An analytical method for analyzing the thermal vibration of multi-directional functionally graded porous rectangular plates in fluid media with novel porosity patterns is developed in this study.Mechanical properties ...An analytical method for analyzing the thermal vibration of multi-directional functionally graded porous rectangular plates in fluid media with novel porosity patterns is developed in this study.Mechanical properties of MFG porous plates change according to the length,width,and thickness directions for various materials and the porosity distribution which can be widely applied in many fields of engineering and defence technology.Especially,new porous rules that depend on spatial coordinates and grading indexes are proposed in the present work.Applying Hamilton's principle and the refined higher-order shear deformation plate theory,the governing equation of motion of an MFG porous rectangular plate in a fluid medium(the fluid-plate system)is obtained.The fluid velocity potential is derived from the boundary conditions of the fluid-plate system and is used to compute the extra mass.The GalerkinVlasov solution is used to solve and give natural frequencies of MFG porous plates with various boundary conditions in a fluid medium.The validity and reliability of the suggested method are confirmed by comparing numerical results of the present work with those from available works in the literature.The effects of different parameters on the thermal vibration response of MFG porous rectangular plates are studied in detail.These findings demonstrate that the behavior of the structure within a liquid medium differs significantly from that within a vacuum medium.Thereby,they offer appropriate operational approaches for the structure when employed in various mediums.展开更多
This article deals with the investigation of the effects of porosity distributions on nonlinear free vibration and transient analysis of porous functionally graded skew(PFGS)plates.The effective material properties of...This article deals with the investigation of the effects of porosity distributions on nonlinear free vibration and transient analysis of porous functionally graded skew(PFGS)plates.The effective material properties of the PFGS plates are obtained from the modified power-law equations in which gradation varies through the thickness of the PFGS plate.A nonlinear finite element(FE)formulation for the overall PFGS plate is derived by adopting first-order shear deformation theory(FSDT)in conjunction with von Karman’s nonlinear strain displacement relations.The governing equations of the PFGS plate are derived using the principle of virtual work.The direct iterative method and Newmark’s integration technique are espoused to solve nonlinear mathematical relations.The influences of the porosity distributions and porosity parameter indices on the nonlinear frequency responses of the PFGS plate for different skew angles are studied in various parameters.The effects of volume fraction grading index and skew angle on the plate’s nonlinear dynamic responses for various porosity distributions are illustrated in detail.展开更多
The thermal conduction behavior of the three-dimensional axisymmetric functionally graded circular plate was studied under thermal loads on its top and bottom surfaces. Material properties were taken to be arbitrary d...The thermal conduction behavior of the three-dimensional axisymmetric functionally graded circular plate was studied under thermal loads on its top and bottom surfaces. Material properties were taken to be arbitrary distribution functions of the thickness. A temperature function that satisfies thermal boundary conditions at the edges and the variable separation method were used to reduce equation governing the steady state heat conduction to an ordinary differential equation (ODE) in the thickness coordinate which was solved analytically. Next, resulting variable coefficients ODE due to arbitrary distribution of material properties along thickness coordinate was also solved by the Peano-Baker series. Some numerical examples were given to demonstrate the accuracy, efficiency of the present model, mad to investigate the influence of different distributions of material properties on the temperature field. The numerical results confirm that the influence of different material distributions, gradient indices and thickness of plate to temperature field in plate can not be ignored.展开更多
This study focusses on establishing the finite element model based on a new hyperbolic sheareformation theory to investigate the static bending,free vibration,and buckling of the functionally graded sandwich plates wi...This study focusses on establishing the finite element model based on a new hyperbolic sheareformation theory to investigate the static bending,free vibration,and buckling of the functionally graded sandwich plates with porosity.The novel sandwich plate consists of one homogenous ceramic core and two different functionally graded face sheets which can be widely applied in many fields of engineering and defence technology.The discrete governing equations of motion are carried out via Hamilton’s principle and finite element method.The computation program is coded in MATLAB software and used to study the mechanical behavior of the functionally graded sandwich plate with porosity.The present finite element algorithm can be employed to study the plates with arbitrary shape and boundary conditions.The obtained results are compared with available results in the literature to confirm the reliability of the present algorithm.Also,a comprehensive investigation of the effects of several parameters on the bending,free vibration,and buckling response of functionally graded sandwich plates is presented.The numerical results shows that the distribution of porosity plays significant role on the mechanical behavior of the functionally graded sandwich plates。展开更多
