期刊文献+
共找到162篇文章
< 1 2 9 >
每页显示 20 50 100
Optical Fibre Communication Feature Analysis and Small Sample Fault Diagnosis Based on VMD-FE and Fuzzy Clustering
1
作者 Xiangqun Li Jiawen Liang +4 位作者 Jinyu Zhu Shengping Shi Fangyu Ding Jianpeng Sun Bo Liu 《Energy Engineering》 EI 2024年第1期203-219,共17页
To solve the problems of a few optical fibre line fault samples and the inefficiency of manual communication optical fibre fault diagnosis,this paper proposes a communication optical fibre fault diagnosis model based ... To solve the problems of a few optical fibre line fault samples and the inefficiency of manual communication optical fibre fault diagnosis,this paper proposes a communication optical fibre fault diagnosis model based on variational modal decomposition(VMD),fuzzy entropy(FE)and fuzzy clustering(FC).Firstly,based on the OTDR curve data collected in the field,VMD is used to extract the different modal components(IMF)of the original signal and calculate the fuzzy entropy(FE)values of different components to characterize the subtle differences between them.The fuzzy entropy of each curve is used as the feature vector,which in turn constructs the communication optical fibre feature vector matrix,and the fuzzy clustering algorithm is used to achieve fault diagnosis of faulty optical fibre.The VMD-FE combination can extract subtle differences in features,and the fuzzy clustering algorithm does not require sample training.The experimental results show that the model in this paper has high accuracy and is relevant to the maintenance of communication optical fibre when compared with existing feature extraction models and traditional machine learning models. 展开更多
关键词 Optical fibre fault diagnosis OTDR curve variational mode decomposition fuzzy entropy fuzzy clustering
下载PDF
Fuzzy c-means text clustering based on topic concept sub-space 被引量:3
2
作者 吉翔华 陈超 +1 位作者 邵正荣 俞能海 《Journal of Southeast University(English Edition)》 EI CAS 2007年第3期439-442,共4页
To improve the accuracy of text clustering, fuzzy c-means clustering based on topic concept sub-space (TCS2FCM) is introduced for classifying texts. Five evaluation functions are combined to extract key phrases. Con... To improve the accuracy of text clustering, fuzzy c-means clustering based on topic concept sub-space (TCS2FCM) is introduced for classifying texts. Five evaluation functions are combined to extract key phrases. Concept phrases, as well as the descriptions of final clusters, are presented using WordNet origin from key phrases. Initial centers and membership matrix are the most important factors affecting clustering performance. Orthogonal concept topic sub-spaces are built with the topic concept phrases representing topics of the texts and the initialization of centers and the membership matrix depend on the concept vectors in sub-spaces. The results show that, different from random initialization of traditional fuzzy c-means clustering, the initialization related to text content contributions can improve clustering precision. 展开更多
关键词 TCS2FCM topic concept space fuzzy c-means clustering text clustering
下载PDF
ALLIED FUZZY c-MEANS CLUSTERING MODEL 被引量:2
3
作者 武小红 周建江 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2006年第3期208-213,共6页
A novel model of fuzzy clustering, i.e. an allied fuzzy c means (AFCM) model is proposed based on the combination of advantages of fuzzy c means (FCM) and possibilistic c means (PCM) clustering. PCM is sensitive... A novel model of fuzzy clustering, i.e. an allied fuzzy c means (AFCM) model is proposed based on the combination of advantages of fuzzy c means (FCM) and possibilistic c means (PCM) clustering. PCM is sensitive to initializations and often generates coincident clusters. AFCM overcomes this shortcoming and it is an ex tension of PCM. Membership and typicality values can be simultaneously produced in AFCM. Experimental re- suits show that noise data can be well processed, coincident clusters are avoided and clustering accuracy is better. 展开更多
关键词 fuzzy c-means clustering possibilistic c means clustering allied fuzzy c-means clustering
下载PDF
Study on Pests Forecasting Using the Method of Neural Network Based on Fuzzy Clustering 被引量:1
4
作者 韦艳玲 《Agricultural Science & Technology》 CAS 2009年第4期159-163,共5页
Aimed to the characters of pests forecast such as fuzziness, correlation, nonlinear and real-time as well as decline of generalization capacity of neural network in prediction with few observations, a method of pests ... Aimed to the characters of pests forecast such as fuzziness, correlation, nonlinear and real-time as well as decline of generalization capacity of neural network in prediction with few observations, a method of pests forecasting using the method of neural network based on fuzzy clustering was proposed in this experiment. The simulation results demonstrated that the method was simple and practical and could forecast pests fast and accurately, particularly, the method could obtain good results with few samples and samples correlation. 展开更多
