Using monthly observations and ensemble hindcasts of the Nanjing University of Information Science and Technology Climate Forecast System(NUIST-CFS1.0) for the period 1983–2020, this study investigates the forecast s...Using monthly observations and ensemble hindcasts of the Nanjing University of Information Science and Technology Climate Forecast System(NUIST-CFS1.0) for the period 1983–2020, this study investigates the forecast skill of marine heatwaves(MHWs) over the globe and the predictability sources of the MHWs over the tropical oceans. The MHW forecasts are demonstrated to be skillful on seasonal-annual time scales, particularly in tropical oceans. The forecast skill of the MHWs over the tropical Pacific Ocean(TPO) remains high at lead times of 1–24 months, indicating a forecast better than random chance for up to two years. The forecast skill is subject to the spring predictability barrier of El Nino-Southern Oscillation(ENSO). The forecast skills for the MHWs over the tropical Indian Ocean(TIO), tropical Atlantic Ocean(TAO), and tropical Northwest Pacific(NWP) are lower than that in the TPO. A reliable forecast at lead times of up to two years is shown over the TIO, while a shorter reliable forecast window(less than 17 months) occurs for the TAO and NWP.Additionally, the forecast skills for the TIO, TAO, and NWP are seasonally dependent. Higher skills for the TIO and TAO appear in boreal spring, while a greater skill for the NWP emerges in late summer-early autumn. Further analyses suggest that ENSO serves as a critical source of predictability for MHWs over the TIO and TAO in spring and MHWs over the NWP in summer.展开更多
Based on the reforecasts from ve models of the Subseasonal to Seasonal(S2S)Prediction project,the S2S prediction skill of surface soil moisture(SM)over East Asia during May September is evaluated against ERA-Interim.R...Based on the reforecasts from ve models of the Subseasonal to Seasonal(S2S)Prediction project,the S2S prediction skill of surface soil moisture(SM)over East Asia during May September is evaluated against ERA-Interim.Results show that good prediction skill of SM is generally 510 forecast days prior over southern and northeastern China in the majority of models.Over the Tibetan Plateau and northwestern China,only the ECMWF model has good prediction skill 20 days in advance.Generally,better prediction skill tends to appear over wet regions rather than dry regions.In terms of the seasonal variation of SM prediction skill,some diffierences are noticed among the models,but most of them show good prediction skill during September.Furthermore,the significant positive correlation between the prediction skill of SM and ENSO index indicates modulation by ENSO of the S2S prediction of SM.When there is an El Nino(a La Nina)event,the SM prediction skill over eastern China tends to be high(low).Through evaluation of the S2S prediction skill of SM in these models,it is found that the prediction skill of SM is lower than that of most atmospheric variables in S2S forecasts.Therefore,more attention needs to be given to the S2S forecasting of land processes.展开更多
In this study,we evaluate the forecast skill of the subseasonal-to-seasonal(S2S)prediction model of the Beijing Climate Center(BCC)for the boreal summer intraseasonal oscillation(BSISO).We also discuss the key factors...In this study,we evaluate the forecast skill of the subseasonal-to-seasonal(S2S)prediction model of the Beijing Climate Center(BCC)for the boreal summer intraseasonal oscillation(BSISO).We also discuss the key factors that inhibit the BSISO forecast skill in this model.Based on the bivariate anomaly correlation coefficient(ACC)of the BSISO index,defined by the first two EOF modes of outgoing longwave radiation and 850-hPa zonal wind anomalies over the Asian monsoon region,we found that the hindcast skill degraded as the lead time increased.The ACC dropped to below 0.5for lead times of 11 days and longer when the predicted BSISO showed weakened strength and insignificant northward propagation.To identify what causes the weakened forecast skill of BSISO at the forecast lead time of 11 days,we diagnosed the main mechanisms responsible for the BSISO northward propagation.The same analysis was also carried out using the observations and the outputs of the four-day forecast lead that successfully predicted the observed northward-propagating BSISO.We found that the lack of northward propagation at the 11-day forecast lead was due to insufficient increases in low-level cyclonic vorticity,moistening and warm temperature anomalies to the north of the convection,which were induced by the interaction between background mean flows and BSISO-related anomalous fields.The BCC S2S model can predict the background monsoon circulations,such as the low-level southerly and the northerly and easterly vertical shears,but has limited capability in forecasting the distributions of circulation and moisture anomalies.展开更多
Forecast skill (Anomaly Correlated Coefficient, ACC) is a quantity to show the forecast quality of the products of numerical weather forecasting models. Predicting forecast skill, which is the foundation of ensemble f...Forecast skill (Anomaly Correlated Coefficient, ACC) is a quantity to show the forecast quality of the products of numerical weather forecasting models. Predicting forecast skill, which is the foundation of ensemble forecasting, means submitting products to predict their forecast quality before they are used. Checking the reason is to understand the predictability for the real cases. This kind of forecasting service has been put into operational use by statistical methods previously at the National Meteorological Center (NMC), USA (now called the National Center for Environmental Prediction (NCEP)) and European Center for Medium-range Weather Forecast (ECMWF). However, this kind of service is far from satisfactory because only a single variable is used with the statistical method. In this paper, a new way based on the Grey Control Theory with multiple predictors to predict forecast skill of forecast products of the T42L9 of the NMC, China Meteorological Administration (CMA) is introduced. The results show: (1) The correlation coefficients between 'forecasted' and real forecast skill range from 0.56 to 0.7 at different seasons during the two-year period. (2) The grey forecasting model GM(1,8) forecasts successfully the high peaks, the increasing or decreasing tendency, and the turning points of the change of forecast skill of cases from 5 January 1990 to 29 February 1992.展开更多