This study investigates the vibration and acoustic properties of porous foam functionally graded(FG)plates under the influence of the temperature field.The dynamics equations of the system are established based on Ham...This study investigates the vibration and acoustic properties of porous foam functionally graded(FG)plates under the influence of the temperature field.The dynamics equations of the system are established based on Hamilton's principle by using the higher-order shear deformation theory under the linear displacement-strain assumption.The displacement shape function is assumed according to the four-sided simply-supported(SSSS)boundary condition,and the characteristic equations of the system are derived by combining the motion control equations.The theoretical model of vibro-acoustic coupling is established by using the acoustic theory and fluid-structure coupling solution method under the simple harmonic acoustic wave.The system's natural frequency and sound transmission loss(STL)are obtained through programming calculations and compared with the literature and COMSOL simulation to verify the validity and reliability of the theoretical model.The effects of various factors,such as temperature,porosity coefficients,gradient index,core thickness,width-to-thickness ratio on the vibration,and STL characteristics of the system,are discussed.The results provide a theoretical basis for the application of porous foam FG plates in engineering to optimize vibration and sound transmission properties.展开更多
This paper for first time proposes an isogeometric analysis (IGA) for free vibration response of bi-directional functionally graded (BDFG) rectangular plates in the fluid medium. Material properties of the BDFG plate ...This paper for first time proposes an isogeometric analysis (IGA) for free vibration response of bi-directional functionally graded (BDFG) rectangular plates in the fluid medium. Material properties of the BDFG plate change in both the thickness and length directions via power-law distributions and Mori-Tanaka model. The governing equation of motion of BDFG plate in the fluid-plate system is formulated basing on Hamilton's principle and the refined quasi three-dimensional (3D) plate theory with improved function f(z). The fluid velocity potential is derived from the boundary conditions of the fluid-plate system and is used to determine the added mass. The discrete system of equations is derived from the Galerkin weak form and numerically analyzed by IGA. The accuracy and reliability of the proposed solutions are verified by comparing the obtained results with those published in the literature. Moreover, the effects of the various parameters such as the interaction boundary condition, geometric parameter, submerged depth of plate, fluid density, fluid level, and the material volume control coefficients on the free vibration behavior of BDFG plate in the fluid medium are investigated in detail. Some major findings regarding the numerical results are withdrawn in conclusions.展开更多
This paper analyzes the nonlocal thermal buckling and postbuckling behaviors of a multi-layered graphene nanoplatelet(GPL)reinforced piezoelectric micro-plate.The GPLs are supposed to disperse as a gradient pattern in...This paper analyzes the nonlocal thermal buckling and postbuckling behaviors of a multi-layered graphene nanoplatelet(GPL)reinforced piezoelectric micro-plate.The GPLs are supposed to disperse as a gradient pattern in the composite micro-plate along its thickness.The effective material properties are calculated by the Halpin-Tsai parallel model and mixture rule for the functionally graded GPL reinforced piezoelectric(FG-GRP)micro-plate.Governing equations for the nonlocal thermal buckling and postbuckling behaviors of the FG-GRP micro-plate are obtained by the first-order shear deformation theory,the von Kármán nonlinear theory,and the minimum potential energy principle.The differential quadrature(DQ)method and iterative method are introduced to numerically analyze the effects of the external electric voltage,the distribution pattern and characteristic of GPLs,and the nonlocal parameter on the critical buckling behaviors and postbuckling equilibrium path of the FG-GRP micro-plate in thermal environment.展开更多
The buckling and large deflection behaviors of axis-symmetric radially functionally graded (RFG) ring-stiffened circular plates are investigated by the dynamic relaxation (DR) method combined with the finite diffe...The buckling and large deflection behaviors of axis-symmetric radially functionally graded (RFG) ring-stiffened circular plates are investigated by the dynamic relaxation (DR) method combined with the finite difference discretization technique. The material properties of the constituent components of the RFG plate are assumed to vary continuously according to the Mori-Tanalka distribution along the radial direction. The nonlinear governing equations are obtained in the incremental form based on the firstorder shear deformation plate theory (FSDT) and the von Karman relations for large deflection. In the buckling analysis, an external in-plane load is applied to the plate in- crementally so that, in each load-step, the incremental form of the governing equations can be solved by a numerical code prepared based on the DR method. After converging the DR code in the first increment, the latter load-step is added to the previous one, and the program is repeated again. The critical buckling load is determined from the compressive load-displacement curve obtained by solving the incremental form of the governing equations. Based on the present incremental form of formulation, a bending analysis can also be conducted if the whole load is applied simultaneously. Finally, a detailed parametric study is carried out to investigate the influences of various boundary conditions, grading indices, thickness-to-radius ratios, stiffener's positions and depths on the critical buckling load, and displacements and stresses resulted from the bending analysis. It is observed that the effect of the stiffener on the results is much greater in the functionally graded plate with higher material grading indices. The results also reveal that, by increasing the depth of the stiffer, the values of ascending the critical buckling load are approximately identical for both simply supported and clamped boundary conditions.展开更多
The main purpose of this paper is to present numerical results of static bending and free vibration of functionally graded porous(FGP) variable-thickness plates by using an edge-based smoothed finite element method(ES...The main purpose of this paper is to present numerical results of static bending and free vibration of functionally graded porous(FGP) variable-thickness plates by using an edge-based smoothed finite element method(ES-FEM) associate with the mixed interpolation of tensorial components technique for the three-node triangular element(MITC3), so-called ES-MITC3. This ES-MITC3 element is performed to eliminate the shear locking problem and to enhance the accuracy of the existing MITC3 element. In the ES-MITC3 element, the stiffness matrices are obtained by using the strain smoothing technique over the smoothing domains formed by two adjacent MITC3 triangular elements sharing an edge. Materials of the plate are FGP with a power-law index(k) and maximum porosity distributions(U) in the forms of cosine functions. The influences of some geometric parameters, material properties on static bending, and natural frequency of the FGP variable-thickness plates are examined in detail.展开更多
