期刊文献+
共找到78篇文章
< 1 2 4 >
每页显示 20 50 100
Frequency domain fundamental solutions for a poroelastic half-space 被引量:2
1
作者 Pei Zheng Bo-Yang Ding She-Xu Zhao 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2014年第2期206-213,共8页
In frequency domain, the fundamental solutions for a poroelastic half-space are re-derived in the context of Biot's theory. Based on Biot's theory, the governing field equations for the dynamic poroelasicity are est... In frequency domain, the fundamental solutions for a poroelastic half-space are re-derived in the context of Biot's theory. Based on Biot's theory, the governing field equations for the dynamic poroelasicity are established in terms of solid displacement and pore pressure. A method of potentials in cylindrical coordinate system is proposed to decouple the homogeneous Biot's wave equations into four scalar Helmholtz equations, and the general solutions to these scalar wave equations are obtained. After that, spectral Green's functions for a poroelastic full-space are found through a decomposition of solid displacement, pore pressure, and body force fields. Mirror-image technique is then applied to construct the half-space fundamental solutions.Finally, transient responses of the half-space to buried point forces are examined. 展开更多
关键词 Poroelastic fundamental solutions Wave prop-agation Half-space
下载PDF
HYBRID FEM WITH FUNDAMENTAL SOLUTIONS AS TRIAL FUNCTIONS FOR HEAT CONDUCTION SIMULATION 被引量:10
2
作者 Hui Wang Qing-Hua Qin 《Acta Mechanica Solida Sinica》 SCIE EI 2009年第5期487-498,共12页
A new type of hybrid finite element formulation with fundamental solutions as internal interpolation functions, named as HFS-FEM, is presented in this paper and used for solving two dimensional heat conduction problem... A new type of hybrid finite element formulation with fundamental solutions as internal interpolation functions, named as HFS-FEM, is presented in this paper and used for solving two dimensional heat conduction problems in single and multi-layer materials. In the proposed approach, a new variational functional is firstly constructed for the proposed HFS-FE model and the related existence of extremum is presented. Then, the assumed internal potential field constructed by the linear combination of fundamental solutions at points outside the elemental domain under consideration is used as the internal interpolation function, which analytically satisfies the governing equation within each element. As a result, the domain integrals in the variational functional formulation can be converted into the boundary integrals which can significantly simplify the calculation of the element stiffness matrix. The independent frame field is also introduced to guarantee the inter-element continuity and the stationary condition of the new variational functional is used to obtain the final stiffness equations. The proposed method inherits the advantages of the hybrid Trefftz finite element method (HT-FEM) over the conventional finite element method (FEM) and boundary element method (BEM), and avoids the difficulty in selecting appropriate terms of T-complete functions used in HT-FEM, as the fundamental solutions contain usually one term only, rather than a series containing infinitely many terms. Further, the fundamental solutions of a problem are, in general, easier to derive than the T-complete functions of that problem. Finally, several examples are presented to assess the performance of the proposed method, and the obtained numerical results show good numerical accuracy and remarkable insensitivity to mesh distortion. 展开更多
关键词 hybrid FEM fundamental solution variational functional heat conduction
下载PDF
FURTHER IMPROVEMENT ON FUNDAMENTAL SOLUTIONS OF PLANE PROBLEMS FOR ORTHOTROPIC MATERIALS 被引量:4
3
作者 Sun Xiushan Cen Zhangzhi 《Acta Mechanica Solida Sinica》 SCIE EI 2002年第2期171-181,共11页
On the basis of the existing fundamental solutions ofdisplacements, further improvement is made, and then the generalfundamental solutions of both plane elastic and plane plasticproblems for ortho- tropic materials ar... On the basis of the existing fundamental solutions ofdisplacements, further improvement is made, and then the generalfundamental solutions of both plane elastic and plane plasticproblems for ortho- tropic materials are obtained. Two parametersbased on material constants a_1, a_2 are used to derive the rele-vant expressions in a real variable form. Additionally, an analyticalmethod of solving the singular integral for the internal stresses isintroduced, and the corresponding result are given. If a_1=a_2=1, allthe expres- sions obtained for orthotropy can be reduced to thecorresponding ones for isotropy. Because all these expres- sions andresults can be directly used for both isotropic problems andorthotropic problems, it is convenient to use them in engineeringwith the boundary element method (BEM). 展开更多