Ensemble forecasting has become the prevailing method in current operational weather forecasting. Although ensemble mean forecast skill has been studied for many ensemble prediction systems(EPSs) and different cases...Ensemble forecasting has become the prevailing method in current operational weather forecasting. Although ensemble mean forecast skill has been studied for many ensemble prediction systems(EPSs) and different cases, theoretical analysis regarding ensemble mean forecast skill has rarely been investigated, especially quantitative analysis without any assumptions of ensemble members. This paper investigates fundamental questions about the ensemble mean, such as the advantage of the ensemble mean over individual members, the potential skill of the ensemble mean, and the skill gain of the ensemble mean with increasing ensemble size. The average error coefficient between each pair of ensemble members is the most important factor in ensemble mean forecast skill, which determines the mean-square error of ensemble mean forecasts and the skill gain with increasing ensemble size. More members are useful if the errors of the members have lower correlations with each other, and vice versa. The theoretical investigation in this study is verified by application with the T213 EPS. A typical EPS has an average error coefficient of between 0.5 and 0.8; the 15-member T213 EPS used here reaches a saturation degree of 95%(i.e., maximum 5% skill gain by adding new members with similar skill to the existing members) for 1–10-day lead time predictions, as far as the mean-square error is concerned.展开更多
Based on the daily sea surface wind field prediction data of Japan Meteorological Agency(JMA) forecast model,National Centers for Environmental Prediction(NCEP GFS) model and U.S.Navy Operational Global Atmospheric Pr...Based on the daily sea surface wind field prediction data of Japan Meteorological Agency(JMA) forecast model,National Centers for Environmental Prediction(NCEP GFS) model and U.S.Navy Operational Global Atmospheric Prediction System(NOGAPS) model at 12:00 UTC from June 28 to August 10 in 2009,the bias-removed ensemble mean(BRE) was used to do the forecast test on the sea surface wind fields,and the root-mean-square error(RMSE) was used to test and evaluate the forecast results.The results showed that the BRE considerably reduced the RMSEs of 24 and 48 h sea surface wind field forecasts,and the forecast skill was superior to that of the single model forecast.The RMSE decreases in the south of central Bohai Sea and the middle of the Yellow Sea were the most obvious.In addition,the BRE forecast improved evidently the forecast skill of the gale process which occurred during July 13-14 and August 7 in 2009.The forecast accuracy of the wind speed and the gale location was also improved.展开更多
This paper provides a comprehensive assessment of Asian summer monsoon prediction skill as a function of lead time and its relationship to sea surface temperature prediction using the seasonal hindcasts of the Beijing...This paper provides a comprehensive assessment of Asian summer monsoon prediction skill as a function of lead time and its relationship to sea surface temperature prediction using the seasonal hindcasts of the Beijing Climate Center Climate System Model, BCC_CSM1. l(m). For the South and Southeast Asian summer monsoon, reasonable skill is found in the model's forecasting of certain aspects of monsoon climatology and spatiotemporal variability. Nevertheless, deficiencies such as significant forecast errors over the tropical western North Pacific and the eastern equatorial Indian Ocean are also found. In particular, overestimation of the connections of some dynamical monsoon indices with large-scale circulation and precipitation patterns exists in most ensemble mean forecasts, even for short lead-time forecasts. Variations of SST, measured by the first mode over the tropical Pacific and Indian oceans, as well as the spatiotemporal features over the Nifio3.4 region, are overall well predicted. However, this does not necessarily translate into successful forecasts of the Asian summer monsoon by the model. Diagnostics of the relationships between monsoon and SST show that difficulties in predicting the South Asian monsoon can be mainly attributed to the limited regional response of monsoon in observations but the extensive and exaggerated response in predictions due partially to the application of ensemble average forecasting methods. In contrast, in spite of a similar deficiency, the Southeast Asian monsoon can still be forecasted reasonably, probably because of its closer relationship with large-scale circulation patterns and E1 Nifio-Southern Oscillation.展开更多