Geometrically nonlinear oscillations are investigated on sigmoid functionally graded material (S-FGM) plates with a longitudinal speed. The material properties of the plates obey a sigmoid distribution rule along th...Geometrically nonlinear oscillations are investigated on sigmoid functionally graded material (S-FGM) plates with a longitudinal speed. The material properties of the plates obey a sigmoid distribution rule along the thickness direction. Based on the D'Alembert's principle, a nonlinear equation of motion is derived for the moving S-FGM plates, where the von K^rm^n nonlinear plate theory is adopted. Utilizing the Galerkin method, the equation of motion is discretized and solved via the method of harmonic bal- ance. The approximate analytical solutions are validated through the adaptive step-size fourth-order Runge-Kutta method. Besides, the stability of the steady-state solutions is examined. The results reveal that the mode interaction behavior can happen between the first two modes of the moving S-FGM plates, leading to a complex nonlinear frequency response. It is further found that the power-law index, the longitudinal speed, the exci- tation amplitude, and the in-plane pretension force can significantly affect the nonlinear frequency-response characteristics of longitudinally traveling S-FGM plates.展开更多
Based on the generalized England-Spencer plate theory, the equilibrium of a transversely isotropic functionally graded plate containing an elastic inclusion is studied. The general solutions of the governing equations...Based on the generalized England-Spencer plate theory, the equilibrium of a transversely isotropic functionally graded plate containing an elastic inclusion is studied. The general solutions of the governing equations are expressed by four analytic functions α(ζ), β(ζ), φ(ζ), and ψ(ζ) when no transverse forces are acting on the surfaces of the plate. Axisymmetric problems of a functionally graded circular plate and an infinite func- tionally graded plate containing a circular hole subject to loads applied on the cylindrical boundaries of the plate are firstly investigated. On this basis, the three-dimensional (3D) elasticity solutions are then obtained for a functionally graded infinite plate containing an elastic circular inclusion. When the material is degenerated into the homogeneous one, the present elasticity solutions are exactly the same as the ones obtained based on the plane stress elasticity, thus validating the present analysis in a certain sense.展开更多
The plate theory of functionally graded materials suggested by Mian and Spencer is extended to analyze the cylindrical bending problem of a functionally graded rectangular plate subject to uniform load. The expansion ...The plate theory of functionally graded materials suggested by Mian and Spencer is extended to analyze the cylindrical bending problem of a functionally graded rectangular plate subject to uniform load. The expansion formula for displacements is adopted. While keeping the assumption that the material parameters can vary along the thickness direction in an arbitrary fashion, this paper considers orthotropic materials rather than isotropic materials. In addition, the traction-free condition on the top surface is replaced with the condition of uniform load applied on the top surface. The plate theory for the particular case Of cylindrical bending is presented by considering an infinite extent in the y-direction. Effects of boundary conditions and material inhomogeneity on the static response of functionally graded plates are investigated through a numerical example.展开更多
The purpose of the present study is to examine the impact of initial geometric imperfection on the nonlinear dynamical characteristics of functionally graded carbon nanotube-reinforced composite(FG-CNTRC) rectangular ...The purpose of the present study is to examine the impact of initial geometric imperfection on the nonlinear dynamical characteristics of functionally graded carbon nanotube-reinforced composite(FG-CNTRC) rectangular plates under a harmonic excitation transverse load. The considered plate is assumed to be made of matrix and single-walled carbon nanotubes(SWCNTs). The rule of mixture is employed to calculate the effective material properties of the plate. Within the framework of the parabolic shear deformation plate theory with taking the influence of transverse shear deformation and rotary inertia into account, Hamilton’s principle is utilized to derive the geometrically nonlinear mathematical formulation including the governing equations and corresponding boundary conditions of initially imperfect FG-CNTRC plates. Afterwards, with the aid of an efficient multistep numerical solution methodology, the frequency-amplitude and forcing-amplitude curves of initially imperfect FG-CNTRC rectangular plates with various edge conditions are provided, demonstrating the influence of initial imperfection,geometrical parameters, and edge conditions. It is displayed that an increase in the initial geometric imperfection intensifies the softening-type behavior of system, while no softening behavior can be found in the frequency-amplitude curve of a perfect plate.展开更多
Great attention has been paid to the development of very large floating structures. Owing to their extreme large size and great flexibility, the coupling between the structural deformation and fluid motion is signific...Great attention has been paid to the development of very large floating structures. Owing to their extreme large size and great flexibility, the coupling between the structural deformation and fluid motion is significant. This is a typical problem of hydroelasticity. Efficient and accurate estimation of the hydroelastic response of very large floating structures in waves is very important for design. In this paper, the plate Green function and fluid Green function are combined to analyze the hydroelastic response of very large floating structures. The plate Green function here is a new one proposed by the authors and it satisfies all boundary conditions for free-free rectangular plates on elastic foundations. The results are compared with some experimental data. It is shown that the method proposed in this paper is efficient and accurate. Finally, various factors affecting the hydroelastic response of very large floating structures are also studied.展开更多
