A comprehensive method to evaluate the factors affecting the production capacity of horizontal wells in Carboniferous volcanic rocks after fracturing is investigated.A systematic approach combining gray correlation an...A comprehensive method to evaluate the factors affecting the production capacity of horizontal wells in Carboniferous volcanic rocks after fracturing is investigated.A systematic approach combining gray correlation analysis,hierarchical analysis and fuzzy evaluation is proposed.In particular,first the incidence of reservoir properties and fracturing parameters on production capacity is assessed.These parameters include reservoir base geological parameters(porosity,permeability,oil saturation,waterproof height)as well as engineering parameters(fracture halflength,fracture height,fracture conductivity,fracture distance).Afterwards,a two-by-two comparison judgment matrix of sensitive parameters is constructed by means of hierarchical analysis,and the weighting coefficients of the factors are determined,where oil saturation,fracture conductivity and fracture half-length are weighted higher.Finally,the horizontal wells in the target block are categorized in terms of production capacity based on the fuzzy evaluation method,and split accordingly into high-producing,relatively high-producing,medium-producing and low-producing wells.Such a categorization is intended to provide parametric guidance for reservoir fracturing and modification.展开更多
A quantitative and comprehensive method of product life cycle assessment(LCA) with fuzzy theory is developed, which will help designers to select the optimum design scheme for product life cycle design(LCD). Based on ...A quantitative and comprehensive method of product life cycle assessment(LCA) with fuzzy theory is developed, which will help designers to select the optimum design scheme for product life cycle design(LCD). Based on the theory of multiple attribute decision making, an algorithm of comprehensive and comparative evaluation for product environmental adaptability is presented. A program is built and used in an example of design improvement. The result shows that the proposed method and algorithm are practical and effective to the development of green products.展开更多
The paper analyzes the factors influencing machine tool selection. By using fuzzy mathematics theory, we establish a theorietical model for optimal machine tool selection considering geometric features, clamping size,...The paper analyzes the factors influencing machine tool selection. By using fuzzy mathematics theory, we establish a theorietical model for optimal machine tool selection considering geometric features, clamping size, machining range, machining precision and surface roughness. By means of fuzzy comprehensive evaluation method, the membership degree of machine tool selection and the largest comprehensive evaluation index are determined. Then the reasonably automatic selection of machine tool is realized in the generative computer aided process planning (CAPP) system. Finally, the finite element model based on ABAQUS is established and the cutting process of machine tool is simulated. According to the theoretical and empirical cutting parameters and the curve of surface residual stress, the optimal cutting parameters can be determined.展开更多
Using soil data of the Second National Field Survey,the soil fertility of wetland ecosystem of Dongting Lake was evaluated by using the technology of GIS and method of fuzzy evaluation.Integrated with the wetland actu...Using soil data of the Second National Field Survey,the soil fertility of wetland ecosystem of Dongting Lake was evaluated by using the technology of GIS and method of fuzzy evaluation.Integrated with the wetland actuality of Dongting Lake and particularity of paddy,seven factors (including soil organic matter,total nitrogen,total phosphorus,total potassium,available phosphorus,available potassium,and pH value),closely related with soil fertility,were chosen to establish the index system of synthetical evaluation.Based on the effect degree of each selected index on soil fertility,a judgment matrix was built,and the weight coefficient was determined by the method of correlation coefficient.Finally,under the support of the spatial analysis module of GIS (Geographic Information System),the spatial distribution properties of soil fertility in wetland ecosystem of Dongting Lake were studied.The results show that the soil fertility of Dongting Lake wetland ecosystem is not very good,and the area of type III and type IV achieves 69.8%.As a result,many countermeasures should be taken to improve the soil fertility.As for the spatial properties,the soil fertility level of central and west Dongting Lake is much higher than that of north and south part.The soil fertility of paddy field surpasses that of red soil,and the contents of soil organic matter and total nitrogen in paddy field are large.展开更多
