A novel radiation tolerant SOI isolation structure,consisting of thin SiO2/polysilicon/field SiO2 multilayers,is proposed. A device with this structure does not show obvious changes in subthreshold characteristics and...A novel radiation tolerant SOI isolation structure,consisting of thin SiO2/polysilicon/field SiO2 multilayers,is proposed. A device with this structure does not show obvious changes in subthreshold characteristics and leakage current,indicating a superior radiation tolerance to traditional LOCOS.展开更多
The dependence of the Recombination- Generation( R- G) current on the bulk trap characteristics and sili- con film structure in SOI lateral p+ p- n+ diode has been analyzed num erically by using the simulation tool,D...The dependence of the Recombination- Generation( R- G) current on the bulk trap characteristics and sili- con film structure in SOI lateral p+ p- n+ diode has been analyzed num erically by using the simulation tool,DESSIS- ISE.By varying the bulk trap characteristics such as the trap density and energy level spectrum systematically,the dependence of the R- G current on both of them has been dem onstrated in details.Moreover,the silicon film doping concentration and thickness are changed to make silicon body varies from the fully- depletion m ode into the partial- ly- depletion one.The influence of the transfer of silicon body characteristics on the R- G currenthas also been care- fully examined.A better understanding is obtained of the behavior of bulk trap R- G current in the SOI lateral gat- ed- diode.展开更多
A novel silicon-on-insulator (SOI) power metM-oxide-semiconductor field effect transistor with an interface-gate (IG SOI) structure is proposed, in which the trench polysificon gate extends into the buried oxide l...A novel silicon-on-insulator (SOI) power metM-oxide-semiconductor field effect transistor with an interface-gate (IG SOI) structure is proposed, in which the trench polysificon gate extends into the buried oxide layer (BOX) at the source side and an IG is formed. Firstly, the IG offers an extra accumulation channel for the carriers. Secondly, the subsidiary depletion effect of the IG results in a higher impurity doping for the drift region. A low specific on-resistance is therefore obtained under the condition of a slightly enhanced breakdown voltage for the IG SOI. The influences of structure parameters on the device performances are investigated. Compared with the conventional trench gate SOI and lateral planar gate SOI, the specific on-resistances of the IG SOI are reduced by 36.66% and 25.32% with the breakdown voltages enhanced by 2.28% and 10.83% at the same SOI layer of 3 μm, BOX of 1 μm, and half-cell pitch of 5.5 μm, respectively.展开更多
In order to minimize the self-heating effect of the classic SOI devices,SOI structures with Si3 N4 film as a buried insulator (SOSN) are successfully formed using epitaxial layer transfer technology for the first ti...In order to minimize the self-heating effect of the classic SOI devices,SOI structures with Si3 N4 film as a buried insulator (SOSN) are successfully formed using epitaxial layer transfer technology for the first time. The new SOI structures are investigated with high-resolution cross-sectional transmission electron microscopy and spreading resistance profile. Experiment results show that the buried Si3 N4 layer is amorphous and the new SOI material has good structural and electrical properties. The output current characteristics and temperature distribution are simulated and compared to those of standard SOI MOSFETs. Furthermore, the channel temperature and negative differential resistance are reduced during high-temperature operation, suggesting that SOSN can effectively mitigate the selfheating penalty. The new SOI device has been verified in two-dimensional device simulation and indicated that the new structures can reduce device self-heating and increase drain current of the SOI MOSFET.展开更多
