A new analytical solution for ground surface settlement induced by deep excavation is proposed based on the elastic half space Melan’s solution,and the analytical model is related to the physical and mechanical prope...A new analytical solution for ground surface settlement induced by deep excavation is proposed based on the elastic half space Melan’s solution,and the analytical model is related to the physical and mechanical properties of soil with the loading and unloading action during excavation process.The change law of earth pressure of the normal consolidation soil after the foundation pit excavation was analyzed,and elastic displacement calculation methods of analytic solution were further established given the influence of excavation and unloading.According to the change of stress state in the excavation process of foundation pit,the planar mechanical analysis model of the foundation excavation problem was established.By combining this model with the physical equations and geometric equations of plane strain problem with consideration of the loading and unloading modulus of soil,constitutive equation of the plane strain problem was also established.The loading and unloading modulus formula was obtained by using the parameter calculation method in Duncan-Chang curve model.The constitutive equation obtained from the model was used to calculate the soil stress state of each point to determine its loading and unloading modulus.Finally,the foundation pit displacement change after excavation was calculated,and thus the soil pressure distribution after retaining structure deformation.The theoretical results calculated by making corresponding programs were applied to engineering practice.By comparing the conventional calculation results with monitoring results,the practicability and feasibility of the calculation model were verified,which should provide a theoretical basis for similar projects.展开更多
Based on analyses of the theories of groundwater unsteady flow in deep well dewatering in the deep foundation pit, Theis equations are chosen to calculate and analyze the relationship between water level drawdown of c...Based on analyses of the theories of groundwater unsteady flow in deep well dewatering in the deep foundation pit, Theis equations are chosen to calculate and analyze the relationship between water level drawdown of confined aquifer and dewatering duration. In order to reduce engineering cost and diminish detrimental effect on ambient surrounding, optimization design target function based on the control of confined water drawdown and four restriction requisitions based on the control of safe water level, resistance to throwing up from the bottom of foundation pit, avoiding excessively great subsidence and unequal surface subsidence are proposed. A deep well dewatering project in the deep foundation pit is optimally designed. The calculated results including confined water level drawdown and surface subsidence are in close agreement with the measured results, and the optimization design can effectively control both surface subsidence outside foundation pit and unequal subsidence as a result of dewatering.展开更多
In view of the characteristics of soft soil deep foundation pit for the construction and geotechnical characteristics of the special medium,it is difficult to calculate theoreti- cally accurately structural deformatio...In view of the characteristics of soft soil deep foundation pit for the construction and geotechnical characteristics of the special medium,it is difficult to calculate theoreti- cally accurately structural deformation of the foundation pit,so in the course of excavation on the construction of the information is particularly important.The analysis and compari- son of several popular non-linear forecasting methods,combined with the actual projects, set up a grey theoretical prediction model,time series forecasting model,improved neural network model to predict deformation of the foundation pit.The results show that the use of neural network to predict with high accuracy solution,it is the foundation deformation prediction effective way in underground works with good prospects.展开更多
A deep foundation pit constructed for an underground transportation hub was excavated near the Yangtze River. Among the strata, there are two confined aquifers, between which lies an aquiclude that is partially missin...A deep foundation pit constructed for an underground transportation hub was excavated near the Yangtze River. Among the strata, there are two confined aquifers, between which lies an aquiclude that is partially missing. To guarantee the safety of pit excavation, the piezometric head of the upper confined aquifer, where the pit bottom is located, should be 1 m below the pit bottom, while that of the lower confined aquifer should be dewatered down to a safe water level to avoid uplift problem. The Yangtze River levee is notably close to the pit, and its deformation caused by dewatering should be controlled. A pumping test was performed to obtain the hydraulic conductivity of the upper confined aquifer. The average value of the hydraulic conductivity obtained from analytical calculation is 20.45 m/d, which is larger than the values from numerical simulation(horizontal hydraulic conductivity K_H = 16 m/d and vertical hydraulic conductivity K_V = S m/d). The difference between K_H and K_V indicates the anisotropy of the aquifer. Two dewatering schemes were designed for the construction and simulated by the numerical models for comparison purposes. The results show that though the first scheme could meet the dewatering requirements, the largest accumulated settlement and differential settlement would be94.64 mm and 3.3‰, respectively, greatly exceeding the limited values. Meanwhile, the second scheme,in which the bottoms of the waterproof curtains in ramp B and the river side of ramp A are installed at a deeper elevation of-28 m above sea level, and 27 recharge wells are set along the levee, can control the deformation of the levee significantly.展开更多