Based on the daily mean temperature and 24-h accumulated total precipitation over central and southern China, the features and the possible causes of the extreme weather events with low temperature and icing condition...Based on the daily mean temperature and 24-h accumulated total precipitation over central and southern China, the features and the possible causes of the extreme weather events with low temperature and icing conditions,which occurred in the southern part of China during early 2008, are investigated in this study. In addition, multimodel consensus forecasting experiments are conducted by using the ensemble forecasts of ECMWF, JMA, NCEP and CMA taken from the TIGGE archives. Results show that more than a third of the stations in the southern part of China were covered by the extremely abundant precipitation with a 50-a return period, and extremely low temperature with a 50-a return period occurred in the Guizhou and western Hunan province as well. For the 24- to 216-h surface temperature forecasts, the bias-removed multimodel ensemble mean with running training period(R-BREM) has the highest forecast skill of all individual models and multimodel consensus techniques. Taking the RMSEs of the ECMWF 96-h forecasts as the criterion, the forecast time of the surface temperature may be prolonged to 192 h over the southeastern coast of China by using the R-BREM technique. For the sprinkle forecasts over central and southern China, the R-BREM technique has the best performance in terms of threat scores(TS) for the 24- to 192-h forecasts except for the 72-h forecasts among all individual models and multimodel consensus techniques. For the moderate rain, the forecast skill of the R-BREM technique is superior to those of individual models and multimodel ensemble mean.展开更多
A timescale decomposed threshold regression (TSDTR) downscaling approach to forecasting South China early summer rainfall (SCESR) is described by using long-term observed station rainfall data and NOAA ERSST data....A timescale decomposed threshold regression (TSDTR) downscaling approach to forecasting South China early summer rainfall (SCESR) is described by using long-term observed station rainfall data and NOAA ERSST data. It makes use of two distinct regression downscaling models corresponding to the interannual and interdecadal rainfall variability of SCESR. The two models are developed based on the partial least squares (PLS) regression technique, linking SCESR to SST modes in preceding months on both interannual and interdecadal timescales. Specifically, using the datasets in the calibration period 1915-84, the variability of SCESR and SST are decomposed into interannual and interdecadal components. On the interannual timescale, a threshold PLS regression model is fitted to interannual components of SCESR and March SST patterns by taking account of the modulation of negative and positive phases of the Pacific Decadal Oscillation (PDO). On the interdecadal timescale, a standard PLS regression model is fitted to the relationship between SCESR and preceding November SST patterns. The total rainfall prediction is obtained by the sum of the outputs from both the interannual and interdecadal models. Results show that the TSDTR downscaling approach achieves reasonable skill in predicting the observed rainfall in the validation period 1985-2006, compared to other simpler approaches. This study suggests that the TSDTR approach, considering different interannual SCESR-SST relationships under the modulation of PDO phases, as well as the interdecadal variability of SCESR associated with SST patterns, may provide a new perspective to improve climate predictions.展开更多
A reasonable initial state of ice concentration is essential for accurate short-term forecasts of sea ice using ice-ocean coupled models. In this study, sea ice concentration data are assimilated into an operational i...A reasonable initial state of ice concentration is essential for accurate short-term forecasts of sea ice using ice-ocean coupled models. In this study, sea ice concentration data are assimilated into an operational ice forecast system based on a com- bined optimal interpolation and nudging scheme. The scheme produces a modeled sea ice concentration at every time step, based on the difference between observational and forecast data and on the ratio of observational error to modeled error. The impact and the effectiveness of data assimilation are investigated. Significant improvements to predictions of sea ice extent were obtained through the assimilation of ice concentration, and minor improvements through the adjustment of the upper ocean properties. The assimilation of ice thickness data did not significantly improve predictions. Forecast experiments show that the forecast accuracy is higher in summer, and that the errors on five-day forecasts occur mainly around the marginal ice zone.展开更多
The monthly forecast of Indian monsoon rainfall during June to September is investigated by using the hindcast data sets of the National Centre for Environmental Prediction (NCEP)’s operational coupled model (known a...The monthly forecast of Indian monsoon rainfall during June to September is investigated by using the hindcast data sets of the National Centre for Environmental Prediction (NCEP)’s operational coupled model (known as the Climate Forecast System) for 25 years from 1981 to 2005 with 15 ensemble members each. The ensemble mean monthly rainfall over land region of India from CFS with one month lead forecast is underestimated during June to September. With respect to the inter-annual variability of monthly rainfall it is seen that the only significant correlation coefficients (CCs) are found to be for June forecast with May initial condition and September rainfall with August initial conditions. The CFS has got lowest skill for the month of August followed by that of July. Considering the lower skill of monthly forecast based on the ensemble mean, all 15 ensemble members are used separately for the preparation of probability forecast and different probability scores like Brier Score (BS), Brier Skill Score (BSS), Accuracy, Probability of Detection (POD), False Alarm Ratio (FAR), Threat Score (TS) and Heidke Skill Score (HSS) for all the three categories of forecasts (above normal, below normal and normal) have been calculated. In terms of the BS and BSS the skill of the monthly probability forecast in all the three categories are better than the climatology forecasts with positive BSS values except in case of normal forecast of June and July. The “TS”, “HSS” and other scores also provide useful probability forecast in case of CFS except the normal category of July forecast. Thus, it is seen that the monthly probability forecast based on NCEP CFS coupled model during the southwest monsoon season is very encouraging and is found to be very useful.展开更多