In this paper, magneto-elastic dynamic behavior, bifurcation, and chaos of a rotating annular thin plate with various boundary conditions are investigated. Based on the thin plate theory and the Maxwell equations, the...In this paper, magneto-elastic dynamic behavior, bifurcation, and chaos of a rotating annular thin plate with various boundary conditions are investigated. Based on the thin plate theory and the Maxwell equations, the magneto-elastic dynamic equations of rotating annular plate are derived by means of Hamilton's principle. Bessel function as a mode shape function and the Galerkin method are used to achieve the transverse vibration differential equation of the rotating annular plate with different boundary conditions. By numerical analysis, the bifurcation diagrams with magnetic induction, amplitude and frequency of transverse excitation force as the control parameters are respectively plotted under different boundary conditions such as clamped supported sides, simply supported sides, and clamped-one-side combined with simply-anotherside. Poincare′ maps, time history charts, power spectrum charts, and phase diagrams are obtained under certain conditions,and the influence of the bifurcation parameters on the bifurcation and chaos of the system is discussed. The results show that the motion of the system is a complicated and repeated process from multi-periodic motion to quasi-period motion to chaotic motion, which is accompanied by intermittent chaos, when the bifurcation parameters change. If the amplitude of transverse excitation force is bigger or magnetic induction intensity is smaller or boundary constraints level is lower, the system can be more prone to chaos.展开更多
In this paper, Von Karman's set of nonlinear equations for rectangular plates with large deflection is divided into several sets of linear equations by perturbation method, the dimensionless center deflection bein...In this paper, Von Karman's set of nonlinear equations for rectangular plates with large deflection is divided into several sets of linear equations by perturbation method, the dimensionless center deflection being taken as a perturbation parameter. These sets of linear equations are solved by the spline finite-point (SFP) method and by the spline finite element (SFE) method. The solutions for rectangular plates having any length-to-width ratios under a uniformly distributed load and with various boundary conditions are presented, and the analytical formulas for displacements and deflections are given in the paper. The computer programs are worked out by ourselves. Comparison of the results with those in other papers indicates that the results of this paper are satisfactorily better.展开更多
Based on von Karman's plate theory, the axisymmetric thermal buckling and post-buckling of the functionally graded material (FGM) circular plates with in- plane elastic restraints under transversely non-uniform tem...Based on von Karman's plate theory, the axisymmetric thermal buckling and post-buckling of the functionally graded material (FGM) circular plates with in- plane elastic restraints under transversely non-uniform temperature rise are studied. The properties of the FGM media are varied through the thickness based on a simple power law. The governing equations are numerically solved by a shooting method. The results of the critical buckling temperature, post-buckling equilibrium paths, and configurations for the in-plane elastically restrained plates are presented. The effects of the in-plane elastic restraints, material property gradient, and temperature variation on the responses of thermal buckling and post-buckling are examined in detail.展开更多
By means of the constitution of the two displacement functions and theapplication of the least square method and the energy method this paper gives theReissner approximate solutions of the free vibration and the stabi...By means of the constitution of the two displacement functions and theapplication of the least square method and the energy method this paper gives theReissner approximate solutions of the free vibration and the stability for the moderate-thick cantilever rectangular plate.展开更多
Thermal-mechanical behavior of functionally graded thick plates, with one pair of opposite edges simply supported, is investigated based on 3D thermoelasticity. As for the arbitrary boundary conditions, a semi-analyti...Thermal-mechanical behavior of functionally graded thick plates, with one pair of opposite edges simply supported, is investigated based on 3D thermoelasticity. As for the arbitrary boundary conditions, a semi-analytical solution is presented via a hybrid approach combining the state space method and the technique of differential quadrature. The temperature field in the plate is determined according to the steady-state 3D thermal conduction. The Mori-Tanaka method with a power-law volume fraction profile is used to predict the effective material properties including the bulk and shear moduli, while the effective coefficient of thermal expansion and the thermal conductivity are estimated using other micromechanics-based models. To facilitate the im-plementation of state space analysis through the thickness direction, the approximate laminate model is employed to reduce the inhomogeneous plate into a homogeneous laminate that delivers a state equation with constant coefficients. The present solutions are validated by comparisons with the exact ones for both thin and thick plates. Effects of gradient indices, volume fraction of ceramics, and boundary conditions on the thermomechanical behavior of functionally graded plates are discussed.展开更多
Three-dimensional thermoelastic analysis is presented for an orthotropic functionally graded rectangular plate, which is simply supported and isothermal on its four lateral edges. With the assumption that material pro...Three-dimensional thermoelastic analysis is presented for an orthotropic functionally graded rectangular plate, which is simply supported and isothermal on its four lateral edges. With the assumption that material properties have arbitrary dependence on the thickness-coordinate a Peano-Baker series solution is obtained for the thermoelastic fields of the functionally graded plate subjected to mechanical[ and thermal loads on its upper and lower surfaces by means of state space method. The correctness of the obtained series solution is validated through numerical examples. The influence of different material properties distributions on the structural response of the plate is also studied.展开更多