A new type of pit supporting structure, which was tested and verified using the sensor monitoring technology, was presented. The new supporting structure is assembled by prefabricated steel structural units. The adjac...A new type of pit supporting structure, which was tested and verified using the sensor monitoring technology, was presented. The new supporting structure is assembled by prefabricated steel structural units. The adjacent steel structural units are jointed with fasteners, and each steel structural unit has a certain radian and is welded by two steel tubes and one piece of steel disc. In order to test and verify the reliability of the new supporting structure, the field tests are designed. The main monitoring programs include the hoop stress of supporting structure, lateral earth pressure, and soil deformation. The monitoring data of the field tests show that the new supporting structure is convenient, reliable and safe.展开更多
The traditional ground direct current method is not suitable for leakage detection of underground diaphragm walls in foundation pits because of its low accuracy and poor anti-noise ability.Here,we propose a joint surf...The traditional ground direct current method is not suitable for leakage detection of underground diaphragm walls in foundation pits because of its low accuracy and poor anti-noise ability.Here,we propose a joint surface-borehole observation device for leakage electric fi eld detection to achieve rapid measurement of the electric fi eld distribution characteristics at ground level in the foundation pit,thus enabling rapid localization of leakage points.We first establish the mechanism and basic equation of the leakage electric field response by combining the electric field formed by electrokinetic effect(EK)and the stable electric fi eld formed by conduction current in a combined leakage channel.Then,the fi nite–infi nite element coupling method is used to solve the electric fi eld equation to simulate the responses of a three-dimensional foundation pit leakage model.Furthermore,we conduct numerical simulations of diff erent pit models to investigate the infl uencing factors of the detection device and response characteristics of the change in the properties of the leakage channel.The results demonstrate that the proposed joint surface-borehole observation device can effi ciently reveal anomalous potential caused by leakage,and the amplitude of the electric fi eld generated by EK can eff ectively strengthen the leakage electric fi eld signal at the leakage,thus improving detection accuracy and effi ciency.展开更多
Predicting and estimating the response of sub- way tunnel to adjacent excavation of foundation pit is a research focus in the field of underground engineering. Based on the principle of two-stage method and incre- men...Predicting and estimating the response of sub- way tunnel to adjacent excavation of foundation pit is a research focus in the field of underground engineering. Based on the principle of two-stage method and incre- mental method, an analytic approach is suggested in this paper to solve this problem in an accurate and rapid way, and the upheavals of tunnel due to adjacent excavation are solved by analytic method. Besides, the presented method is used in the practical engineering case of Shenzhen Metro Line 11 and verified by numerical simulation and in situ measurement. Finally, a parametric analysis is performed to investigate the influence of different factors on tunnel's deflection. Some useful conclusions have been drawn from the research as below: The deflection results of tunnel obtained from analytic method are nearly consistent with the results getting from numerical analysis and measured data, which verified the accuracy and rationality of pre- sented method. The excavation size has a significant impact on both the displacement values and influenced range of tunnel. However, the relative distance only impacts the displacement values of tunnel, but not the influenced range of tunnel. It may provide certain reference to analyze the deflection of subway tunnel influenced by adjacent excavation.展开更多
To ensure the safety of buildings surrounding foundation pits, a study was made on a settlement monitoring and trend prediction method. A statistical testing method for analyzing the stability of a settlement monitori...To ensure the safety of buildings surrounding foundation pits, a study was made on a settlement monitoring and trend prediction method. A statistical testing method for analyzing the stability of a settlement monitoring datum has been discussed. According to a comprehensive survey, data of 16 stages at operating control point, were verified by a standard t test to determine the stability of the operating control point. A stationary auto-regression model, AR(p), used for the observation point settlement prediction has been investigated. Given the 16 stages of the settlement data at an observation point, the applicability of this model was analyzed. Settlement of last four stages was predicted using the stationary auto-regression model AR (1); the maximum difference between predicted and measured values was 0.6 mm, indicating good prediction results of the model. Hence, this model can be applied to settlement predictions for buildings surrounding foundation pits.展开更多