Drilling engineering has great uncertainty and it always involves huge investment and high risk. Risk analysis of extended reach drilling (ERD) is very important to prevent complex failures and to improve drilling e...Drilling engineering has great uncertainty and it always involves huge investment and high risk. Risk analysis of extended reach drilling (ERD) is very important to prevent complex failures and to improve drilling efficiency. Nowadays there are few reports on how to analyze quantitatively the drilling risk for extended reach wells (ERWs). Based on the fuzzy set theory, a comprehensive fuzzy evaluation model for analyzing risks of ERD is proposed in this paper. Well B6ERW07 is a planned 8,000-meter ERW with a high ratio of horizontal displacement (HD) to vertical depth (VD) in the Liuhua Oilfield, the South China Sea, China. On the basis of the evaluation model developed in this study, the risk for drilling Well B6ERW07 was evaluated before drilling. The evaluation result shows that the success rate of drilling this well is predicted to be 51.9%, providing important rational and scientific information for the decisionmakers.展开更多
Based on coal seam geological condition and mining technological characteristic in Jisan Mine, coal seamgeological condition is quantitative evaluated by using fuzzy evaluation with the view of coal mining and coalfac...Based on coal seam geological condition and mining technological characteristic in Jisan Mine, coal seamgeological condition is quantitative evaluated by using fuzzy evaluation with the view of coal mining and coalfaceproduction. The structure and index system of evaluation factor, the membership functions and weights of evaluationfactor, evaluation model and reliability in the coal seam geological conditions are expounded in detail. Eighty-twocoalfaces which will be exploited is classified. All of these have provided a theoretical foundation for the selection ofcoal mining technology and for sustainable development of the coal mine.展开更多
Price plays an important role in water resources management. The price of water resources can also be considered as a “water resource tax” which reflects the value and opportunity cost of water, and people will pay ...Price plays an important role in water resources management. The price of water resources can also be considered as a “water resource tax” which reflects the value and opportunity cost of water, and people will pay for the right to use water. Currently, the water resource fees’ effect of regulating resource differential revenues is not manifest and it’s not enough to reflect the principle of paid use of resources as well as regulating resources differential revenues. Due to the ambiguity and complexity of water resources price, this paper uses methods relating to fuzzy mathematics for modeling and processing. The study had a comprehensive consideration of five factors including water quality, water resources per capita, household consumption level, per capita GNP, population or population density to evaluate the water resource price.展开更多
Based on standards and the expertise, 10 indicators such as crack, reinforcement and splash, etc. are selected for welds quality description. The indicators are classified into three categories: appearance defects, s...Based on standards and the expertise, 10 indicators such as crack, reinforcement and splash, etc. are selected for welds quality description. The indicators are classified into three categories: appearance defects, shape defects and weld defects, and corresponding fuzzy evaluation sets are designed. Membership functions of each indicator are determined with fuzzy inference system (FIS) editor in Matlab based on the actual welding experience. A two-stage fuzzy evaluation model for weld quality is established in Simulink. Finally, the model is tested through evaluating 7 different types of welds. The results show that fuzzy evaluation calculation can be simplified by combining Simulink with Matlab-FIS, and the evaluation results are more accurate and objective compared with the experts' subjective e', iluation.展开更多
The reasonable determination of ecological flow is of great significance for the efforts to promote the transformation of water ecological environmental protection from pollution management to synergistic management o...The reasonable determination of ecological flow is of great significance for the efforts to promote the transformation of water ecological environmental protection from pollution management to synergistic management of water resources,water ecology and water environment,and to promote them in an integrated manner.This paper analyzed and calculated the ecological flow process of the Bangsha River diversion power station using the minimum ecological flow method,the annual spreading method,the improved annual spreading method,the NGPRP method,and the month-by-month frequency method,and evaluated the reasonableness of the process and results of the ecological flow calculations by using the fuzzy evaluation model established.The study showed that the minimum ecological flow rate determined by improving the coupling of the spreading method and the NGPRP method was the best,and the suitable ecological flow rate determined by the month-by-month frequency method was the best;the minimum ecological flow rate of the Bangsha River diversion power station was at 0.43-4.21 m 3/s,and the suitable ecological flow rate was at 0.56-4.94 m 3/s,and the trend of its change showed the trend of first increasing and then decreasing,and the trend of change from January to July showed the trend of first increasing and then decreasing.Its trend of change showed an increasing and then decreasing trend,from January to July showed a gradually increasing trend,from August to December showed a gradually decreasing trend.It aimed to provide a theoretical basis for the reasonable determination of the ecological flow of the river hydropower station.展开更多