关键词 Neural network fuzzy clustering PEST Forecasting
下载PDF
Metamodel-based Global Optimization Using Fuzzy Clustering for Design Space Reduction 被引量:13
5
作者 LI Yulin LIU Li +1 位作者 LONG Teng DONG Weili 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第5期928-939,共12页
High fidelity analysis are utilized in modern engineering design optimization problems which involve expensive black-box models.For computation-intensive engineering design problems,efficient global optimization metho... High fidelity analysis are utilized in modern engineering design optimization problems which involve expensive black-box models.For computation-intensive engineering design problems,efficient global optimization methods must be developed to relieve the computational burden.A new metamodel-based global optimization method using fuzzy clustering for design space reduction(MGO-FCR) is presented.The uniformly distributed initial sample points are generated by Latin hypercube design to construct the radial basis function metamodel,whose accuracy is improved with increasing number of sample points gradually.Fuzzy c-mean method and Gath-Geva clustering method are applied to divide the design space into several small interesting cluster spaces for low and high dimensional problems respectively.Modeling efficiency and accuracy are directly related to the design space,so unconcerned spaces are eliminated by the proposed reduction principle and two pseudo reduction algorithms.The reduction principle is developed to determine whether the current design space should be reduced and which space is eliminated.The first pseudo reduction algorithm improves the speed of clustering,while the second pseudo reduction algorithm ensures the design space to be reduced.Through several numerical benchmark functions,comparative studies with adaptive response surface method,approximated unimodal region elimination method and mode-pursuing sampling are carried out.The optimization results reveal that this method captures the real global optimum for all the numerical benchmark functions.And the number of function evaluations show that the efficiency of this method is favorable especially for high dimensional problems.Based on this global design optimization method,a design optimization of a lifting surface in high speed flow is carried out and this method saves about 10 h compared with genetic algorithms.This method possesses favorable performance on efficiency,robustness and capability of global convergence and gives a new optimization strategy for engineering design optimization problems involving expensive black box models. 展开更多
关键词 global optimization metamodel-based optimization reduction of design space fuzzy clustering
下载PDF
Radio-map Establishment based on Fuzzy Clustering for WLAN Hybrid KNN/ANN Indoor Positioning 被引量:9
6
作者 Zhou Mu Xu Yubin Ma Lin 《China Communications》 SCIE CSCD 2010年第3期64-80,共17页
A novel radio-map establishment based on fuzzy clustering for hybrid K-Nearest Neighbor (KNN) and Artifi cial Neural Network (ANN) position algorithm in WLAN indoor environment is proposed. First of all, the Principal... A novel radio-map establishment based on fuzzy clustering for hybrid K-Nearest Neighbor (KNN) and Artifi cial Neural Network (ANN) position algorithm in WLAN indoor environment is proposed. First of all, the Principal Component Analysis (PCA) is utilized for the purpose of simplifying input dimensions of position estimation algorithm and saving storage cost for the establishment of radio-map. Then, reference points (RPs) calibrated in the off-line phase are divided into separate clusters by Fuzzy C-means clustering (FCM), and membership degrees (MDs) for different clusters are also allocated to each RPs. However, the singular RPs cased by the multi-path effect signifi cantly decreases the clustering performance. Therefore, a novel radio-map establishment method is presented based on the modifi cation of signal samples recorded at singular RPs by surface fitting. In the on-line phase, the region which the mobile terminal (MT) belongs to is estimated according to the MDs firstly. Then, in estimated small dimensional regions, MT's coordinates are calculated byKNN positioning method for efficiency purpose. However, for the regions including singular RPs, ANN method is utilized because ofits great pattern matching ability. Furthermore, compared with other typical indoor positioning methods, feasibility and effectiveness of this hybrid KNN/ANN method are also verified by the experimental results in static and tracking situations. 展开更多