The thinking of co evolution is applied to the optimization of retaining and protecting structure for deep foundation excavation, and the system of optimization of anchored row piles for deep foundation pit has been a...The thinking of co evolution is applied to the optimization of retaining and protecting structure for deep foundation excavation, and the system of optimization of anchored row piles for deep foundation pit has been already developed successfully. For the co evolution algorithm providing an evolutionary mechanism to simulate ever changing problem space, it is an optimization algorithm that has high performance, especially applying to the optimization of complicated system of retaining and protecting for deep foundation pit. It is shown by many engineering practices that the co evolution algorithm has obvious optimization effect, so it can be an important method of optimization of retaining and protecting for deep foundation pit. Here the authors discuss the co evolution model, object function, all kinds of constraint conditions and their disposal methods, and several key techniques of system realization.展开更多
Through the simulation of explicit dynamic analysis software LS-DYNA,made an analysis to the particle velocity and the stress distribution of surrounding rock when the explosives blasting.Explicated the mechanical cha...Through the simulation of explicit dynamic analysis software LS-DYNA,made an analysis to the particle velocity and the stress distribution of surrounding rock when the explosives blasting.Explicated the mechanical character of surrounding rock in the foun- dation pit blasting,provided a basis to set of blasting parameters and optimized the blast- ing construction.展开更多
Deep foundation pit excavation is a basic and key step involved in modern building construction.In order to ensure the construction quality and safety of deep foundation pits,this paper takes a project as an example t...Deep foundation pit excavation is a basic and key step involved in modern building construction.In order to ensure the construction quality and safety of deep foundation pits,this paper takes a project as an example to analyze deep foundation pit excavation technology,including the nature of this construction project,the main technical measures in the construction of deep foundation pit,and the analysis of the safety risk prevention and control measures.The purpose of this analysis is to provide scientific reference for the construction quality and safety of deep foundation pits.展开更多
Moso bamboo has the advantages of high short-term strength and reproducibility,appropriating for temporary supporting structure of shallow foundation pit.According to the displacement of the pile top from an indoor mo...Moso bamboo has the advantages of high short-term strength and reproducibility,appropriating for temporary supporting structure of shallow foundation pit.According to the displacement of the pile top from an indoor model test,the reliability of the supporting effect of the moso bamboo pile was analyzed.First,the calculation formula of reliability index was deduced based on themean-value first-order second-moment(MVFOSM)method and probability theory under ultimate limit state and serviceability limit state.Then,the dimensionless bias factor(the ratio of the measured value to the calculated value)was introduced to normalize the displacement.The mathematical characteristics of the displacement were estimated and optimized based on Bayesian theory.Finally,taking 2.5 as the design reliability index,the effect of safety factor,tolerable limit displacement,and the ratio of the ultimate limit displacement to the tolerable on reliability index was analyzed.The results show that the safety level of the supporting pile can be increased by 1–2 levels when the safety factor increases by 0.5.When the coefficient of variation of tolerable limit displacement is less than 0.3,the safety factor can be 2–2.5.And the ratio of the ultimate limit displacement to the tolerable has a great influence on the reliability index,when the soil conditions is well,the ratio can be 1.2–1.3.展开更多
Taking the deep foundation pit accident occurring at a station of metro Line 2 in Taiyuan as an example,the influence of the seepage and inrush of the foundation pit on the retaining structure and surrounding environm...Taking the deep foundation pit accident occurring at a station of metro Line 2 in Taiyuan as an example,the influence of the seepage and inrush of the foundation pit on the retaining structure and surrounding environment were studied under the geological conditions of the confined aquifer on the east coast of Fenhe River.The causes of deep foundation pit accident were also analyzed systematically based on the monitoring data,and various emergency measures were proposed to control the occurrence of secondary accident for deep foundation pit.The results showed that the occurrence of inrush for foundation pit was mainly caused by the insufficient dewatering.The development of the accident was effectively controlled by the adding of the dewatering wells,local grouting of retaining structure to stop seepage,surface grouting to reinforcement and uplift soil.The successful experience can provide some guidance to the construction of similar projects in the proposal.展开更多
By using numerical analysis methods to simulate the deep excavation,a lot of analyses are established on the basis of two-dimensional plane strain,ignoring the fact that foundation pit possesses three dimensions. For ...By using numerical analysis methods to simulate the deep excavation,a lot of analyses are established on the basis of two-dimensional plane strain,ignoring the fact that foundation pit possesses three dimensions. For soil constitutive relation,people always take linear and nonlinear model,without considering the plastic behavior of soil. Using plastic-elastic hardening model to simulate constitutive relation of soil characteristics,the authors carried out mechanical analysis for pit excavation and support. The results show that the analysis for the stress state of pile anchor system is an effective way which provides theoretical basis for calculation of soil displacement.展开更多