As Europe seeks to retain its leading position in industrial competitiveness,there is an urgent need to establish a platform for Additive Manufacturing(AM)skills at European,National and Regional levels.AM processes e...As Europe seeks to retain its leading position in industrial competitiveness,there is an urgent need to establish a platform for Additive Manufacturing(AM)skills at European,National and Regional levels.AM processes enable economic component production through the efficient use of materials and increased design freedom as compared to conventional manufacturing.AM also raises the level of digital literacy among workers,and it contributes to the digitisation of European Industry.In face of this increasing growth of Metal AM technology,and consequent requirement of the definition of new professional profiles and skills and knowledge for personnel working in this sector,the European Federation for Welding,Joining and Cutting(EWF)recently launched the first International Additive Manufacturing Qualification System(IAMQS).For creating and managing the IAMQS,EWF relies on its experience of more than 25 years in managing a European/International Training/Educational System for qualification and certification of welding and joining personnel,covering different levels(from Operator to Engineer),assessing knowledge and skills(examination)and providing a Quality Assurance System that ensures that the same qualification is recognised in all countries that share the system,is recognised by the Industry and is accepted by Enterprises,professionals,training institutions and certification bodies.IAMQS is also based on the work currently being developed in the scope of three European Funded projects in the field of AM,in which EWF is actively involved,together with the respective partners from eight EU countries.In collaboration with SAM,CLLAIM and ADMIRE projects’partners,EWF has conducted market searches/surveys to collect information on market needs and possible solutions for future workers and professionals already involved in AM sector,carried out validation workshops with experts from the Industry and Education,and developed European qualification pathways.This systemic approach that encourages a close collaboration with major European AM companies and organisations to collect inputs from different sources in the creation of AM Qualification System,ensures Professional Profiles’quality and transparency.As a result of the skills gap analysis carried out by EWF during the last 2 years,7 Qualifications for Additive Manufacturing,ranging from Operator to Engineer levels,were developed,while others are being finalised and validated.展开更多
A standard skill assessment (SA) tool was developed and implemented to evaluate the performance of op- erational forecast models in the Korea operational oceanographic system. The SA tool provided a robust way to as...A standard skill assessment (SA) tool was developed and implemented to evaluate the performance of op- erational forecast models in the Korea operational oceanographic system. The SA tool provided a robust way to assess model skill in the system by comparing predictions and observations, and involved the com- putation of multiple skill metrics including correlation and error skills. User- and system-based acceptance criteria of skill metrics were applied to determine whether predictions were acceptable for the system. To achieve this, the tool produced a time series comparison plot, a skill score table, and an advanced sum- marized diagram to effectively demonstrate the multiple skill scores. Moreover, the SA was conducted to evaluate both atmospheric and hydrodynamic forecast variables. For the atmospheric variables, acceptable error criteria were preferable to acceptable correlation criteria over short timescales, since the mean square error overwhelmed the observation variance. Conversely, for the hydrodynamic variables, acceptable root mean square percentage error (e.g., perms) criteria were preferable to acceptable error (e.g., erms) criteria owing to the spatially variable tidal intensity around the Korean Peninsula. Furthermore, the SA indicated that predetermined acceptance error criteria were appropriate to satisfy a target central frequency (fc) for which errors fell within the specified limits (i.e., the .fc equals 70%).展开更多
This paper proposes useful guidance on the choice of threshold for binary forecasts. In weather forecast systems, the probabilistic forecast cannot be used directly when estimated too smoothly. In this case, the binar...This paper proposes useful guidance on the choice of threshold for binary forecasts. In weather forecast systems, the probabilistic forecast cannot be used directly when estimated too smoothly. In this case, the binary forecast, whether a meteorological event will occur or not, is preferable to the probabilistic forecast. A threshold is needed to generate a binary forecast, and the guidance in this paper encompasses the use of skill scores for the choice of threshold according to the forecast pattern. The forecast pattern consists of distribution modes of estimated probabilities, occurrence rates of observations, and variation modes. This study is performed via Monte-Carlo simulation, with 48 forecast patterns considered. Estimated probabilities are generated by random variate sampling from five distributions separately. Varying the threshold from 0 to 1, binary forecasts are generated by threshold. For the assessment of binary forecast models, a 2×2 contingency table is used and four skill scores (Heidke skill score, hit rate, true skill statistic, and threat score) are compared for each forecast pattern. As a result, guidance on the choice of skill score to find the optimal threshold is proposed.展开更多