关键词 BEM fundamental solution plane elastoplastic problem orthotropic material
下载PDF
THE FUNDAMENTAL SOLUTIONS FOR THE PLANE PROBLEM IN PIEZOELECTRIC MEDIA WITH AN ELLIPTIC HOLE OR A CRACK 被引量:1
4
作者 高存法 樊蔚勋 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1998年第11期0-4044,0-0+0-0+0-0+0-0,共10页
Based on the complex potential method, the Greed’s functions of the plane problem in transversely isotropic piezoelectric media with an elliptic hole are obtained in terms of exact electric boundary conditions at th... Based on the complex potential method, the Greed’s functions of the plane problem in transversely isotropic piezoelectric media with an elliptic hole are obtained in terms of exact electric boundary conditions at the rim of the hole. When foe elliptic hole degenerates into a crack, the fundamental solutions for the field intensity factors arc given. The general solutions for concentrated and distributed loads applied on the surface of the hole or crack are produced through the superposition of fundamental solutions With the aid of these solutions , some erroneous results provided previously in other works are pointed out More important is that these solutions can be used as the fundamental solutions of boundary element method to solve more practical problems in piezoelectric media. 展开更多
关键词 piezoelectric media elliptic hole CRACK plane strain fundamental solution
下载PDF
ELECTRO-ELASTIC FUNDAMENTAL SOLUTIONS OF ANISOTROPIC PIEZOELECTRIC MATERIALS WITH AN ELLIPTICAL HOLE
5
作者 刘金喜 王彪 杜善义 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 1997年第1期54-62,共9页
By using Stroh' complex formalism and Cauchy's integral method, the electro-elastic fundamental solutions of an infinite anisotropic piezoelectric solid containing an elliptic hole or a crack subjected to a Li... By using Stroh' complex formalism and Cauchy's integral method, the electro-elastic fundamental solutions of an infinite anisotropic piezoelectric solid containing an elliptic hole or a crack subjected to a Line force and a line charge are presented in closed form. Particular attention is paid to analyzing the characteristics of the stress and electric displacement intensity factors. When a line force-charge acts on the crack surface, the real form expression of intensity factors is obtained. It is shown through a special example that the present work is correct. 展开更多
关键词 piezoelectric material fundamental solution elliptic hole intensity factor
下载PDF
Fundamental solutions for axi-symmetric translational motionof a microstretch fluid
6
作者 H.H.Sherief M.S.Faltas E.A.Ashmawy 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2012年第3期605-611,共7页
The fundamental solution for the axi-symmetric translational motion of a microstretch fluid due to a concen- trated point body force is obtained. A general formula for the drag force exerted by the fluid on an axi-sym... The fundamental solution for the axi-symmetric translational motion of a microstretch fluid due to a concen- trated point body force is obtained. A general formula for the drag force exerted by the fluid on an axi-symmetric rigid par- ticle translating in it is then deduced. As an application to the obtained drag formula, this paper has discussed the problem of creeping translational motion of a rigid sphere in a mi- crostretch fluid. The slip boundary condition on the surface of the spherical particle is applied. The drag force and the other physical quantities are obtained and represented graph- ically for various values of the micropolarity and slip param- eters. 展开更多
关键词 Drag force fundamental solution Mi-crostretch fluid Slip condition
下载PDF
TWO-DIMENSIONAL ELECTROELASTIC FUNDAMENTAL SOLUTIONS FOR GENERAL ANISOTROPIC PIEZOELECTRIC MEDIA
7
作者 刘金喜 王彪 杜善义 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1997年第10期949-956,共8页
Explicit fomulas for 2-D electroelastic fundamental solutions in general anisotropic piezoelectric media subjected to a line force and a line charge are obtained by using the plane wave decomposition method and a subs... Explicit fomulas for 2-D electroelastic fundamental solutions in general anisotropic piezoelectric media subjected to a line force and a line charge are obtained by using the plane wave decomposition method and a subsequent application of the residue calculus. 'Anisotropic' means that any material symmetry restrictions are not assumed. 'Two dimensional' includes not only in-plane problems but also anti-plane problems and problems in which in-plane and anti-plane deformations couple each other. As a special case, the solutions for transversely isotropic piezoelectric media are given. 展开更多