Foundation pit excavation engineering is an old subject full of decision making. Yet, it still deserves further research due to the associated high failure cost and the complexity of the geological conditions and/or t...Foundation pit excavation engineering is an old subject full of decision making. Yet, it still deserves further research due to the associated high failure cost and the complexity of the geological conditions and/or the surrounding existing infrastructure around it. This article overviews the risk control practice of foundation pit excavation projects in close proximity to <span style="font-family:Verdana;">existing</span><span style="font-family:Verdana;"> disconnected piled raft. More focus is given to geotechnical aspects. The review begins with achievements to ensure excavation performance </span><span style="font-family:Verdana;">requirements,</span><span style="font-family:Verdana;"> and follows to discuss the complex </span><span style="font-family:Verdana;">soil structure</span><span style="font-family:Verdana;"> interaction involved among the fundamental components</span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">: </span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;">the retaining wall, mat, piles, cushion, and the soil. After bringing consensus points to practicing engineers and </span><span style="font-family:Verdana;">decision makers</span><span style="font-family:Verdana;">, it then suggests possible future research directions.</span></span></span></span>展开更多
With the continuous development of the construction industry,the density of engineering construction and the difficulty of underground construction are also increasing.As an important construction protection measure,f...With the continuous development of the construction industry,the density of engineering construction and the difficulty of underground construction are also increasing.As an important construction protection measure,foundation pit support construction is widely used in underground construction.Starting from the characteristics of foundation pit support construction,this paper analyzes the influence of geotechnical investigation on foundation pit support construction,and analyzes the problems that need to be paid attention to in the survey process.展开更多
Municipal civil engineering is the key content of municipal construction,and the construction scale is usually large.The quality of the project plays an important role in the development of urban economy.Due to the ra...Municipal civil engineering is the key content of municipal construction,and the construction scale is usually large.The quality of the project plays an important role in the development of urban economy.Due to the rapid increase of high-rise buildings,skyscrapers and underground buildings,the construction technology of deep foundation pit support has gradually become an indispensable construction technology.Therefore,the selection of foundation pit support construction technology is crucial in ensuring that whether the foundation is firm and stable,and whether the subsequent construction activities can be carried out smoothly.In view of this,the article discusses the application of deep foundation pit support construction technology in municipal civil engineering,aiming to provide reference for subsequent projects.展开更多
To investigate the effect of deep foundation pit excavation on the stability of retaining structure, a subway stationin the city of Jinan was selected as a project, and a FLAC3D-based three dimensional model was devel...To investigate the effect of deep foundation pit excavation on the stability of retaining structure, a subway stationin the city of Jinan was selected as a project, and a FLAC3D-based three dimensional model was developed fornumerical simulation. The horizontal displacement of the retaining structure, the axial force of the support, andthe vertical displacement of the column were studied and compared to the collected data from the field. The findingsindicate that when the foundation pit is excavated, the maximum deformation of the retaining structure progressivelydecreases from the top, the distortion of the retaining structure gradually rises, and the final maximumdeformation is around 17 meters deep. In each layer of support, the largest axial force support is located in thefirst reinforced concrete support;the uplift of the pit bottom caused by soil unloading plays a primary role in thevertical displacement of the column, and the column exhibits an upward trend under all construction conditions.When compared to the measured data, the generated findings are comparable and the fluctuation trend is extremelyconsistent. The findings of this article may give technical direction for the development of subway stationswith a comparable engineering basis.展开更多
This study presents a detailed investigation into the soil arching effects within deep foundation pits(DFPs),focusing on their mechanical behavior and implications for structural design.Through rigorous 3D finite elem...This study presents a detailed investigation into the soil arching effects within deep foundation pits(DFPs),focusing on their mechanical behavior and implications for structural design.Through rigorous 3D finite element modeling and parameter sensitivity analyses,the research explores the formation,geometric characteristics,and spatial distribution of soil arching phenomena.The investigation encompasses the influence of key parameters such as elastic modulus,cohesion,and internal friction angle on the soil arching effect.The findings reveal that soil arching within DFPs exhibits distinct spatial characteristics,with the prominent arch axis shifting as excavation depth progresses.Optimal soil arching is observed when the pile spacing approximates three times the pile diameter,enhancing soil retention and minimizing deformation risks.Sensitivity analyses highlight the significant impact of soil parameters on soil arching behavior,underscoring the critical role of cohesive forces and internal friction angles in shaping arching characteristics.By elucidating the interplay between soil parameters and soil arching effects,the research provides insights for optimizing pile spacing and structural stability.展开更多