A compact structured illumination chip based on integrated optics is proposed and fabricated on a silicon-on- insulator platform. Based on the simulation of Caussian beam interference, we adopt a chirped diffraction g...A compact structured illumination chip based on integrated optics is proposed and fabricated on a silicon-on- insulator platform. Based on the simulation of Caussian beam interference, we adopt a chirped diffraction grating to achieve a specific interference pattern. The experimental results match well with the simulations. The portability and flexibility of the structured illumination chip can be increased greatly through horizontal encapsulation. High levels of integration, compared with the conventional structured illumination approach, make this chip very compact, with a footprint of only around 1 mm2. The chip has no optical lenses and can be easily combined with a microfluidic system. These properties would make the chip very suitable for portable 3D scanner and compact super-resolution microscopy applications.展开更多
Soy protein-based composite film is a potential replacement for petroleum-based film with multipurpose applica-tions and cleaner production.It is difficult to improve both the tensile strength and toughness of a prote...Soy protein-based composite film is a potential replacement for petroleum-based film with multipurpose applica-tions and cleaner production.It is difficult to improve both the tensile strength and toughness of a protein-based film without sacrificing its elongation.In this study,inspired by the hierarchical structure of nacre,a facile yet delicate strategy was developed to fabricate a novel bio-based film with excellent toughness and high strength.Triglycidylamine(TGA)crosslinked soy protein(SPI)as hard phase and thermoplastic polyurethane elastomer(TPU)as soft phase comprise an alternative lay-up hierarchical structure.The interface of these two phases is enhanced using triglycidylamine(TGA)surface-modified TPU(MTPU).The tensile strength of SPI/MTPU/TGA films increases by 392%to 7.78 MPa and their toughness increases by 391%to 8.50 MJ/m^(3) compared to soy protein/glycerol film.The proposed hierarchical structure can also be extended to other high-performance materials and polymers.展开更多
The molecular structure of phospholipids can be changed enzymatically to obtain different tailor-made phospholipids. Incorporation of ω-3 fatty acids into phospholipids structure increased their oxidative stability, ...The molecular structure of phospholipids can be changed enzymatically to obtain different tailor-made phospholipids. Incorporation of ω-3 fatty acids into phospholipids structure increased their oxidative stability, suggesting more health beneficial phospholipids. This study aimed to optimize eicosapentaenoic acid (EPA) incorporation into phospholipids structure by acidolysis reaction using free lipase (EC 3.1.1.3) from Rhizomucor miehei. Deoiled soy lecithin from anjasmoro variety was used as phospholipids source, while ω-3 fatty acid enriched oil was used as acyl source. Oil enriched with ω-3 fatty acids was obtained from low temperature solvent crystallization of lemuru (Sardinella longiceps) by-product. Response surface methodology (RSM) was used in this study to determine the relationship between the three factors (enzyme concentration, reaction time and substrate ratio) and their effects on EPA incorporation into soy lecithin structure. The results showed that the relation between EPA content with three factors (reaction time, enzyme concentration and substrate ratio) was quadratic. The significant factors were substrate ratio and reaction time. Optimum conditions at a ratio of 3.77:1 between ω-3 fatty acids enriched oil and soy lecithin, 30% lipase concentration, and 24.08 h reaction time, gave 22.81% of EPA content of structured phospholipids.展开更多
为提高SOI压阻式压力传感器的灵敏度,对传感器敏感结构的弹性膜片和压敏电阻的形状、尺寸等结构参数进行了优化设计。利用COMSOL Multiphysics多物理场耦合分析软件对优化后的敏感结构进行了静力学仿真与分析,完成了敏感芯片的制备和加...为提高SOI压阻式压力传感器的灵敏度,对传感器敏感结构的弹性膜片和压敏电阻的形状、尺寸等结构参数进行了优化设计。利用COMSOL Multiphysics多物理场耦合分析软件对优化后的敏感结构进行了静力学仿真与分析,完成了敏感芯片的制备和加压测试,测试结果表明:优化后的传感器输出灵敏度为5.98 m V/(V·bar),较原结构输出灵敏度提高了1倍,非线性误差小于0.096%。展开更多
提出了一种新结构薄膜 SOI L IGBT——漂移区减薄的多沟道薄膜 SOI LIGBT( DRT-MC TFSOI L IGB)。主要研究了其低压截止态泄漏电流在 4 2 3~ 573K范围的温度特性。指出 ,通过合理的设计可以使该种新器件具有很低的截止态高温泄漏电流 ...提出了一种新结构薄膜 SOI L IGBT——漂移区减薄的多沟道薄膜 SOI LIGBT( DRT-MC TFSOI L IGB)。主要研究了其低压截止态泄漏电流在 4 2 3~ 573K范围的温度特性。指出 ,通过合理的设计可以使该种新器件具有很低的截止态高温泄漏电流 ,很高的截止态击穿电压 ,足够大的正向导通电流和足够低的正向导通压降。还指出 ,它不仅适用于高温低压应用 ,而且适用于高温高压应用。展开更多
文摘A novel radiation tolerant SOI isolation structure,consisting of thin SiO2/polysilicon/field SiO2 multilayers,is proposed. A device with this structure does not show obvious changes in subthreshold characteristics and leakage current,indicating a superior radiation tolerance to traditional LOCOS.