文摘An analytical method for analyzing the thermal vibration of multi-directional functionally graded porous rectangular plates in fluid media with novel porosity patterns is developed in this study.Mechanical properties of MFG porous plates change according to the length,width,and thickness directions for various materials and the porosity distribution which can be widely applied in many fields of engineering and defence technology.Especially,new porous rules that depend on spatial coordinates and grading indexes are proposed in the present work.Applying Hamilton's principle and the refined higher-order shear deformation plate theory,the governing equation of motion of an MFG porous rectangular plate in a fluid medium(the fluid-plate system)is obtained.The fluid velocity potential is derived from the boundary conditions of the fluid-plate system and is used to compute the extra mass.The GalerkinVlasov solution is used to solve and give natural frequencies of MFG porous plates with various boundary conditions in a fluid medium.The validity and reliability of the suggested method are confirmed by comparing numerical results of the present work with those from available works in the literature.The effects of different parameters on the thermal vibration response of MFG porous rectangular plates are studied in detail.These findings demonstrate that the behavior of the structure within a liquid medium differs significantly from that within a vacuum medium.Thereby,they offer appropriate operational approaches for the structure when employed in various mediums.
文摘This article deals with the investigation of the effects of porosity distributions on nonlinear free vibration and transient analysis of porous functionally graded skew(PFGS)plates.The effective material properties of the PFGS plates are obtained from the modified power-law equations in which gradation varies through the thickness of the PFGS plate.A nonlinear finite element(FE)formulation for the overall PFGS plate is derived by adopting first-order shear deformation theory(FSDT)in conjunction with von Karman’s nonlinear strain displacement relations.The governing equations of the PFGS plate are derived using the principle of virtual work.The direct iterative method and Newmark’s integration technique are espoused to solve nonlinear mathematical relations.The influences of the porosity distributions and porosity parameter indices on the nonlinear frequency responses of the PFGS plate for different skew angles are studied in various parameters.The effects of volume fraction grading index and skew angle on the plate’s nonlinear dynamic responses for various porosity distributions are illustrated in detail.
基金Project(11102136)supported by the National Natural Science Foundation of ChinaProject(2012ZDK04)supported by the Open Project of Guangxi Key Laboratory of Disaster Prevention and Structural Safety,China
文摘The thermal conduction behavior of the three-dimensional axisymmetric functionally graded circular plate was studied under thermal loads on its top and bottom surfaces. Material properties were taken to be arbitrary distribution functions of the thickness. A temperature function that satisfies thermal boundary conditions at the edges and the variable separation method were used to reduce equation governing the steady state heat conduction to an ordinary differential equation (ODE) in the thickness coordinate which was solved analytically. Next, resulting variable coefficients ODE due to arbitrary distribution of material properties along thickness coordinate was also solved by the Peano-Baker series. Some numerical examples were given to demonstrate the accuracy, efficiency of the present model, mad to investigate the influence of different distributions of material properties on the temperature field. The numerical results confirm that the influence of different material distributions, gradient indices and thickness of plate to temperature field in plate can not be ignored.
文摘This study focusses on establishing the finite element model based on a new hyperbolic sheareformation theory to investigate the static bending,free vibration,and buckling of the functionally graded sandwich plates with porosity.The novel sandwich plate consists of one homogenous ceramic core and two different functionally graded face sheets which can be widely applied in many fields of engineering and defence technology.The discrete governing equations of motion are carried out via Hamilton’s principle and finite element method.The computation program is coded in MATLAB software and used to study the mechanical behavior of the functionally graded sandwich plate with porosity.The present finite element algorithm can be employed to study the plates with arbitrary shape and boundary conditions.The obtained results are compared with available results in the literature to confirm the reliability of the present algorithm.Also,a comprehensive investigation of the effects of several parameters on the bending,free vibration,and buckling response of functionally graded sandwich plates is presented.The numerical results shows that the distribution of porosity plays significant role on the mechanical behavior of the functionally graded sandwich plates。
基金Project supported by the National Natural Science Foundation of China(No.11972082)。
文摘This study investigates the vibration and acoustic properties of porous foam functionally graded(FG)plates under the influence of the temperature field.The dynamics equations of the system are established based on Hamilton's principle by using the higher-order shear deformation theory under the linear displacement-strain assumption.The displacement shape function is assumed according to the four-sided simply-supported(SSSS)boundary condition,and the characteristic equations of the system are derived by combining the motion control equations.The theoretical model of vibro-acoustic coupling is established by using the acoustic theory and fluid-structure coupling solution method under the simple harmonic acoustic wave.The system's natural frequency and sound transmission loss(STL)are obtained through programming calculations and compared with the literature and COMSOL simulation to verify the validity and reliability of the theoretical model.The effects of various factors,such as temperature,porosity coefficients,gradient index,core thickness,width-to-thickness ratio on the vibration,and STL characteristics of the system,are discussed.The results provide a theoretical basis for the application of porous foam FG plates in engineering to optimize vibration and sound transmission properties.