关键词 piezoelectric medium plane wave decomposition method electroelastic field fundamental solution
下载PDF
AN EXPLICIT TENSOR EXPRESSION FOR THE FUNDAMENTAL SOLUTIONS OF A BIMATERIAL SPACE PROBLEM
8
作者 陈梦成 汤任基 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1997年第4期331-340,共10页
In this paper, by using the method of tensor operation, the fundamental solutions, given in the references listed, for a concentrated force in a three-dimensional biphase-infinite solid were expressed in the tensor fo... In this paper, by using the method of tensor operation, the fundamental solutions, given in the references listed, for a concentrated force in a three-dimensional biphase-infinite solid were expressed in the tensor form, which enables them to be directly applied to the boundary integral equation and the boundary element method for solving elastic mechanics problems of the bimaterial space. The fundamental solutions for Mindlin's problem, Lorentz's problem and homogeneous space problem are involved in the present results. 展开更多
关键词 three-dimensional bimaterial fundamental solution of a concentrated force tensor expression
下载PDF
COMPLEX FUNDAMENTAL SOLUTIONS FOR SEMI-INFINITEPLANE AND INFINITE PLANE WITH HOLE UNDER VARIOUS BOUNDARY CONDITIONS
9
作者 唐寿高 曹志远 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1998年第4期335-344,共10页
A general method of finding the complex fundamental solutions for semi-infinite plane and infinite plane with hole under various boundary conditions has be established by using Riemann-Schwarz symmetric principle and ... A general method of finding the complex fundamental solutions for semi-infinite plane and infinite plane with hole under various boundary conditions has be established by using Riemann-Schwarz symmetric principle and superposition principle of the solutions of elasticity. More than ten solutions have been derived respectively. 展开更多
关键词 fundamental solution Riemann-Schwarz symmetric principle superposition principle
下载PDF
Electroelastic Analysis of Two-Dimensional Piezoelectric Structures by the Localized Method of Fundamental Solutions 被引量:2
10
作者 Yan Gu Ji Lin Chia-Ming Fan 《Advances in Applied Mathematics and Mechanics》 SCIE 2023年第4期880-900,共21页
Accurate and efficient analysis of the coupled electroelastic behavior of piezoelectric structures is a challenging task in the community of computational mechanics.During the past few decades,the method of fundamenta... Accurate and efficient analysis of the coupled electroelastic behavior of piezoelectric structures is a challenging task in the community of computational mechanics.During the past few decades,the method of fundamental solutions(MFS)has emerged as a popular and well-established meshless boundary collocation method for the numerical solution of many engineering applications.The classical MFS formulation,however,leads to dense and non-symmetric coefficient matrices which will be computationally expensive for large-scale engineering simulations.In this paper,a localized version of the MFS(LMFS)is devised for electroelastic analysis of twodimensional(2D)piezoelectric structures.In the LMFS,the entire computational domain is divided into a set of overlapping small sub-domains where the MFS-based approximation and the moving least square(MLS)technique are employed.Different to the classical MFS,the LMFS will produce banded and sparse coefficient matrices which makes the method very attractive for large-scale simulations.Preliminary numerical experiments illustrate that the present LMFM is very promising for coupled electroelastic analysis of piezoelectric materials. 展开更多
关键词 Localized method of fundamental solutions meshless methods piezoelectric structures coupled electroelastic analysis fundamental solutions
原文传递
Best Constants for Moser-Trudinger Inequalities,Fundamental Solutions and One-Parameter Representation Formulas on Groups of Heisenberg Type 被引量:8
11
作者 COHN William S. 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2002年第2期375-390,共16页