基金jointly supported by the National Natural Science Foundation of China (Grant Nos.42192562 and 42030605)。
文摘Using monthly observations and ensemble hindcasts of the Nanjing University of Information Science and Technology Climate Forecast System(NUIST-CFS1.0) for the period 1983–2020, this study investigates the forecast skill of marine heatwaves(MHWs) over the globe and the predictability sources of the MHWs over the tropical oceans. The MHW forecasts are demonstrated to be skillful on seasonal-annual time scales, particularly in tropical oceans. The forecast skill of the MHWs over the tropical Pacific Ocean(TPO) remains high at lead times of 1–24 months, indicating a forecast better than random chance for up to two years. The forecast skill is subject to the spring predictability barrier of El Nino-Southern Oscillation(ENSO). The forecast skills for the MHWs over the tropical Indian Ocean(TIO), tropical Atlantic Ocean(TAO), and tropical Northwest Pacific(NWP) are lower than that in the TPO. A reliable forecast at lead times of up to two years is shown over the TIO, while a shorter reliable forecast window(less than 17 months) occurs for the TAO and NWP.Additionally, the forecast skills for the TIO, TAO, and NWP are seasonally dependent. Higher skills for the TIO and TAO appear in boreal spring, while a greater skill for the NWP emerges in late summer-early autumn. Further analyses suggest that ENSO serves as a critical source of predictability for MHWs over the TIO and TAO in spring and MHWs over the NWP in summer.
基金supported by the National Key R&D Program of China [grant number 2016YFA0602100]
文摘Based on the reforecasts from ve models of the Subseasonal to Seasonal(S2S)Prediction project,the S2S prediction skill of surface soil moisture(SM)over East Asia during May September is evaluated against ERA-Interim.Results show that good prediction skill of SM is generally 510 forecast days prior over southern and northeastern China in the majority of models.Over the Tibetan Plateau and northwestern China,only the ECMWF model has good prediction skill 20 days in advance.Generally,better prediction skill tends to appear over wet regions rather than dry regions.In terms of the seasonal variation of SM prediction skill,some diffierences are noticed among the models,but most of them show good prediction skill during September.Furthermore,the significant positive correlation between the prediction skill of SM and ENSO index indicates modulation by ENSO of the S2S prediction of SM.When there is an El Nino(a La Nina)event,the SM prediction skill over eastern China tends to be high(low).Through evaluation of the S2S prediction skill of SM in these models,it is found that the prediction skill of SM is lower than that of most atmospheric variables in S2S forecasts.Therefore,more attention needs to be given to the S2S forecasting of land processes.
基金supported by the National Basic Research Program of China (973 Program) (Grant No.2015CB453200)
文摘In this study,we evaluate the forecast skill of the subseasonal-to-seasonal(S2S)prediction model of the Beijing Climate Center(BCC)for the boreal summer intraseasonal oscillation(BSISO).We also discuss the key factors that inhibit the BSISO forecast skill in this model.Based on the bivariate anomaly correlation coefficient(ACC)of the BSISO index,defined by the first two EOF modes of outgoing longwave radiation and 850-hPa zonal wind anomalies over the Asian monsoon region,we found that the hindcast skill degraded as the lead time increased.The ACC dropped to below 0.5for lead times of 11 days and longer when the predicted BSISO showed weakened strength and insignificant northward propagation.To identify what causes the weakened forecast skill of BSISO at the forecast lead time of 11 days,we diagnosed the main mechanisms responsible for the BSISO northward propagation.The same analysis was also carried out using the observations and the outputs of the four-day forecast lead that successfully predicted the observed northward-propagating BSISO.We found that the lack of northward propagation at the 11-day forecast lead was due to insufficient increases in low-level cyclonic vorticity,moistening and warm temperature anomalies to the north of the convection,which were induced by the interaction between background mean flows and BSISO-related anomalous fields.The BCC S2S model can predict the background monsoon circulations,such as the low-level southerly and the northerly and easterly vertical shears,but has limited capability in forecasting the distributions of circulation and moisture anomalies.
文摘Forecast skill (Anomaly Correlated Coefficient, ACC) is a quantity to show the forecast quality of the products of numerical weather forecasting models. Predicting forecast skill, which is the foundation of ensemble forecasting, means submitting products to predict their forecast quality before they are used. Checking the reason is to understand the predictability for the real cases. This kind of forecasting service has been put into operational use by statistical methods previously at the National Meteorological Center (NMC), USA (now called the National Center for Environmental Prediction (NCEP)) and European Center for Medium-range Weather Forecast (ECMWF). However, this kind of service is far from satisfactory because only a single variable is used with the statistical method. In this paper, a new way based on the Grey Control Theory with multiple predictors to predict forecast skill of forecast products of the T42L9 of the NMC, China Meteorological Administration (CMA) is introduced. The results show: (1) The correlation coefficients between 'forecasted' and real forecast skill range from 0.56 to 0.7 at different seasons during the two-year period. (2) The grey forecasting model GM(1,8) forecasts successfully the high peaks, the increasing or decreasing tendency, and the turning points of the change of forecast skill of cases from 5 January 1990 to 29 February 1992.