基金摩托罗拉和北京大学的联合研究项目!"Gated-Diode Method Application Development and Sensitivity Analysis"的资助 (合同号 :MSPSESTL
文摘The dependence of the Recombination- Generation( R- G) current on the bulk trap characteristics and sili- con film structure in SOI lateral p+ p- n+ diode has been analyzed num erically by using the simulation tool,DESSIS- ISE.By varying the bulk trap characteristics such as the trap density and energy level spectrum systematically,the dependence of the R- G current on both of them has been dem onstrated in details.Moreover,the silicon film doping concentration and thickness are changed to make silicon body varies from the fully- depletion m ode into the partial- ly- depletion one.The influence of the transfer of silicon body characteristics on the R- G currenthas also been care- fully examined.A better understanding is obtained of the behavior of bulk trap R- G current in the SOI lateral gat- ed- diode.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61404014 and 61405018the Fundamental Research Funds for the Central Universities under Grant Nos CDJZR12160003 and 106112014CDJZR168801
文摘A novel silicon-on-insulator (SOI) power metM-oxide-semiconductor field effect transistor with an interface-gate (IG SOI) structure is proposed, in which the trench polysificon gate extends into the buried oxide layer (BOX) at the source side and an IG is formed. Firstly, the IG offers an extra accumulation channel for the carriers. Secondly, the subsidiary depletion effect of the IG results in a higher impurity doping for the drift region. A low specific on-resistance is therefore obtained under the condition of a slightly enhanced breakdown voltage for the IG SOI. The influences of structure parameters on the device performances are investigated. Compared with the conventional trench gate SOI and lateral planar gate SOI, the specific on-resistances of the IG SOI are reduced by 36.66% and 25.32% with the breakdown voltages enhanced by 2.28% and 10.83% at the same SOI layer of 3 μm, BOX of 1 μm, and half-cell pitch of 5.5 μm, respectively.
文摘In order to minimize the self-heating effect of the classic SOI devices,SOI structures with Si3 N4 film as a buried insulator (SOSN) are successfully formed using epitaxial layer transfer technology for the first time. The new SOI structures are investigated with high-resolution cross-sectional transmission electron microscopy and spreading resistance profile. Experiment results show that the buried Si3 N4 layer is amorphous and the new SOI material has good structural and electrical properties. The output current characteristics and temperature distribution are simulated and compared to those of standard SOI MOSFETs. Furthermore, the channel temperature and negative differential resistance are reduced during high-temperature operation, suggesting that SOSN can effectively mitigate the selfheating penalty. The new SOI device has been verified in two-dimensional device simulation and indicated that the new structures can reduce device self-heating and increase drain current of the SOI MOSFET.