We derive the explicit fundamental solutions for a class of degenerate(or singular)one- parameter subelliptic differential operators on groups of Heisenberg(H)type.This extends the result of Kaplan for the sub-Laplaci... We derive the explicit fundamental solutions for a class of degenerate(or singular)one- parameter subelliptic differential operators on groups of Heisenberg(H)type.This extends the result of Kaplan for the sub-Laplacian on H-type groups,which in turn generalizes Folland's result on the Heisenberg group.As an application,we obtain a one-parameter representation formula for Sobolev functions of compact support on H-type groups.By choosing the parameter equal to the homogeneous dimension Q and using the Mose-Trudinger inequality for the convolutional type operator on stratified groups obtained in[18].we get the following theorem which gives the best constant for the Moser- Trudiuger inequality for Sobolev functions on H-type groups. Let G be any group of Heisenberg type whose Lie algebra is generated by m left invariant vector fields and with a q-dimensional center.Let Q=m+2q.Q'=Q-1/Q and Then. with A_Q as the sharp constant,where ▽G denotes the subelliptic gradient on G. This continues the research originated in our earlier study of the best constants in Moser-Trudinger inequalities and fundamental solutions for one-parameter subelliptic operators on the Heisenberg group [18]. 展开更多
关键词 Heisenberg group Groups of Heisenberg type Sobolev inequalities Moser-Trudinger inequalities Best constants One-Parameter representation formulas fundamental solutions
原文传递
Localized Method of Fundamental Solutions for Three-Dimensional Elasticity Problems: Theory 被引量:4
12
作者 Yan Gu Chia-Ming Fan Zhuojia Fu 《Advances in Applied Mathematics and Mechanics》 SCIE 2021年第6期1520-1534,共15页
A localized version of the method of fundamental solution(LMFS)is devised in this paper for the numerical solutions of three-dimensional(3D)elasticity problems.The present method combines the advantages of high comput... A localized version of the method of fundamental solution(LMFS)is devised in this paper for the numerical solutions of three-dimensional(3D)elasticity problems.The present method combines the advantages of high computational efficiency of localized discretization schemes and the pseudo-spectral convergence rate of the classical MFS formulation.Such a combination will be an important improvement to the classical MFS for complicated and large-scale engineering simulations.Numerical examples with up to 100,000 unknowns can be solved without any difficulty on a personal computer using the developed methodologies.The advantages,disadvantages and potential applications of the proposed method,as compared with the classical MFS and boundary element method(BEM),are discussed. 展开更多
关键词 Method of fundamental solutions meshless method large-scale simulations elasticity problems.
原文传递
A Practical Algorithm for Determining the Optimal Pseudo-Boundary in the Method of Fundamental Solutions 被引量:2
13
作者 A.Karageorghis 《Advances in Applied Mathematics and Mechanics》 SCIE 2009年第4期510-528,共19页
One of the main difficulties in the application of the method of fundamental solutions(MFS)is the determination of the position of the pseudo-boundary on which are placed the singularities in terms of which the approx... One of the main difficulties in the application of the method of fundamental solutions(MFS)is the determination of the position of the pseudo-boundary on which are placed the singularities in terms of which the approximation is expressed.In this work,we propose a simple practical algorithm for determining an estimate of the pseudo-boundary which yields the most accurate MFS approximation when the method is applied to certain boundary value problems.Several numerical examples are provided. 展开更多
关键词 Method of fundamental solutions elliptic boundary value problems function minimization
原文传递
Localized space-tim e method of fundamental solutions for three-dimensional transient diffusion problem 被引量:1
14
作者 L.Qiu J.Lin +1 位作者 Q.-H.Qin W.Chen 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2020年第5期1051-1057,I0002,共8页
A localized space-time method of fundamental solutions(LSTMFS)is extended for solving three-dimensional transient diffusion problems in this paper.The interval segmentation in temporal direction is developed for the a... A localized space-time method of fundamental solutions(LSTMFS)is extended for solving three-dimensional transient diffusion problems in this paper.The interval segmentation in temporal direction is developed for the accurate simulation of long-time-dependent diffusion problems.In the LSTMFS,the whole space-time domain with nodes arranged i divided into a series of overlapping subdomains with a simple geometry.In each subdomain,the conventional method of fundamental solutions is utilized and the coefficients associated with the considered domain can be explicitly determined.By calculating a combined sparse matrix system,the value at any node inside the space-time domain can be obtained.Numerical experi-ments demonstrate that high accuracy and efficiency can be simultaneously achieved via the LSTMFS,even for the problems defined on a long-time and quite complex computational domain. 展开更多