Green supply chain is one of the trends of industry development. And performance measurement is the key to implementing the supply chain. So it is necessary to evaluate the environmental performance of supply chain .A...Green supply chain is one of the trends of industry development. And performance measurement is the key to implementing the supply chain. So it is necessary to evaluate the environmental performance of supply chain .According to the connotation of green supply chain and the standards of environmental management, this paper designs green performance measurement systems which is composed of four main factors such as waste emissions and exposure hazard, resource utilization, product recovery, and environmental reputation. And the authors delve deeply these factors so that it forms a two-level measurement system. Then the effect on the traditional performance measurement of supply chain is studied after taking greening to the supply chain leveL At last the authors apply the method of multi-level fuzzy judgment to the environmental performance measurement system. An example is given to show the judgment process.展开更多
Based on the failure rate and design features allocation method,considering the multiple influential factors which affect electric multiple unit( EMU) bogies,maintainability allocation on EMU bogie was presented by in...Based on the failure rate and design features allocation method,considering the multiple influential factors which affect electric multiple unit( EMU) bogies,maintainability allocation on EMU bogie was presented by interval analytic hierarchy analysis and fuzzy comprehensive assessment. The maintainability allocation model was established. Weight based on the influence degree of each factor on maintenance was assigned. Fuzzy interval numbers were used to substitute real numbers and express uncertain information.The maintenance weighting factors for each subsystem were calculated by fuzzy comprehensive assessment. Then the allocation method was applied to EMU bogie. The results show that the method is feasible. The problem difficult to quantify for EMU bogie maintenance allocation is solved effectively.展开更多
As the core of the rocket system,the performance and quality of rocket engines are of paramount impor-tance.Currently,the production of aerospace model rocket engines does not differentiate the production and selectio...As the core of the rocket system,the performance and quality of rocket engines are of paramount impor-tance.Currently,the production of aerospace model rocket engines does not differentiate the production and selection of motors according to the importance of the mission,which is insufficient to ensure the high reliability requirements of important launch missions.To select rocket engines with better performance quality for more critical launch missions,this paper uses fuzzy comprehensive evaluation and TOPSIS methods based on the test value or assessment informa-tion of evaluation indicators.The method scientifically and accurately ranks the performance quality of rocket engines,choosing the engines with better performance quality for more strategic missions,and providing technical support for national management decisions.展开更多
In this paper, traffic environment quality assessment is achieved by applying fuzzy mathematics methods. Set up an assessment system, determine assessment criterion, formulate membership function, make program designs...In this paper, traffic environment quality assessment is achieved by applying fuzzy mathematics methods. Set up an assessment system, determine assessment criterion, formulate membership function, make program designs and conduct example analysis. The evaluation result is consistent with the real case. So that the method of the fuzzy evaluation is a good one for the environment quality assessment.展开更多