基金supported by the National Basic Research (973) Program of China (Grant No. 2013CB430106)the R&D Special Fund for Public Welfare Industry (Meteorology) (Grant Nos. GYHY201306002 and GYHY201206005)+2 种基金the National Natural Science Foundation of China (Grant Nos. 40830958 and 41175087)the Jiangsu Collaborative Innovation Center for Climate Changethe High Performance Computing Center of Nanjing University
文摘Ensemble forecasting has become the prevailing method in current operational weather forecasting. Although ensemble mean forecast skill has been studied for many ensemble prediction systems(EPSs) and different cases, theoretical analysis regarding ensemble mean forecast skill has rarely been investigated, especially quantitative analysis without any assumptions of ensemble members. This paper investigates fundamental questions about the ensemble mean, such as the advantage of the ensemble mean over individual members, the potential skill of the ensemble mean, and the skill gain of the ensemble mean with increasing ensemble size. The average error coefficient between each pair of ensemble members is the most important factor in ensemble mean forecast skill, which determines the mean-square error of ensemble mean forecasts and the skill gain with increasing ensemble size. More members are useful if the errors of the members have lower correlations with each other, and vice versa. The theoretical investigation in this study is verified by application with the T213 EPS. A typical EPS has an average error coefficient of between 0.5 and 0.8; the 15-member T213 EPS used here reaches a saturation degree of 95%(i.e., maximum 5% skill gain by adding new members with similar skill to the existing members) for 1–10-day lead time predictions, as far as the mean-square error is concerned.
基金Supported by Chinese Meteorological Administration's Special Funds(Meteorology) for Scientific Research on Public Causes( GYHY200906007)Gale Forecast Item of the Shengli Oil Field Observatory (2008001)~~
文摘Based on the daily sea surface wind field prediction data of Japan Meteorological Agency(JMA) forecast model,National Centers for Environmental Prediction(NCEP GFS) model and U.S.Navy Operational Global Atmospheric Prediction System(NOGAPS) model at 12:00 UTC from June 28 to August 10 in 2009,the bias-removed ensemble mean(BRE) was used to do the forecast test on the sea surface wind fields,and the root-mean-square error(RMSE) was used to test and evaluate the forecast results.The results showed that the BRE considerably reduced the RMSEs of 24 and 48 h sea surface wind field forecasts,and the forecast skill was superior to that of the single model forecast.The RMSE decreases in the south of central Bohai Sea and the middle of the Yellow Sea were the most obvious.In addition,the BRE forecast improved evidently the forecast skill of the gale process which occurred during July 13-14 and August 7 in 2009.The forecast accuracy of the wind speed and the gale location was also improved.
基金supported by the National Basic Research Program of China (Grant Nos. 2015CB453200 and 2014CB953900)China Meteorological Special Program (Grant Nos. GYHY 201206016 and GYHY201306020)+1 种基金the National Natural Science Foundation of China (Grant Nos. 41305057, 41275076, and 41375081)the Jiangsu Collaborative Innovation Center for Climate Change, China
文摘This paper provides a comprehensive assessment of Asian summer monsoon prediction skill as a function of lead time and its relationship to sea surface temperature prediction using the seasonal hindcasts of the Beijing Climate Center Climate System Model, BCC_CSM1. l(m). For the South and Southeast Asian summer monsoon, reasonable skill is found in the model's forecasting of certain aspects of monsoon climatology and spatiotemporal variability. Nevertheless, deficiencies such as significant forecast errors over the tropical western North Pacific and the eastern equatorial Indian Ocean are also found. In particular, overestimation of the connections of some dynamical monsoon indices with large-scale circulation and precipitation patterns exists in most ensemble mean forecasts, even for short lead-time forecasts. Variations of SST, measured by the first mode over the tropical Pacific and Indian oceans, as well as the spatiotemporal features over the Nifio3.4 region, are overall well predicted. However, this does not necessarily translate into successful forecasts of the Asian summer monsoon by the model. Diagnostics of the relationships between monsoon and SST show that difficulties in predicting the South Asian monsoon can be mainly attributed to the limited regional response of monsoon in observations but the extensive and exaggerated response in predictions due partially to the application of ensemble average forecasting methods. In contrast, in spite of a similar deficiency, the Southeast Asian monsoon can still be forecasted reasonably, probably because of its closer relationship with large-scale circulation patterns and E1 Nifio-Southern Oscillation.