关键词 Localized spacetime method of fundamental solutions Meshless method Long-time evolution Transient diffusion
原文传递
Domain-Decomposition Localized Method of Fundamental Solutions for Large-Scale Heat Conduction in Anisotropic Layered Materials 被引量:1
15
作者 Shuainan Liu Zhuojia Fu Yan Gu 《Advances in Applied Mathematics and Mechanics》 SCIE 2022年第3期759-776,共18页
The localized method of fundamental solutions(LMFS)is a relatively new meshless boundary collocation method.In the LMFS,the global MFS approxima-tion which is expensive to evaluate is replaced by local MFS formulation... The localized method of fundamental solutions(LMFS)is a relatively new meshless boundary collocation method.In the LMFS,the global MFS approxima-tion which is expensive to evaluate is replaced by local MFS formulation defined in a set of overlapping subdomains.The LMFS algorithm therefore converts differential equations into sparse rather than dense matrices which are much cheaper to calcu-late.This paper makes thefirst attempt to apply the LMFS,in conjunction with a domain-decomposition technique,for the numerical solution of steady-state heat con-duction problems in two-dimensional(2D)anisotropic layered materials.Here,the layered material is decomposed into several subdomains along the layer-layer inter-faces,and in each of the subdomains,the solution is approximated by using the LMFS expansion.On the subdomain interface,compatibility of temperatures and heatfluxes are imposed.Preliminary numerical experiments illustrate that the proposed domain-decomposition LMFS algorithm is accurate,stable and computationally efficient for the numerical solution of large-scale multi-layered materials. 展开更多
关键词 Meshless method localized method of fundamental solutions heat conduction prob-lems layered materials large-scale problems
原文传递
Application of Method of Fundamental Solutions in Solving Potential Flow Problems for Ship Motion Prediction 被引量:1
16
作者 封培元 马宁 顾解忡 《Journal of Shanghai Jiaotong university(Science)》 EI 2013年第2期153-158,共6页
A novel panel-free approach based on the method of fundamental solutions (MFS) is proposed to solve the potential flow for predicting ship motion responses in the frequency domain according to strip theory. Compared w... A novel panel-free approach based on the method of fundamental solutions (MFS) is proposed to solve the potential flow for predicting ship motion responses in the frequency domain according to strip theory. Compared with the conventional boundary element method (BEM), MFS is a desingularized, panel-free and integration-free approach. As a result, it is mathematically simple and easy for programming. The velocity potential is described by radial basis function (RBF) approximations and any degree of continuity of the velocity potential gradient can be obtained. Desingularization is achieved through collating singularities on a pseudo boundary outside the real fluid domain. Practical implementation and numerical characteristics of the MFS for solving the potential flow problem concerning ship hydrodynamics are elaborated through the computation of a 2D rectangular section. Then, the current method is further integrated with frequency domain strip theory to predict the heave and pitch responses of a containership and a very large crude carrier (VLCC) in regular head waves. The results of both ships agree well with the 3D frequency domain panel method and experimental data. Thus, the correctness and usefulness of the proposed approach are proved. We hope that this paper will serve as a motivation for other researchers to apply the MFS to various challenging problems in the field of ship hydrodynamics. 展开更多
关键词 method of fundamental solutions (MFS) panel-free strip theory ship hydrodynamics
原文传递
Localized Method of Fundamental Solutions for Acoustic Analysis Inside a Car Cavity with Sound-Absorbing Material 被引量:1
17
作者 Zengtao Chen Fajie Wang 《Advances in Applied Mathematics and Mechanics》 SCIE 2023年第1期182-201,共20页