关键词 WLAN indoor location fuzzy clustering principal component artificial neural network radio-map
下载PDF
Global Optimization Method Using SLE and Adaptive RBF Based on Fuzzy Clustering 被引量:8
7
作者 ZHU Huaguang LIU Li LONG Teng ZHAO Junfeng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2012年第4期768-775,共8页
High fidelity analysis models,which are beneficial to improving the design quality,have been more and more widely utilized in the modern engineering design optimization problems.However,the high fidelity analysis mode... High fidelity analysis models,which are beneficial to improving the design quality,have been more and more widely utilized in the modern engineering design optimization problems.However,the high fidelity analysis models are so computationally expensive that the time required in design optimization is usually unacceptable.In order to improve the efficiency of optimization involving high fidelity analysis models,the optimization efficiency can be upgraded through applying surrogates to approximate the computationally expensive models,which can greately reduce the computation time.An efficient heuristic global optimization method using adaptive radial basis function(RBF) based on fuzzy clustering(ARFC) is proposed.In this method,a novel algorithm of maximin Latin hypercube design using successive local enumeration(SLE) is employed to obtain sample points with good performance in both space-filling and projective uniformity properties,which does a great deal of good to metamodels accuracy.RBF method is adopted for constructing the metamodels,and with the increasing the number of sample points the approximation accuracy of RBF is gradually enhanced.The fuzzy c-means clustering method is applied to identify the reduced attractive regions in the original design space.The numerical benchmark examples are used for validating the performance of ARFC.The results demonstrates that for most application examples the global optima are effectively obtained and comparison with adaptive response surface method(ARSM) proves that the proposed method can intuitively capture promising design regions and can efficiently identify the global or near-global design optimum.This method improves the efficiency and global convergence of the optimization problems,and gives a new optimization strategy for engineering design optimization problems involving computationally expensive models. 展开更多
关键词 global optimization Latin hypercube design radial basis function fuzzy clustering adaptive response surface method
下载PDF
Adding-Point Strategy for Reduced-Order Hypersonic Aerothermodynamics Modeling Based on Fuzzy Clustering 被引量:7
8
作者 CHEN Xin LIU Li +1 位作者 ZHOU Sida YUE Zhenjiang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第5期983-991,共9页
Reduced order models(ROMs) based on the snapshots on the CFD high-fidelity simulations have been paid great attention recently due to their capability of capturing the features of the complex geometries and flow con... Reduced order models(ROMs) based on the snapshots on the CFD high-fidelity simulations have been paid great attention recently due to their capability of capturing the features of the complex geometries and flow configurations. To improve the efficiency and precision of the ROMs, it is indispensable to add extra sampling points to the initial snapshots, since the number of sampling points to achieve an adequately accurate ROM is generally unknown in prior, but a large number of initial sampling points reduces the parsimony of the ROMs. A fuzzy-clustering-based adding-point strategy is proposed and the fuzzy clustering acts an indicator of the region in which the precision of ROMs is relatively low. The proposed method is applied to construct the ROMs for the benchmark mathematical examples and a numerical example of hypersonic aerothermodynamics prediction for a typical control surface. The proposed method can achieve a 34.5% improvement on the efficiency than the estimated mean squared error prediction algorithm and shows same-level prediction accuracy. 展开更多
关键词 reduced order model fuzzy clustering hypersonic aerothermodynamics adding-point strategy
下载PDF
Road Surface Modeling and Representation from Point Cloud Based on Fuzzy Clustering 被引量:5
9
作者 ZHANG Yi YAN Li 《Geo-Spatial Information Science》 2007年第4期276-281,共6页