基金This research is funded by Vietnam National Foundation for Science and Technology Development(NAFOSTED)under Grant number 107.02-2019.330.
文摘This paper for first time proposes an isogeometric analysis (IGA) for free vibration response of bi-directional functionally graded (BDFG) rectangular plates in the fluid medium. Material properties of the BDFG plate change in both the thickness and length directions via power-law distributions and Mori-Tanaka model. The governing equation of motion of BDFG plate in the fluid-plate system is formulated basing on Hamilton's principle and the refined quasi three-dimensional (3D) plate theory with improved function f(z). The fluid velocity potential is derived from the boundary conditions of the fluid-plate system and is used to determine the added mass. The discrete system of equations is derived from the Galerkin weak form and numerically analyzed by IGA. The accuracy and reliability of the proposed solutions are verified by comparing the obtained results with those published in the literature. Moreover, the effects of the various parameters such as the interaction boundary condition, geometric parameter, submerged depth of plate, fluid density, fluid level, and the material volume control coefficients on the free vibration behavior of BDFG plate in the fluid medium are investigated in detail. Some major findings regarding the numerical results are withdrawn in conclusions.
基金Project supported by the National Natural Science Foundation of China(Nos.11802005,12172012,11832002,and 11427801)the General Program of Science and Technology Development Project of Beijing Municipal Education Commission of China(No.KM201910005035)
文摘This paper analyzes the nonlocal thermal buckling and postbuckling behaviors of a multi-layered graphene nanoplatelet(GPL)reinforced piezoelectric micro-plate.The GPLs are supposed to disperse as a gradient pattern in the composite micro-plate along its thickness.The effective material properties are calculated by the Halpin-Tsai parallel model and mixture rule for the functionally graded GPL reinforced piezoelectric(FG-GRP)micro-plate.Governing equations for the nonlocal thermal buckling and postbuckling behaviors of the FG-GRP micro-plate are obtained by the first-order shear deformation theory,the von Kármán nonlinear theory,and the minimum potential energy principle.The differential quadrature(DQ)method and iterative method are introduced to numerically analyze the effects of the external electric voltage,the distribution pattern and characteristic of GPLs,and the nonlocal parameter on the critical buckling behaviors and postbuckling equilibrium path of the FG-GRP micro-plate in thermal environment.
文摘The buckling and large deflection behaviors of axis-symmetric radially functionally graded (RFG) ring-stiffened circular plates are investigated by the dynamic relaxation (DR) method combined with the finite difference discretization technique. The material properties of the constituent components of the RFG plate are assumed to vary continuously according to the Mori-Tanalka distribution along the radial direction. The nonlinear governing equations are obtained in the incremental form based on the firstorder shear deformation plate theory (FSDT) and the von Karman relations for large deflection. In the buckling analysis, an external in-plane load is applied to the plate in- crementally so that, in each load-step, the incremental form of the governing equations can be solved by a numerical code prepared based on the DR method. After converging the DR code in the first increment, the latter load-step is added to the previous one, and the program is repeated again. The critical buckling load is determined from the compressive load-displacement curve obtained by solving the incremental form of the governing equations. Based on the present incremental form of formulation, a bending analysis can also be conducted if the whole load is applied simultaneously. Finally, a detailed parametric study is carried out to investigate the influences of various boundary conditions, grading indices, thickness-to-radius ratios, stiffener's positions and depths on the critical buckling load, and displacements and stresses resulted from the bending analysis. It is observed that the effect of the stiffener on the results is much greater in the functionally graded plate with higher material grading indices. The results also reveal that, by increasing the depth of the stiffer, the values of ascending the critical buckling load are approximately identical for both simply supported and clamped boundary conditions.