This paper documents the first attempt to apply a localized method of fundamental solutions(LMFS)to the acoustic analysis of car cavity containing soundabsorbing materials.The LMFS is a recently developed meshless app... This paper documents the first attempt to apply a localized method of fundamental solutions(LMFS)to the acoustic analysis of car cavity containing soundabsorbing materials.The LMFS is a recently developed meshless approach with the merits of being mathematically simple,numerically accurate,and requiring less computer time and storage.Compared with the traditional method of fundamental solutions(MFS)with a full interpolation matrix,the LMFS can obtain a sparse banded linear algebraic system,and can circumvent the perplexing issue of fictitious boundary encountered in the MFS for complex solution domains.In the LMFS,only circular or spherical fictitious boundary is involved.Based on these advantages,the method can be regarded as a competitive alternative to the standard method,especially for high-dimensional and large-scale problems.Three benchmark numerical examples are provided to verify the effectiveness and performance of the present method for the solution of car cavity acoustic problems with impedance conditions. 展开更多
关键词 Acoustic analysis localized method of fundamental solutions car cavity soundabsorbing material
原文传递
The Method of Fundamental Solutions for Solving Exterior Axisymmetric Helmholtz Problems with High Wave-Number
18
作者 Wen Chen Ji Lin C.S.Chen 《Advances in Applied Mathematics and Mechanics》 SCIE 2013年第4期477-493,共17页
In this paper,we investigate the method of fundamental solutions(MFS)for solving exterior Helmholtz problems with high wave-number in axisymmetric domains.Since the coefficientmatrix in the linear system resulting fro... In this paper,we investigate the method of fundamental solutions(MFS)for solving exterior Helmholtz problems with high wave-number in axisymmetric domains.Since the coefficientmatrix in the linear system resulting fromtheMFS approximation has a block circulant structure,it can be solved by the matrix decomposition algorithm and fast Fourier transform for the fast computation of large-scale problems and meanwhile saving computer memory space.Several numerical examples are provided to demonstrate its applicability and efficacy in two and three dimensional domains. 展开更多
关键词 Method of fundamental solutions exterior Helmholtz problem circulant matrix fast Fourier transform axisymmetric domain
原文传递
The Method of Fundamental Solutions for Solving Convection-Diffusion Equations with Variable Coefficients
19
作者 C.M.Fan C.S.Chen J.Monroe 《Advances in Applied Mathematics and Mechanics》 SCIE 2009年第2期215-230,共16页
A meshless method based on the method of fundamental solutions(MFS)is proposed to solve the time-dependent partial differential equations with variable coefficients.The proposed method combines the time discretization... A meshless method based on the method of fundamental solutions(MFS)is proposed to solve the time-dependent partial differential equations with variable coefficients.The proposed method combines the time discretization and the onestage MFS for spatial discretization.In contrast to the traditional two-stage process,the one-stage MFS approach is capable of solving a broad spectrum of partial differential equations.The numerical implementation is simple since both closed-form approximate particular solution and fundamental solution are easy to find than the traditional approach.The numerical results show that the one-stage approach is robust and stable. 展开更多
关键词 Meshless method method of fundamental solutions particular solution singular value decomposition time-dependent partial differential equations
原文传递
Galerkin Formulations of the Method of Fundamental Solutions
20
作者 J.R.Berger Andreas Karageorghis 《Advances in Applied Mathematics and Mechanics》 SCIE 2013年第4期423-441,共19页
In this paper,we introduce two Galerkin formulations of theMethod of Fundamental Solutions(MFS).In contrast to the collocation formulation of the MFS,the proposed Galerkin formulations involve the evaluation of integr... In this paper,we introduce two Galerkin formulations of theMethod of Fundamental Solutions(MFS).In contrast to the collocation formulation of the MFS,the proposed Galerkin formulations involve the evaluation of integrals over the boundary of the domain under consideration.On the other hand,these formulations lead to some desirable properties of the stiffness matrix such as symmetry in certain cases.Several numerical examples are considered by these methods and their various features compared. 展开更多
关键词 Galerkin formulation Laplace equation method of fundamental solutions
原文传递
上一页 1 2 4 下一页 到第
使用帮助 返回顶部