (SFC) method has been developed to isolate and characterize R-Isomer of Ezetimi be by using normal phase Chiral Cel OD-H with 250 mm × 30 mm, 5 microns column using a mobile phase system containing super critical fluid carbondi oxide (Co2) and the percentage of 2-Propanol as a mobile phase (85:15) and detection at 230 nm. The isolated R-Isomer is characterized by using UV-vis, FT-IR, ESI-MS, HPLC1H and 13C NMR. The purity of isolated R-Isomer is about 98%.展开更多
The study involved the evaluation of the hydrocarbon potential of FORMAT Field, coastal swamp depobelt Niger delta, Nigeria to obtain a more efficient reservoir characterization and fluid properties identification. De...The study involved the evaluation of the hydrocarbon potential of FORMAT Field, coastal swamp depobelt Niger delta, Nigeria to obtain a more efficient reservoir characterization and fluid properties identification. Despite advances in seismic data interpretation using traditional 3D seismic data interpretation, obtaining adequate reservoir characteristics at the finest level had proved very challenging with often disappointing results. A method that integrates the amplitude variation with offfset (AVO) analysis is hereby proposed to better illuminate the reservoir. The Hampson Russell 10.3 was used to integrate and study the available seismic and well data. The reservoir of interest was delineated using the available suite of petrophysical data. This was marked by low gamma ray, high resistivity, and low acoustic impedance between a true subsea vertical depth (TVDss) range of 10,350 - 10,450 ft. The AVO fluid substitution yielded a decrease in the density values of pure gas (2.3 - 1.6 g/cc), pure oil (2.3 - 1.8 g/cc) while the Poisson pure brine increased (2.3 to 2.8 g/cc). Result from FORMAT 26 plots yielded a negative intercept and negative gradient at the top and a positive intercept and positive gradient at the Base which conforms to Class III AVO anomaly. FORMAT 30 plots yielded a negative intercept and positive gradient at the top and a positive intercept and negative gradient at the Base which conforms to class IV AVO anomaly. AVO attribute volume slices decreased in the Poisson ratio (0.96 to - 1.0) indicating that the reservoir contains hydrocarbon. The s-wave reflectivity and the product of the intercept and gradient further clarified that there was a Class 3 gas sand in the reservoir and the possibility of a Class 4 gas sand anomaly in that same reservoir.展开更多
基金This project is supported by National Natural Science Foundation of China (No.50275089)
文摘The influence of the structure and running parameters of a novel spiral oil wedge hybrid journal bearing on the fluid flow trace is investigated. The governing equation of the flow trace of lubricant is set up, and the simulation is carried out by using finite difference method. The results show that the lubricant flow status and end leakage quantity are greatly influenced by spiral angle,and that the rotating speed has little influence on the flow status. With advisable geometry design, the separation of lubricant between different oil wedges can be obtained, which can decrease the temperature rise effectively.
文摘The magnetic fluid is used as working medium in pilot stage of electro-hydraulic servoamplifier. Utilizing the magnetization viscous character of the fluid, a new type of electro-hydraulicservo amplifier without any moving parts in its pilot stage has been developed. This research provides a way for improving the frequency property and reliability of electro-hydraulic servoelements.
基金the sponsors of the IPEGG project, BG, BP, Statoilthe Research Council UK (EP/K035878/1+1 种基金 EP/K021869/1 NE/L000423/1) for financial support
文摘We present a workflow linking coupled fluid-flow and geomechanical simulation with seismic modelling to predict seismic anisotropy induced by non-hydrostatic stress changes. We generate seismic models from coupled simulations to examine the relationship between reservoir geometry, stress path and seismic anisotropy. The results indicate that geometry influences the evolution of stress,which leads to stress-induced seismic anisotropy. Although stress anisotropy is high for the small reservoir, the effect of stress arching and the ability of the side-burden to support the excess load limit the overall change in effective stress and hence seismic anisotropy. For the extensive reservoir, stress anisotropy and induced seismic anisotropy are high. The extensive and elongate reservoirs experience significant compaction, where the inefficiency of the developed stress arching in the side-burden cannot support the excess load.The elongate reservoir displays significant stress asymmetry,with seismic anisotropy developing predominantly along the long-edge of the reservoir. We show that the link betweenstress path parameters and seismic anisotropy is complex,where the anisotropic symmetry is controlled not only by model geometry but also the nonlinear rock physics model used. Nevertheless, a workflow has been developed to model seismic anisotropy induced by non-hydrostatic stress changes, allowing field observations of anisotropy to be linked with geomechanical models.
文摘A simple and rapid Supercritical Fluid Chromatography (SFC) method has been developed to isolate and characterize R-Isomer of Ezetimi be by using normal phase Chiral Cel OD-H with 250 mm × 30 mm, 5 microns column using a mobile phase system containing super critical fluid carbondi oxide (Co2) and the percentage of 2-Propanol as a mobile phase (85:15) and detection at 230 nm. The isolated R-Isomer is characterized by using UV-vis, FT-IR, ESI-MS, HPLC1H and 13C NMR. The purity of isolated R-Isomer is about 98%.
文摘The study involved the evaluation of the hydrocarbon potential of FORMAT Field, coastal swamp depobelt Niger delta, Nigeria to obtain a more efficient reservoir characterization and fluid properties identification. Despite advances in seismic data interpretation using traditional 3D seismic data interpretation, obtaining adequate reservoir characteristics at the finest level had proved very challenging with often disappointing results. A method that integrates the amplitude variation with offfset (AVO) analysis is hereby proposed to better illuminate the reservoir. The Hampson Russell 10.3 was used to integrate and study the available seismic and well data. The reservoir of interest was delineated using the available suite of petrophysical data. This was marked by low gamma ray, high resistivity, and low acoustic impedance between a true subsea vertical depth (TVDss) range of 10,350 - 10,450 ft. The AVO fluid substitution yielded a decrease in the density values of pure gas (2.3 - 1.6 g/cc), pure oil (2.3 - 1.8 g/cc) while the Poisson pure brine increased (2.3 to 2.8 g/cc). Result from FORMAT 26 plots yielded a negative intercept and negative gradient at the top and a positive intercept and positive gradient at the Base which conforms to Class III AVO anomaly. FORMAT 30 plots yielded a negative intercept and positive gradient at the top and a positive intercept and negative gradient at the Base which conforms to class IV AVO anomaly. AVO attribute volume slices decreased in the Poisson ratio (0.96 to - 1.0) indicating that the reservoir contains hydrocarbon. The s-wave reflectivity and the product of the intercept and gradient further clarified that there was a Class 3 gas sand in the reservoir and the possibility of a Class 4 gas sand anomaly in that same reservoir.