基金funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant number 107.02-2019.330。
文摘The main purpose of this paper is to present numerical results of static bending and free vibration of functionally graded porous(FGP) variable-thickness plates by using an edge-based smoothed finite element method(ES-FEM) associate with the mixed interpolation of tensorial components technique for the three-node triangular element(MITC3), so-called ES-MITC3. This ES-MITC3 element is performed to eliminate the shear locking problem and to enhance the accuracy of the existing MITC3 element. In the ES-MITC3 element, the stiffness matrices are obtained by using the strain smoothing technique over the smoothing domains formed by two adjacent MITC3 triangular elements sharing an edge. Materials of the plate are FGP with a power-law index(k) and maximum porosity distributions(U) in the forms of cosine functions. The influences of some geometric parameters, material properties on static bending, and natural frequency of the FGP variable-thickness plates are examined in detail.
基金supported by the National Natural Science Foundation of China(Nos.11672071,11302046,and 11672072)the Fundamental Research Funds for the Central Universities(No.N150504003)
文摘Geometrically nonlinear oscillations are investigated on sigmoid functionally graded material (S-FGM) plates with a longitudinal speed. The material properties of the plates obey a sigmoid distribution rule along the thickness direction. Based on the D'Alembert's principle, a nonlinear equation of motion is derived for the moving S-FGM plates, where the von K^rm^n nonlinear plate theory is adopted. Utilizing the Galerkin method, the equation of motion is discretized and solved via the method of harmonic bal- ance. The approximate analytical solutions are validated through the adaptive step-size fourth-order Runge-Kutta method. Besides, the stability of the steady-state solutions is examined. The results reveal that the mode interaction behavior can happen between the first two modes of the moving S-FGM plates, leading to a complex nonlinear frequency response. It is further found that the power-law index, the longitudinal speed, the exci- tation amplitude, and the in-plane pretension force can significantly affect the nonlinear frequency-response characteristics of longitudinally traveling S-FGM plates.
基金Project supported by the National Natural Science Foundation of China(Nos.11202188,11321202,and 11172263)
文摘Based on the generalized England-Spencer plate theory, the equilibrium of a transversely isotropic functionally graded plate containing an elastic inclusion is studied. The general solutions of the governing equations are expressed by four analytic functions α(ζ), β(ζ), φ(ζ), and ψ(ζ) when no transverse forces are acting on the surfaces of the plate. Axisymmetric problems of a functionally graded circular plate and an infinite func- tionally graded plate containing a circular hole subject to loads applied on the cylindrical boundaries of the plate are firstly investigated. On this basis, the three-dimensional (3D) elasticity solutions are then obtained for a functionally graded infinite plate containing an elastic circular inclusion. When the material is degenerated into the homogeneous one, the present elasticity solutions are exactly the same as the ones obtained based on the plane stress elasticity, thus validating the present analysis in a certain sense.
基金the National Natural Science Foundation of China(Nos.10472102,10725210 and 10432030)
文摘The plate theory of functionally graded materials suggested by Mian and Spencer is extended to analyze the cylindrical bending problem of a functionally graded rectangular plate subject to uniform load. The expansion formula for displacements is adopted. While keeping the assumption that the material parameters can vary along the thickness direction in an arbitrary fashion, this paper considers orthotropic materials rather than isotropic materials. In addition, the traction-free condition on the top surface is replaced with the condition of uniform load applied on the top surface. The plate theory for the particular case Of cylindrical bending is presented by considering an infinite extent in the y-direction. Effects of boundary conditions and material inhomogeneity on the static response of functionally graded plates are investigated through a numerical example.
文摘The purpose of the present study is to examine the impact of initial geometric imperfection on the nonlinear dynamical characteristics of functionally graded carbon nanotube-reinforced composite(FG-CNTRC) rectangular plates under a harmonic excitation transverse load. The considered plate is assumed to be made of matrix and single-walled carbon nanotubes(SWCNTs). The rule of mixture is employed to calculate the effective material properties of the plate. Within the framework of the parabolic shear deformation plate theory with taking the influence of transverse shear deformation and rotary inertia into account, Hamilton’s principle is utilized to derive the geometrically nonlinear mathematical formulation including the governing equations and corresponding boundary conditions of initially imperfect FG-CNTRC plates. Afterwards, with the aid of an efficient multistep numerical solution methodology, the frequency-amplitude and forcing-amplitude curves of initially imperfect FG-CNTRC rectangular plates with various edge conditions are provided, demonstrating the influence of initial imperfection,geometrical parameters, and edge conditions. It is displayed that an increase in the initial geometric imperfection intensifies the softening-type behavior of system, while no softening behavior can be found in the frequency-amplitude curve of a perfect plate.
文摘Great attention has been paid to the development of very large floating structures. Owing to their extreme large size and great flexibility, the coupling between the structural deformation and fluid motion is significant. This is a typical problem of hydroelasticity. Efficient and accurate estimation of the hydroelastic response of very large floating structures in waves is very important for design. In this paper, the plate Green function and fluid Green function are combined to analyze the hydroelastic response of very large floating structures. The plate Green function here is a new one proposed by the authors and it satisfies all boundary conditions for free-free rectangular plates on elastic foundations. The results are compared with some experimental data. It is shown that the method proposed in this paper is efficient and accurate. Finally, various factors affecting the hydroelastic response of very large floating structures are also studied.