基金Project(41672290)supported by the National Natural Science Foundation of ChinaProject(2016J01189)supported by the Natural Science foundation of Fujian Province,China
文摘A new analytical solution for ground surface settlement induced by deep excavation is proposed based on the elastic half space Melan’s solution,and the analytical model is related to the physical and mechanical properties of soil with the loading and unloading action during excavation process.The change law of earth pressure of the normal consolidation soil after the foundation pit excavation was analyzed,and elastic displacement calculation methods of analytic solution were further established given the influence of excavation and unloading.According to the change of stress state in the excavation process of foundation pit,the planar mechanical analysis model of the foundation excavation problem was established.By combining this model with the physical equations and geometric equations of plane strain problem with consideration of the loading and unloading modulus of soil,constitutive equation of the plane strain problem was also established.The loading and unloading modulus formula was obtained by using the parameter calculation method in Duncan-Chang curve model.The constitutive equation obtained from the model was used to calculate the soil stress state of each point to determine its loading and unloading modulus.Finally,the foundation pit displacement change after excavation was calculated,and thus the soil pressure distribution after retaining structure deformation.The theoretical results calculated by making corresponding programs were applied to engineering practice.By comparing the conventional calculation results with monitoring results,the practicability and feasibility of the calculation model were verified,which should provide a theoretical basis for similar projects.
基金This paper is supported by the Hubei Construct Science Foundation of China (G200013).
文摘Based on analyses of the theories of groundwater unsteady flow in deep well dewatering in the deep foundation pit, Theis equations are chosen to calculate and analyze the relationship between water level drawdown of confined aquifer and dewatering duration. In order to reduce engineering cost and diminish detrimental effect on ambient surrounding, optimization design target function based on the control of confined water drawdown and four restriction requisitions based on the control of safe water level, resistance to throwing up from the bottom of foundation pit, avoiding excessively great subsidence and unequal surface subsidence are proposed. A deep well dewatering project in the deep foundation pit is optimally designed. The calculated results including confined water level drawdown and surface subsidence are in close agreement with the measured results, and the optimization design can effectively control both surface subsidence outside foundation pit and unequal subsidence as a result of dewatering.
基金the Educational Department of Liaoning Province Through Scientific Research Project(20060051)National Natural Science Foundation of China(50604009)Universities Excellent Talents Support Plan to Train Foundation of Liaoning(RC-04-13)
文摘In view of the characteristics of soft soil deep foundation pit for the construction and geotechnical characteristics of the special medium,it is difficult to calculate theoreti- cally accurately structural deformation of the foundation pit,so in the course of excavation on the construction of the information is particularly important.The analysis and compari- son of several popular non-linear forecasting methods,combined with the actual projects, set up a grey theoretical prediction model,time series forecasting model,improved neural network model to predict deformation of the foundation pit.The results show that the use of neural network to predict with high accuracy solution,it is the foundation deformation prediction effective way in underground works with good prospects.
基金financially supported by the doctoral fund of the Ministry of Education of Chinathe Nature Science Foundation of Jiangsu Province, China (Grant Nos. 20130091110020 and BE2015675)
文摘A deep foundation pit constructed for an underground transportation hub was excavated near the Yangtze River. Among the strata, there are two confined aquifers, between which lies an aquiclude that is partially missing. To guarantee the safety of pit excavation, the piezometric head of the upper confined aquifer, where the pit bottom is located, should be 1 m below the pit bottom, while that of the lower confined aquifer should be dewatered down to a safe water level to avoid uplift problem. The Yangtze River levee is notably close to the pit, and its deformation caused by dewatering should be controlled. A pumping test was performed to obtain the hydraulic conductivity of the upper confined aquifer. The average value of the hydraulic conductivity obtained from analytical calculation is 20.45 m/d, which is larger than the values from numerical simulation(horizontal hydraulic conductivity K_H = 16 m/d and vertical hydraulic conductivity K_V = S m/d). The difference between K_H and K_V indicates the anisotropy of the aquifer. Two dewatering schemes were designed for the construction and simulated by the numerical models for comparison purposes. The results show that though the first scheme could meet the dewatering requirements, the largest accumulated settlement and differential settlement would be94.64 mm and 3.3‰, respectively, greatly exceeding the limited values. Meanwhile, the second scheme,in which the bottoms of the waterproof curtains in ramp B and the river side of ramp A are installed at a deeper elevation of-28 m above sea level, and 27 recharge wells are set along the levee, can control the deformation of the levee significantly.