基金Special Scientific Research Fund of Meteorological Public Welfare Industries of China(GYHY(QX)2007-6-1)National Nature Science Foundation of China(41305081)
文摘Based on the daily mean temperature and 24-h accumulated total precipitation over central and southern China, the features and the possible causes of the extreme weather events with low temperature and icing conditions,which occurred in the southern part of China during early 2008, are investigated in this study. In addition, multimodel consensus forecasting experiments are conducted by using the ensemble forecasts of ECMWF, JMA, NCEP and CMA taken from the TIGGE archives. Results show that more than a third of the stations in the southern part of China were covered by the extremely abundant precipitation with a 50-a return period, and extremely low temperature with a 50-a return period occurred in the Guizhou and western Hunan province as well. For the 24- to 216-h surface temperature forecasts, the bias-removed multimodel ensemble mean with running training period(R-BREM) has the highest forecast skill of all individual models and multimodel consensus techniques. Taking the RMSEs of the ECMWF 96-h forecasts as the criterion, the forecast time of the surface temperature may be prolonged to 192 h over the southeastern coast of China by using the R-BREM technique. For the sprinkle forecasts over central and southern China, the R-BREM technique has the best performance in terms of threat scores(TS) for the 24- to 192-h forecasts except for the 72-h forecasts among all individual models and multimodel consensus techniques. For the moderate rain, the forecast skill of the R-BREM technique is superior to those of individual models and multimodel ensemble mean.
基金sponsored by the National Basic Research Program of China (Grant No. 2012CB955202)the China Scholarship Council under the Joint-PhD program for conducting research at CSIROsupported by the Indian Ocean Climate Initiative
文摘A timescale decomposed threshold regression (TSDTR) downscaling approach to forecasting South China early summer rainfall (SCESR) is described by using long-term observed station rainfall data and NOAA ERSST data. It makes use of two distinct regression downscaling models corresponding to the interannual and interdecadal rainfall variability of SCESR. The two models are developed based on the partial least squares (PLS) regression technique, linking SCESR to SST modes in preceding months on both interannual and interdecadal timescales. Specifically, using the datasets in the calibration period 1915-84, the variability of SCESR and SST are decomposed into interannual and interdecadal components. On the interannual timescale, a threshold PLS regression model is fitted to interannual components of SCESR and March SST patterns by taking account of the modulation of negative and positive phases of the Pacific Decadal Oscillation (PDO). On the interdecadal timescale, a standard PLS regression model is fitted to the relationship between SCESR and preceding November SST patterns. The total rainfall prediction is obtained by the sum of the outputs from both the interannual and interdecadal models. Results show that the TSDTR downscaling approach achieves reasonable skill in predicting the observed rainfall in the validation period 1985-2006, compared to other simpler approaches. This study suggests that the TSDTR approach, considering different interannual SCESR-SST relationships under the modulation of PDO phases, as well as the interdecadal variability of SCESR associated with SST patterns, may provide a new perspective to improve climate predictions.
基金supported by the National Natural Sci-ence Foundation of China(Grant nos.40906099,40930848)the National Science and Technology Supporting Program of China(Grant no.2011BAC 03B02-03-02)the Ocean Public Welfare Scientific Research Project of China(Grant no.2012418007)
文摘A reasonable initial state of ice concentration is essential for accurate short-term forecasts of sea ice using ice-ocean coupled models. In this study, sea ice concentration data are assimilated into an operational ice forecast system based on a com- bined optimal interpolation and nudging scheme. The scheme produces a modeled sea ice concentration at every time step, based on the difference between observational and forecast data and on the ratio of observational error to modeled error. The impact and the effectiveness of data assimilation are investigated. Significant improvements to predictions of sea ice extent were obtained through the assimilation of ice concentration, and minor improvements through the adjustment of the upper ocean properties. The assimilation of ice thickness data did not significantly improve predictions. Forecast experiments show that the forecast accuracy is higher in summer, and that the errors on five-day forecasts occur mainly around the marginal ice zone.
文摘The monthly forecast of Indian monsoon rainfall during June to September is investigated by using the hindcast data sets of the National Centre for Environmental Prediction (NCEP)’s operational coupled model (known as the Climate Forecast System) for 25 years from 1981 to 2005 with 15 ensemble members each. The ensemble mean monthly rainfall over land region of India from CFS with one month lead forecast is underestimated during June to September. With respect to the inter-annual variability of monthly rainfall it is seen that the only significant correlation coefficients (CCs) are found to be for June forecast with May initial condition and September rainfall with August initial conditions. The CFS has got lowest skill for the month of August followed by that of July. Considering the lower skill of monthly forecast based on the ensemble mean, all 15 ensemble members are used separately for the preparation of probability forecast and different probability scores like Brier Score (BS), Brier Skill Score (BSS), Accuracy, Probability of Detection (POD), False Alarm Ratio (FAR), Threat Score (TS) and Heidke Skill Score (HSS) for all the three categories of forecasts (above normal, below normal and normal) have been calculated. In terms of the BS and BSS the skill of the monthly probability forecast in all the three categories are better than the climatology forecasts with positive BSS values except in case of normal forecast of June and July. The “TS”, “HSS” and other scores also provide useful probability forecast in case of CFS except the normal category of July forecast. Thus, it is seen that the monthly probability forecast based on NCEP CFS coupled model during the southwest monsoon season is very encouraging and is found to be very useful.