A scheme for an automatic road surface modeling from a noisy point cloud is presented. The normal vectors of the point cloud are estimated by distance-weighted fitting of local plane. Then, an automatic recognition of... A scheme for an automatic road surface modeling from a noisy point cloud is presented. The normal vectors of the point cloud are estimated by distance-weighted fitting of local plane. Then, an automatic recognition of the road surface from noise is performed based on the fuzzy clustering of normal vectors, with which the mean value is calculated and the projecting plane of point cloud is created to obtain the geometric model accordingly. Based on fuzzy clustering of the intensity attributed to each point, different objects on the road surface are assigned different colors for representing abundant appearances. This unsupervised method is demonstrated in the experiment and shows great effectiveness in reconstructing and rendering better road surface. 展开更多
关键词 surface modeling point cloud distance-weighted fitting fuzzy clustering normal vectors INTENSITY
下载PDF
Refracturing candidate selection for MFHWs in tight oil and gas reservoirs using hybrid method with data analysis techniques and fuzzy clustering 被引量:4
10
作者 TAO Liang GUO Jian-chun +1 位作者 ZHAO Zhi-hong YIN Qi-wu 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第1期277-287,共11页
The selection of refracturing candidate is one of the most important jobs faced by oilfield engineers. However, due to the complicated multi-parameter relationships and their comprehensive influence, the selection of ... The selection of refracturing candidate is one of the most important jobs faced by oilfield engineers. However, due to the complicated multi-parameter relationships and their comprehensive influence, the selection of refracturing candidate is often very difficult. In this paper, a novel approach combining data analysis techniques and fuzzy clustering was proposed to select refracturing candidate. First, the analysis techniques were used to quantitatively calculate the weight coefficient and determine the key factors. Then, the idealized refracturing well was established by considering the main factors. Fuzzy clustering was applied to evaluate refracturing potential. Finally, reservoirs numerical simulation was used to further evaluate reservoirs energy and material basis of the optimum refracturing candidates. The hybrid method has been successfully applied to a tight oil reservoir in China. The average steady production was 15.8 t/d after refracturing treatment, increasing significantly compared with previous status. The research results can guide the development of tight oil and gas reservoirs effectively. 展开更多
关键词 tight oil and gas reservoirs idealized refracturing well fuzzy clustering refracturing potential hybrid method
下载PDF
New two-dimensional fuzzy C-means clustering algorithm for image segmentation 被引量:4
11
作者 周鲜成 申群太 刘利枚 《Journal of Central South University of Technology》 EI 2008年第6期882-887,共6页
To solve the problem of poor anti-noise performance of the traditional fuzzy C-means (FCM) algorithm in image segmentation, a novel two-dimensional FCM clustering algorithm for image segmentation was proposed. In this... To solve the problem of poor anti-noise performance of the traditional fuzzy C-means (FCM) algorithm in image segmentation, a novel two-dimensional FCM clustering algorithm for image segmentation was proposed. In this method, the image segmentation was converted into an optimization problem. The fitness function containing neighbor information was set up based on the gray information and the neighbor relations between the pixels described by the improved two-dimensional histogram. By making use of the global searching ability of the predator-prey particle swarm optimization, the optimal cluster center could be obtained by iterative optimization, and the image segmentation could be accomplished. The simulation results show that the segmentation accuracy ratio of the proposed method is above 99%. The proposed algorithm has strong anti-noise capability, high clustering accuracy and good segment effect, indicating that it is an effective algorithm for image segmentation. 展开更多
关键词 image segmentation fuzzy C-means clustering particle swarm optimization two-dimensional histogram
下载PDF
Fuzzy Clustering Method for Web User Based on Pages Classification 被引量:2
12
作者 ZHANLi-qiang LIUDa-xin 《Wuhan University Journal of Natural Sciences》 EI CAS 2004年第5期553-556,共4页