基金Project(41202220) supported by the National Natural Science Foundation of ChinaProject(20120022120003) supported by the Research Fund for the Doctoral Program of Higher Education, China+1 种基金Project(2-9-2012-65) supported by the Fundamental Research Funds for the Central Universities, ChinaProject(2013006) supported by the Research Fund for Key Laboratory on Deep GeoDrilling Technology, Ministry of Land and Resources, China
文摘A new type of pit supporting structure, which was tested and verified using the sensor monitoring technology, was presented. The new supporting structure is assembled by prefabricated steel structural units. The adjacent steel structural units are jointed with fasteners, and each steel structural unit has a certain radian and is welded by two steel tubes and one piece of steel disc. In order to test and verify the reliability of the new supporting structure, the field tests are designed. The main monitoring programs include the hoop stress of supporting structure, lateral earth pressure, and soil deformation. The monitoring data of the field tests show that the new supporting structure is convenient, reliable and safe.
基金partially supported by the National Natural Science Foundation of China (Nos. 41864004 and 41674077)Jiangxi Provincial Academic Leaders (Youth) Training Program (No. 20204BCJL23058)Open Fund from Engineering Research Center for Seismic Disaster Prevention and Engineering Geological Disaster Detection of Jiangxi Province (SDGD202102)。
文摘The traditional ground direct current method is not suitable for leakage detection of underground diaphragm walls in foundation pits because of its low accuracy and poor anti-noise ability.Here,we propose a joint surface-borehole observation device for leakage electric fi eld detection to achieve rapid measurement of the electric fi eld distribution characteristics at ground level in the foundation pit,thus enabling rapid localization of leakage points.We first establish the mechanism and basic equation of the leakage electric field response by combining the electric field formed by electrokinetic effect(EK)and the stable electric fi eld formed by conduction current in a combined leakage channel.Then,the fi nite–infi nite element coupling method is used to solve the electric fi eld equation to simulate the responses of a three-dimensional foundation pit leakage model.Furthermore,we conduct numerical simulations of diff erent pit models to investigate the infl uencing factors of the detection device and response characteristics of the change in the properties of the leakage channel.The results demonstrate that the proposed joint surface-borehole observation device can effi ciently reveal anomalous potential caused by leakage,and the amplitude of the electric fi eld generated by EK can eff ectively strengthen the leakage electric fi eld signal at the leakage,thus improving detection accuracy and effi ciency.
基金supported by the Fundamental Research for the Central Universities (SWJTU11ZT33)the Funds for the development of Innovation team of Ministry of Education (IRT0955)
文摘Predicting and estimating the response of sub- way tunnel to adjacent excavation of foundation pit is a research focus in the field of underground engineering. Based on the principle of two-stage method and incre- mental method, an analytic approach is suggested in this paper to solve this problem in an accurate and rapid way, and the upheavals of tunnel due to adjacent excavation are solved by analytic method. Besides, the presented method is used in the practical engineering case of Shenzhen Metro Line 11 and verified by numerical simulation and in situ measurement. Finally, a parametric analysis is performed to investigate the influence of different factors on tunnel's deflection. Some useful conclusions have been drawn from the research as below: The deflection results of tunnel obtained from analytic method are nearly consistent with the results getting from numerical analysis and measured data, which verified the accuracy and rationality of pre- sented method. The excavation size has a significant impact on both the displacement values and influenced range of tunnel. However, the relative distance only impacts the displacement values of tunnel, but not the influenced range of tunnel. It may provide certain reference to analyze the deflection of subway tunnel influenced by adjacent excavation.