基金Supported by the National Natural Science Foundation of China under Grant No 61334008the National High-Technology Research and Development Program of China under Grant No 2015AA016904the Instrument Developing Project of the Chinese Academy of Sciences under Grant No YZ201301
文摘A compact structured illumination chip based on integrated optics is proposed and fabricated on a silicon-on- insulator platform. Based on the simulation of Caussian beam interference, we adopt a chirped diffraction grating to achieve a specific interference pattern. The experimental results match well with the simulations. The portability and flexibility of the structured illumination chip can be increased greatly through horizontal encapsulation. High levels of integration, compared with the conventional structured illumination approach, make this chip very compact, with a footprint of only around 1 mm2. The chip has no optical lenses and can be easily combined with a microfluidic system. These properties would make the chip very suitable for portable 3D scanner and compact super-resolution microscopy applications.
基金The authors are grateful to the financial support of the National Natural Science Foundation of China(32071702)Beijing Forestry University Outstanding Young Talent Cultivation Project(2019JQ03004).
文摘Soy protein-based composite film is a potential replacement for petroleum-based film with multipurpose applica-tions and cleaner production.It is difficult to improve both the tensile strength and toughness of a protein-based film without sacrificing its elongation.In this study,inspired by the hierarchical structure of nacre,a facile yet delicate strategy was developed to fabricate a novel bio-based film with excellent toughness and high strength.Triglycidylamine(TGA)crosslinked soy protein(SPI)as hard phase and thermoplastic polyurethane elastomer(TPU)as soft phase comprise an alternative lay-up hierarchical structure.The interface of these two phases is enhanced using triglycidylamine(TGA)surface-modified TPU(MTPU).The tensile strength of SPI/MTPU/TGA films increases by 392%to 7.78 MPa and their toughness increases by 391%to 8.50 MJ/m^(3) compared to soy protein/glycerol film.The proposed hierarchical structure can also be extended to other high-performance materials and polymers.
文摘The molecular structure of phospholipids can be changed enzymatically to obtain different tailor-made phospholipids. Incorporation of ω-3 fatty acids into phospholipids structure increased their oxidative stability, suggesting more health beneficial phospholipids. This study aimed to optimize eicosapentaenoic acid (EPA) incorporation into phospholipids structure by acidolysis reaction using free lipase (EC 3.1.1.3) from Rhizomucor miehei. Deoiled soy lecithin from anjasmoro variety was used as phospholipids source, while ω-3 fatty acid enriched oil was used as acyl source. Oil enriched with ω-3 fatty acids was obtained from low temperature solvent crystallization of lemuru (Sardinella longiceps) by-product. Response surface methodology (RSM) was used in this study to determine the relationship between the three factors (enzyme concentration, reaction time and substrate ratio) and their effects on EPA incorporation into soy lecithin structure. The results showed that the relation between EPA content with three factors (reaction time, enzyme concentration and substrate ratio) was quadratic. The significant factors were substrate ratio and reaction time. Optimum conditions at a ratio of 3.77:1 between ω-3 fatty acids enriched oil and soy lecithin, 30% lipase concentration, and 24.08 h reaction time, gave 22.81% of EPA content of structured phospholipids.
文摘为提高SOI压阻式压力传感器的灵敏度,对传感器敏感结构的弹性膜片和压敏电阻的形状、尺寸等结构参数进行了优化设计。利用COMSOL Multiphysics多物理场耦合分析软件对优化后的敏感结构进行了静力学仿真与分析,完成了敏感芯片的制备和加压测试,测试结果表明:优化后的传感器输出灵敏度为5.98 m V/(V·bar),较原结构输出灵敏度提高了1倍,非线性误差小于0.096%。
文摘提出了一种新结构薄膜 SOI L IGBT——漂移区减薄的多沟道薄膜 SOI LIGBT( DRT-MC TFSOI L IGB)。主要研究了其低压截止态泄漏电流在 4 2 3~ 573K范围的温度特性。指出 ,通过合理的设计可以使该种新器件具有很低的截止态高温泄漏电流 ,很高的截止态击穿电压 ,足够大的正向导通电流和足够低的正向导通压降。还指出 ,它不仅适用于高温低压应用 ,而且适用于高温高压应用。