A new method for Web users fuzzy clustering based on analysis of user interest characteristic is proposed in this article. The method first defines page fuzzy categories according to the links on the index page of the... A new method for Web users fuzzy clustering based on analysis of user interest characteristic is proposed in this article. The method first defines page fuzzy categories according to the links on the index page of the site, then computes fuzzy degree of cross page through aggregating on data of Web log. After that, by using fuzzy comprehensive evaluation method, the method constructs user interest vectors according to page viewing times and frequency of hits, and derives the fuzzy similarity matrix from the interest vectors for the Web users. Finally, it gets the clustering result through the fuzzy clustering method. The experimental results show the effectiveness of the method. Key words Web log mining - fuzzy similarity matrix - fuzzy comprehensive evaluation - fuzzy clustering CLC number TP18 - TP311 - TP391 Foundation item: Supported by the Natural Science Foundation of Heilongjiang Province of China (F0304)Biography: ZHAN Li-qiang (1966-), male, Lecturer, Ph. D. research direction: the theory methods of data mining and theory of database. 展开更多
关键词 Web log mining fuzzy similarity matrix fuzzy comprehensive evaluation fuzzy clustering
下载PDF
Kernel method-based fuzzy clustering algorithm 被引量:2
13
作者 WuZhongdong GaoXinbo +1 位作者 XieWeixin YuJianping 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第1期160-166,共7页
The fuzzy C-means clustering algorithm(FCM) to the fuzzy kernel C-means clustering algorithm(FKCM) to effectively perform cluster analysis on the diversiform structures are extended, such as non-hyperspherical data, d... The fuzzy C-means clustering algorithm(FCM) to the fuzzy kernel C-means clustering algorithm(FKCM) to effectively perform cluster analysis on the diversiform structures are extended, such as non-hyperspherical data, data with noise, data with mixture of heterogeneous cluster prototypes, asymmetric data, etc. Based on the Mercer kernel, FKCM clustering algorithm is derived from FCM algorithm united with kernel method. The results of experiments with the synthetic and real data show that the FKCM clustering algorithm is universality and can effectively unsupervised analyze datasets with variform structures in contrast to FCM algorithm. It is can be imagined that kernel-based clustering algorithm is one of important research direction of fuzzy clustering analysis. 展开更多
关键词 fuzzy clustering analysis kernel method fuzzy C-means clustering.
下载PDF
Watershed classification by remote sensing indices: A fuzzy c-means clustering approach 被引量:10
14
作者 Bahram CHOUBIN Karim SOLAIMANI +1 位作者 Mahmoud HABIBNEJAD ROSHAN Arash MALEKIAN 《Journal of Mountain Science》 SCIE CSCD 2017年第10期2053-2063,共11页
Determining the relatively similar hydrological properties of the watersheds is very crucial in order to readily classify them for management practices such as flood and soil erosion control. This study aimed to ident... Determining the relatively similar hydrological properties of the watersheds is very crucial in order to readily classify them for management practices such as flood and soil erosion control. This study aimed to identify homogeneous hydrological watersheds using remote sensing data in western Iran. To achieve this goal, remote sensing indices including SAVI, LAI, NDMI, NDVI and snow cover, were extracted from MODIS data over the period 2000 to 2015. Then, a fuzzy method was used to clustering the watersheds based on the extracted indices. A fuzzy c-mean(FCM) algorithm enabled to classify 38 watersheds in three homogeneous groups.The optimal number of clusters was determined through evaluation of partition coefficient, partition entropy function and trial and error. The results indicated three homogeneous regions identified by the fuzzy c-mean clustering and remote sensing product which are consistent with the variations of topography and climate of the study area. Inherently,the grouped watersheds have similar hydrological properties and are likely to need similar management considerations and measures. 展开更多
关键词 Karkheh watershed fuzzy c-means clustering Watershed classification Homogeneous sub-watersheds
下载PDF
User preferences-aware recommendation for trustworthy cloud services based on fuzzy clustering 被引量:1
15
作者 马华 胡志刚 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第9期3495-3505,共11页