文摘As Europe seeks to retain its leading position in industrial competitiveness,there is an urgent need to establish a platform for Additive Manufacturing(AM)skills at European,National and Regional levels.AM processes enable economic component production through the efficient use of materials and increased design freedom as compared to conventional manufacturing.AM also raises the level of digital literacy among workers,and it contributes to the digitisation of European Industry.In face of this increasing growth of Metal AM technology,and consequent requirement of the definition of new professional profiles and skills and knowledge for personnel working in this sector,the European Federation for Welding,Joining and Cutting(EWF)recently launched the first International Additive Manufacturing Qualification System(IAMQS).For creating and managing the IAMQS,EWF relies on its experience of more than 25 years in managing a European/International Training/Educational System for qualification and certification of welding and joining personnel,covering different levels(from Operator to Engineer),assessing knowledge and skills(examination)and providing a Quality Assurance System that ensures that the same qualification is recognised in all countries that share the system,is recognised by the Industry and is accepted by Enterprises,professionals,training institutions and certification bodies.IAMQS is also based on the work currently being developed in the scope of three European Funded projects in the field of AM,in which EWF is actively involved,together with the respective partners from eight EU countries.In collaboration with SAM,CLLAIM and ADMIRE projects’partners,EWF has conducted market searches/surveys to collect information on market needs and possible solutions for future workers and professionals already involved in AM sector,carried out validation workshops with experts from the Industry and Education,and developed European qualification pathways.This systemic approach that encourages a close collaboration with major European AM companies and organisations to collect inputs from different sources in the creation of AM Qualification System,ensures Professional Profiles’quality and transparency.As a result of the skills gap analysis carried out by EWF during the last 2 years,7 Qualifications for Additive Manufacturing,ranging from Operator to Engineer levels,were developed,while others are being finalised and validated.
基金The Project"Development of Korea Operational Oceanographic System(PM57041)"funded by the Ministry of Land,Transport and Maritime Affairs of the Korean Governmentthe Project"Cooperation on the Development of Basic Technologies for the Yellow Sea and East China Sea Operational Oceanographic System(YOOS)"funded by the China-Korea Joint Ocean Research Center(CKJORC)
文摘A standard skill assessment (SA) tool was developed and implemented to evaluate the performance of op- erational forecast models in the Korea operational oceanographic system. The SA tool provided a robust way to assess model skill in the system by comparing predictions and observations, and involved the com- putation of multiple skill metrics including correlation and error skills. User- and system-based acceptance criteria of skill metrics were applied to determine whether predictions were acceptable for the system. To achieve this, the tool produced a time series comparison plot, a skill score table, and an advanced sum- marized diagram to effectively demonstrate the multiple skill scores. Moreover, the SA was conducted to evaluate both atmospheric and hydrodynamic forecast variables. For the atmospheric variables, acceptable error criteria were preferable to acceptable correlation criteria over short timescales, since the mean square error overwhelmed the observation variance. Conversely, for the hydrodynamic variables, acceptable root mean square percentage error (e.g., perms) criteria were preferable to acceptable error (e.g., erms) criteria owing to the spatially variable tidal intensity around the Korean Peninsula. Furthermore, the SA indicated that predetermined acceptance error criteria were appropriate to satisfy a target central frequency (fc) for which errors fell within the specified limits (i.e., the .fc equals 70%).
文摘This paper proposes useful guidance on the choice of threshold for binary forecasts. In weather forecast systems, the probabilistic forecast cannot be used directly when estimated too smoothly. In this case, the binary forecast, whether a meteorological event will occur or not, is preferable to the probabilistic forecast. A threshold is needed to generate a binary forecast, and the guidance in this paper encompasses the use of skill scores for the choice of threshold according to the forecast pattern. The forecast pattern consists of distribution modes of estimated probabilities, occurrence rates of observations, and variation modes. This study is performed via Monte-Carlo simulation, with 48 forecast patterns considered. Estimated probabilities are generated by random variate sampling from five distributions separately. Varying the threshold from 0 to 1, binary forecasts are generated by threshold. For the assessment of binary forecast models, a 2×2 contingency table is used and four skill scores (Heidke skill score, hit rate, true skill statistic, and threat score) are compared for each forecast pattern. As a result, guidance on the choice of skill score to find the optimal threshold is proposed.