基金Project 50279005 supported by the National Natural Science Foundation of China
文摘To ensure the safety of buildings surrounding foundation pits, a study was made on a settlement monitoring and trend prediction method. A statistical testing method for analyzing the stability of a settlement monitoring datum has been discussed. According to a comprehensive survey, data of 16 stages at operating control point, were verified by a standard t test to determine the stability of the operating control point. A stationary auto-regression model, AR(p), used for the observation point settlement prediction has been investigated. Given the 16 stages of the settlement data at an observation point, the applicability of this model was analyzed. Settlement of last four stages was predicted using the stationary auto-regression model AR (1); the maximum difference between predicted and measured values was 0.6 mm, indicating good prediction results of the model. Hence, this model can be applied to settlement predictions for buildings surrounding foundation pits.
基金National Natural Science Foundation of China( 5 986 80 0 1)
文摘The thinking of co evolution is applied to the optimization of retaining and protecting structure for deep foundation excavation, and the system of optimization of anchored row piles for deep foundation pit has been already developed successfully. For the co evolution algorithm providing an evolutionary mechanism to simulate ever changing problem space, it is an optimization algorithm that has high performance, especially applying to the optimization of complicated system of retaining and protecting for deep foundation pit. It is shown by many engineering practices that the co evolution algorithm has obvious optimization effect, so it can be an important method of optimization of retaining and protecting for deep foundation pit. Here the authors discuss the co evolution model, object function, all kinds of constraint conditions and their disposal methods, and several key techniques of system realization.
文摘Through the simulation of explicit dynamic analysis software LS-DYNA,made an analysis to the particle velocity and the stress distribution of surrounding rock when the explosives blasting.Explicated the mechanical character of surrounding rock in the foun- dation pit blasting,provided a basis to set of blasting parameters and optimized the blast- ing construction.
文摘Deep foundation pit excavation is a basic and key step involved in modern building construction.In order to ensure the construction quality and safety of deep foundation pits,this paper takes a project as an example to analyze deep foundation pit excavation technology,including the nature of this construction project,the main technical measures in the construction of deep foundation pit,and the analysis of the safety risk prevention and control measures.The purpose of this analysis is to provide scientific reference for the construction quality and safety of deep foundation pits.
基金the National Natural Science Foundation of China(No.51878554)Key projects of Shaanxi Natural Science Basic Research Program(No.2018JZ5012).
文摘Moso bamboo has the advantages of high short-term strength and reproducibility,appropriating for temporary supporting structure of shallow foundation pit.According to the displacement of the pile top from an indoor model test,the reliability of the supporting effect of the moso bamboo pile was analyzed.First,the calculation formula of reliability index was deduced based on themean-value first-order second-moment(MVFOSM)method and probability theory under ultimate limit state and serviceability limit state.Then,the dimensionless bias factor(the ratio of the measured value to the calculated value)was introduced to normalize the displacement.The mathematical characteristics of the displacement were estimated and optimized based on Bayesian theory.Finally,taking 2.5 as the design reliability index,the effect of safety factor,tolerable limit displacement,and the ratio of the ultimate limit displacement to the tolerable on reliability index was analyzed.The results show that the safety level of the supporting pile can be increased by 1–2 levels when the safety factor increases by 0.5.When the coefficient of variation of tolerable limit displacement is less than 0.3,the safety factor can be 2–2.5.And the ratio of the ultimate limit displacement to the tolerable has a great influence on the reliability index,when the soil conditions is well,the ratio can be 1.2–1.3.
基金National Natural Science Foundation of China(No.51908516)Natural Science Foundation of Shanxi Province,China(No.201901D211207)。
文摘Taking the deep foundation pit accident occurring at a station of metro Line 2 in Taiyuan as an example,the influence of the seepage and inrush of the foundation pit on the retaining structure and surrounding environment were studied under the geological conditions of the confined aquifer on the east coast of Fenhe River.The causes of deep foundation pit accident were also analyzed systematically based on the monitoring data,and various emergency measures were proposed to control the occurrence of secondary accident for deep foundation pit.The results showed that the occurrence of inrush for foundation pit was mainly caused by the insufficient dewatering.The development of the accident was effectively controlled by the adding of the dewatering wells,local grouting of retaining structure to stop seepage,surface grouting to reinforcement and uplift soil.The successful experience can provide some guidance to the construction of similar projects in the proposal.