The cloud computing has been growing over the past few years, and service providers are creating an intense competitive world of business. This proliferation makes it hard for new users to select a proper service amon... The cloud computing has been growing over the past few years, and service providers are creating an intense competitive world of business. This proliferation makes it hard for new users to select a proper service among a large amount of service candidates. A novel user preferences-aware recommendation approach for trustworthy services is presented. For describing the requirements of new users in different application scenarios, user preferences are identified by usage preference, trust preference and cost preference. According to the similarity analysis of usage preference between consumers and new users, the candidates are selected, and these data about service trust provided by them are calculated as the fuzzy comprehensive evaluations. In accordance with the trust and cost preferences of new users, the dynamic fuzzy clusters are generated based on the fuzzy similarity computation. Then, the most suitable services can be selected to recommend to new users. The experiments show that this approach is effective and feasible, and can improve the quality of services recommendation meeting the requirements of new users in different scenario. 展开更多
关键词 trustworthy service service recommendation user preferences-aware fuzzy clustering
下载PDF
Application of fuzzy clustering method to determining sub-fault planes of earthquake from aftershocks sequence 被引量:1
16
作者 Fuchang Wang Yongge Wan +2 位作者 Huirong Cao Zhitong Jin Qingqing Ren 《Earthquake Science》 CSCD 2012年第2期187-196,共10页
Earthquake rupture process generally involves several faults activities instead of a single fault A new method using both fuzzy clustering and principal component analysis makes it possible to reconstruct three dimens... Earthquake rupture process generally involves several faults activities instead of a single fault A new method using both fuzzy clustering and principal component analysis makes it possible to reconstruct three dimensional structure of involved faults in earthquake if the aftershocks around the active fault planes distribute uniformly. When seismic events are given, the optimal faults structures can be determined by our new method. Each of sub-fault planes is fully characterized by its central location, length, width, strike and dip. The resolution determines the number of fault segments needed to describe the earthquake catalog. The higher the resolution, the finer the structure of the reconstructed fault segments. The new method successfully reconstructs the fault segments using synthetic earthquake catalogs. By taking the 28 June 1992 Landers earthquake oceured in southern California as an example, the reconstructed fault segments are consistent with the faults already known on geological maps or blind faults that appeared quite frequently in longer-term catalogs. 展开更多
关键词 fault plane solution small earthquake clustering fuzzy clustering principal componentanalysis Landers earthquakes
下载PDF
Fuzzy Clustering Validity for Spatia Data 被引量:1
17
作者 HU Chunchun MENG Lingkui SHI Wenzhong 《Geo-Spatial Information Science》 2008年第3期191-196,共6页
The validity measurement of fuzzy clustering is a key problem. If clustering is formed, it needs a kind of machine to verify its validity. To make mining more accountable, comprehensible and with a usable spatial patt... The validity measurement of fuzzy clustering is a key problem. If clustering is formed, it needs a kind of machine to verify its validity. To make mining more accountable, comprehensible and with a usable spatial pattern, it is necessary to first detect whether the data set has a clustered structure or not before clustering. This paper discusses a detection method for clustered patterns and a fuzzy clustering algorithm, and studies the validity function of the result produced by fuzzy clustering based on two aspects, which reflect the un-certainty of classification during fuzzy partition and spatial location features of spatial data, and proposes a new validity function of fuzzy clustering for spatial data. The experimental result indicates that the new validity function can accurately measure the validity of the results of fuzzy clustering. Especially, for the result of fuzzy clustering of spatial data, it is robust and its classification result is better when compared to other indices. 展开更多
关键词 fuzzy clustering spatial data validity UNCERTAINTY
下载PDF
CONSIDERING NEIGHBORHOOD INFORMATION IN IMAGE FUZZY CLUSTERING 被引量:2
18
作者 Huang Ning Zhu Minhui Zhang Shourong(The Nat. Key Lab of Microwave Imaging Tech, Inst. of Electronics, CAS, Beijing 100080) 《Journal of Electronics(China)》 2002年第3期307-310,共4页