基金Project supported by the National Natural Science Foundation of China(Grant No.11472239)the Hebei Provincial Natural Science Foundation of China(Grant No.A2015203023)the Key Project of Science and Technology Research of Higher Education of Hebei Province of China(Grant No.ZD20131055)
文摘In this paper, magneto-elastic dynamic behavior, bifurcation, and chaos of a rotating annular thin plate with various boundary conditions are investigated. Based on the thin plate theory and the Maxwell equations, the magneto-elastic dynamic equations of rotating annular plate are derived by means of Hamilton's principle. Bessel function as a mode shape function and the Galerkin method are used to achieve the transverse vibration differential equation of the rotating annular plate with different boundary conditions. By numerical analysis, the bifurcation diagrams with magnetic induction, amplitude and frequency of transverse excitation force as the control parameters are respectively plotted under different boundary conditions such as clamped supported sides, simply supported sides, and clamped-one-side combined with simply-anotherside. Poincare′ maps, time history charts, power spectrum charts, and phase diagrams are obtained under certain conditions,and the influence of the bifurcation parameters on the bifurcation and chaos of the system is discussed. The results show that the motion of the system is a complicated and repeated process from multi-periodic motion to quasi-period motion to chaotic motion, which is accompanied by intermittent chaos, when the bifurcation parameters change. If the amplitude of transverse excitation force is bigger or magnetic induction intensity is smaller or boundary constraints level is lower, the system can be more prone to chaos.
文摘In this paper, Von Karman's set of nonlinear equations for rectangular plates with large deflection is divided into several sets of linear equations by perturbation method, the dimensionless center deflection being taken as a perturbation parameter. These sets of linear equations are solved by the spline finite-point (SFP) method and by the spline finite element (SFE) method. The solutions for rectangular plates having any length-to-width ratios under a uniformly distributed load and with various boundary conditions are presented, and the analytical formulas for displacements and deflections are given in the paper. The computer programs are worked out by ourselves. Comparison of the results with those in other papers indicates that the results of this paper are satisfactorily better.
基金Project supported by the National Natural Science Foundation of China(Nos.11272278 and11672260)the China Postdoctoral Science Foundation(No.149558)
文摘Based on von Karman's plate theory, the axisymmetric thermal buckling and post-buckling of the functionally graded material (FGM) circular plates with in- plane elastic restraints under transversely non-uniform temperature rise are studied. The properties of the FGM media are varied through the thickness based on a simple power law. The governing equations are numerically solved by a shooting method. The results of the critical buckling temperature, post-buckling equilibrium paths, and configurations for the in-plane elastically restrained plates are presented. The effects of the in-plane elastic restraints, material property gradient, and temperature variation on the responses of thermal buckling and post-buckling are examined in detail.
文摘By means of the constitution of the two displacement functions and theapplication of the least square method and the energy method this paper gives theReissner approximate solutions of the free vibration and the stability for the moderate-thick cantilever rectangular plate.
基金supported by the National Natural Science Foundation of China (Nos. 10702061, 10725210, and 10832009)Zhejiang Provincial Natural Science Foundation of China (No. Y607116)
文摘Thermal-mechanical behavior of functionally graded thick plates, with one pair of opposite edges simply supported, is investigated based on 3D thermoelasticity. As for the arbitrary boundary conditions, a semi-analytical solution is presented via a hybrid approach combining the state space method and the technique of differential quadrature. The temperature field in the plate is determined according to the steady-state 3D thermal conduction. The Mori-Tanaka method with a power-law volume fraction profile is used to predict the effective material properties including the bulk and shear moduli, while the effective coefficient of thermal expansion and the thermal conductivity are estimated using other micromechanics-based models. To facilitate the im-plementation of state space analysis through the thickness direction, the approximate laminate model is employed to reduce the inhomogeneous plate into a homogeneous laminate that delivers a state equation with constant coefficients. The present solutions are validated by comparisons with the exact ones for both thin and thick plates. Effects of gradient indices, volume fraction of ceramics, and boundary conditions on the thermomechanical behavior of functionally graded plates are discussed.
基金Project supported by the Program for Young Excellent Talents in Tongji University (No. 2009KJ047)the National Natural Science Foundation of China (Nos. 10872150 and 11090334)
文摘Three-dimensional thermoelastic analysis is presented for an orthotropic functionally graded rectangular plate, which is simply supported and isothermal on its four lateral edges. With the assumption that material properties have arbitrary dependence on the thickness-coordinate a Peano-Baker series solution is obtained for the thermoelastic fields of the functionally graded plate subjected to mechanical[ and thermal loads on its upper and lower surfaces by means of state space method. The correctness of the obtained series solution is validated through numerical examples. The influence of different material properties distributions on the structural response of the plate is also studied.