文摘By using numerical analysis methods to simulate the deep excavation,a lot of analyses are established on the basis of two-dimensional plane strain,ignoring the fact that foundation pit possesses three dimensions. For soil constitutive relation,people always take linear and nonlinear model,without considering the plastic behavior of soil. Using plastic-elastic hardening model to simulate constitutive relation of soil characteristics,the authors carried out mechanical analysis for pit excavation and support. The results show that the analysis for the stress state of pile anchor system is an effective way which provides theoretical basis for calculation of soil displacement.
文摘Foundation pit excavation engineering is an old subject full of decision making. Yet, it still deserves further research due to the associated high failure cost and the complexity of the geological conditions and/or the surrounding existing infrastructure around it. This article overviews the risk control practice of foundation pit excavation projects in close proximity to <span style="font-family:Verdana;">existing</span><span style="font-family:Verdana;"> disconnected piled raft. More focus is given to geotechnical aspects. The review begins with achievements to ensure excavation performance </span><span style="font-family:Verdana;">requirements,</span><span style="font-family:Verdana;"> and follows to discuss the complex </span><span style="font-family:Verdana;">soil structure</span><span style="font-family:Verdana;"> interaction involved among the fundamental components</span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">: </span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;">the retaining wall, mat, piles, cushion, and the soil. After bringing consensus points to practicing engineers and </span><span style="font-family:Verdana;">decision makers</span><span style="font-family:Verdana;">, it then suggests possible future research directions.</span></span></span></span>
文摘With the continuous development of the construction industry,the density of engineering construction and the difficulty of underground construction are also increasing.As an important construction protection measure,foundation pit support construction is widely used in underground construction.Starting from the characteristics of foundation pit support construction,this paper analyzes the influence of geotechnical investigation on foundation pit support construction,and analyzes the problems that need to be paid attention to in the survey process.
文摘Municipal civil engineering is the key content of municipal construction,and the construction scale is usually large.The quality of the project plays an important role in the development of urban economy.Due to the rapid increase of high-rise buildings,skyscrapers and underground buildings,the construction technology of deep foundation pit support has gradually become an indispensable construction technology.Therefore,the selection of foundation pit support construction technology is crucial in ensuring that whether the foundation is firm and stable,and whether the subsequent construction activities can be carried out smoothly.In view of this,the article discusses the application of deep foundation pit support construction technology in municipal civil engineering,aiming to provide reference for subsequent projects.
基金supported by the National Natural Science Foundation of China(51774199).
文摘To investigate the effect of deep foundation pit excavation on the stability of retaining structure, a subway stationin the city of Jinan was selected as a project, and a FLAC3D-based three dimensional model was developed fornumerical simulation. The horizontal displacement of the retaining structure, the axial force of the support, andthe vertical displacement of the column were studied and compared to the collected data from the field. The findingsindicate that when the foundation pit is excavated, the maximum deformation of the retaining structure progressivelydecreases from the top, the distortion of the retaining structure gradually rises, and the final maximumdeformation is around 17 meters deep. In each layer of support, the largest axial force support is located in thefirst reinforced concrete support;the uplift of the pit bottom caused by soil unloading plays a primary role in thevertical displacement of the column, and the column exhibits an upward trend under all construction conditions.When compared to the measured data, the generated findings are comparable and the fluctuation trend is extremelyconsistent. The findings of this article may give technical direction for the development of subway stationswith a comparable engineering basis.
基金supported by Key R&D Program of Shandong Province,China(Grant No.2021CXGC011203).
文摘This study presents a detailed investigation into the soil arching effects within deep foundation pits(DFPs),focusing on their mechanical behavior and implications for structural design.Through rigorous 3D finite element modeling and parameter sensitivity analyses,the research explores the formation,geometric characteristics,and spatial distribution of soil arching phenomena.The investigation encompasses the influence of key parameters such as elastic modulus,cohesion,and internal friction angle on the soil arching effect.The findings reveal that soil arching within DFPs exhibits distinct spatial characteristics,with the prominent arch axis shifting as excavation depth progresses.Optimal soil arching is observed when the pile spacing approximates three times the pile diameter,enhancing soil retention and minimizing deformation risks.Sensitivity analyses highlight the significant impact of soil parameters on soil arching behavior,underscoring the critical role of cohesive forces and internal friction angles in shaping arching characteristics.By elucidating the interplay between soil parameters and soil arching effects,the research provides insights for optimizing pile spacing and structural stability.