Fuzzy C-means clustering algorithm is a classical non-supervised classification method.For image classification, fuzzy C-means clustering algorithm makes decisions on a pixel-by-pixel basis and does not take advantage... Fuzzy C-means clustering algorithm is a classical non-supervised classification method.For image classification, fuzzy C-means clustering algorithm makes decisions on a pixel-by-pixel basis and does not take advantage of spatial information, regardless of the pixels' correlation. In this letter, a novel fuzzy C-means clustering algorithm is introduced, which is based on image's neighborhood system. During classification procedure, the novel algorithm regards all pixels'fuzzy membership as a random field. The neighboring pixels' fuzzy membership information is used for the algorithm's iteration procedure. As a result, the algorithm gives a more smooth classification result and cuts down the computation time. 展开更多
关键词 Remote sensing clustering fuzzy C-means clustering algorithm
下载PDF
Image segmentation algorithm based on high-dimension fuzzy character and restrained clustering network 被引量:2
19
作者 Baoping Wang Yang Fang Chao Sun 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第2期298-306,共9页
An image segmentation algorithm of the restrained fuzzy Kohonen clustering network (RFKCN) based on high- dimension fuzzy character is proposed. The algorithm includes two steps. The first step is the fuzzification ... An image segmentation algorithm of the restrained fuzzy Kohonen clustering network (RFKCN) based on high- dimension fuzzy character is proposed. The algorithm includes two steps. The first step is the fuzzification of pixels in which two redundant images are built by fuzzy mean value and fuzzy median value. The second step is to construct a three-dimensional (3-D) feature vector of redundant images and their original images and cluster the feature vector through RFKCN, to realize image seg- mentation. The proposed algorithm fully takes into account not only gray distribution information of pixels, but also relevant information and fuzzy information among neighboring pixels in constructing 3- D character space. Based on the combination of competitiveness, redundancy and complementary of the information, the proposed algorithm improves the accuracy of clustering. Theoretical anal- yses and experimental results demonstrate that the proposed algorithm has a good segmentation performance. 展开更多
关键词 image segmentation high-dimension fuzzy character restrained fuzzy Kohonen clustering network (RFKCN).
下载PDF
A Hybrid Meta-Classifier of Fuzzy Clustering and Logistic Regression for Diabetes Prediction 被引量:1
20
作者 Altyeb Altaher Taha Sharaf Jameel Malebary 《Computers, Materials & Continua》 SCIE EI 2022年第6期6089-6105,共17页
Diabetes is a chronic health condition that impairs the body’s ability to convert food to energy,recognized by persistently high levels of blood glucose.Undiagnosed diabetes can cause many complications,including ret... Diabetes is a chronic health condition that impairs the body’s ability to convert food to energy,recognized by persistently high levels of blood glucose.Undiagnosed diabetes can cause many complications,including retinopathy,nephropathy,neuropathy,and other vascular disorders.Machine learning methods can be very useful for disease identification,prediction,and treatment.This paper proposes a new ensemble learning approach for type 2 diabetes prediction based on a hybrid meta-classifier of fuzzy clustering and logistic regression.The proposed approach consists of two levels.First,a baselearner comprising six machine learning algorithms is utilized for predicting diabetes.Second,a hybrid meta-learner that combines fuzzy clustering and logistic regression is employed to appropriately integrate predictions from the base-learners and provide an accurate prediction of diabetes.The hybrid metalearner employs the Fuzzy C-means Clustering(FCM)algorithm to generate highly significant clusters of predictions from base-learners.The predictions of base-learners and their fuzzy clusters are then employed as inputs to the Logistic Regression(LR)algorithm,which generates the final diabetes prediction result.Experiments were conducted using two publicly available datasets,the Pima Indians Diabetes Database(PIDD)and the Schorling Diabetes Dataset(SDD)to demonstrate the efficacy of the proposed method for predicting diabetes.When compared with other models,the proposed approach outperformed them and obtained the highest prediction accuracies of 99.00%and 95.20%using the PIDD and SDD datasets,respectively. 展开更多
关键词 Ensemble learning fuzzy clustering diabetes prediction machine learning
下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部