[Objective] The aim was to propose a new entropy weight fuzzy compre- hensive evaluation method for assessing cotton salt tolerance, realizing the objective, accurate and comprehensive evaluation of salt tolerance of ...[Objective] The aim was to propose a new entropy weight fuzzy compre- hensive evaluation method for assessing cotton salt tolerance, realizing the objective, accurate and comprehensive evaluation of salt tolerance of cotton. [Method] A sand culture experiment under salt stress of 150 mmol/L of NaCI was designed. The in- dicator weight was determined with the entropy weight fuzzy comprehensive evalu- ation method, based on the salt injury index of indicators. The salt tolerance of cotton was evaluated comprehensively. [Result] At the germination stage, the entropy and weight of salt injury index of germination energy, vigor index, hypocotyl length and fresh weight were highest, followed by germination rate and germination index, and of root length were lowest. At the seedling stage, the entropy and weight of salt injury index of plasma membrane permeability, root vigor and leaf expansion rate were highest, followed by plant height and net photosynthetic rate, and of shoot dry weight and root dry weight were lowest. The salt tolerance of cotton differed a- mong growth stages and cultivars. Among the 11 cultivars, CCRI-44 and CCRI-75 were steadily salt-tolerant at both germination and seedling stages; CCRI-17, Sumi- an 22, Sumian 15 and Dexiamianl had a stable moderate salt tolerance; while Sumian 12 and Simian 3 were steadily salt-sensitive. [Conclusion] The evaluated result was objective and exact, which indicated that this method could be used in comprehensive evaluation of salt tolerance of cotton.展开更多
[Objective] This study was to provide references for the evaluation of water quality in aquaculture ponds by evaluating the pond water quality using fuzzy comprehensive evaluation method based on entropy weight. [Meth...[Objective] This study was to provide references for the evaluation of water quality in aquaculture ponds by evaluating the pond water quality using fuzzy comprehensive evaluation method based on entropy weight. [Method] The fuzzy compre- hensive evaluation method based on entropy weight was used to evaluate the water quality in the ponds with Ukraine scale carp (Cyprinus carpio) as the main cultivated fish. The average size of the fish was 71.4 g/ind, and totally three groups of pond were set with the population density of 6 000, 9 000, 12 000 ind/hm2. [Result] According to the GB3838-2002 Environmental Quality Standards for Surface Water of China, the water quality of 6 000 ind/hm2 group was Grade I, and the water quality of 9 000 and 12 000 ind/hm2 were Grade V. [Conclusion] With the increasing of feeding density, the pond water quality would worsen, however, there is no difference on water quality between 9 000 and 12 000 ind/hm2 groups.展开更多
Life-cycle cost(LCC)theory can be effectively applied to improve the efficiency and quality of power plant equipment and asset management.However,specific aspects of the LCC calculation and evaluation model require fu...Life-cycle cost(LCC)theory can be effectively applied to improve the efficiency and quality of power plant equipment and asset management.However,specific aspects of the LCC calculation and evaluation model require further research for practical application.This paper proposes an LCC assessment model for the management of electric power plant equipment during its service life.A membership function method based on fuzzy logic is used to improve the allocation of modernization and overhaul projects to multiple equipment assets.An LCC assessment model and evaluation system for power equipment are proposed and successfully applied to the equipment and project management of a Guangzhou power plant in the China Southern Power Grid,providing a decision-making mechanism that facilitates efficient operation and optimal utilization of power plant equipment and assets.展开更多
In the northwestern part of China,rational and efficient management of irrigation and nitrogen significantly affects the intensive production of greenhouse cucumbers(Cucumis sativus L).To evaluate the effects of diffe...In the northwestern part of China,rational and efficient management of irrigation and nitrogen significantly affects the intensive production of greenhouse cucumbers(Cucumis sativus L).To evaluate the effects of different combinations of water use and nitrogen(N)on yield,quality,and profitability of the greenhouse cucumbers that planted in 2018 Spring,nine combined treatments were applied.Results indicated the optimal irrigation and nitrogen demands for yield,quality and other indicators were different.The irrigation amount significantly affected the yield,and the yield gradually increased with increasing in irrigation.Single fruit weight(SFW)was significantly affected by the amount of irrigation,nitrogen and their interactions,and the higher amounts of N and irrigation were beneficial to the increase of SFW.The partial factor productivity of the applied N(PFPN)gradually increased with the nitrogen amount decline.Irrigation water use efficiency(IWUE)was closely related to the amount of irrigation.The higher irrigation amount would lead to the lower IWUE.When the amounts of irrigation and nitrogen were at an intermediate level,the content of vitamin C(VC)reached the maximum.As the amount of nitrogen was increased or irrigation was decreased,the Nitrate content(NC)would increase.Free amino acid(FAA)and NC followed a similar variation.When the amounts of irrigation and nitrogen both were at medium levels,the total soluble sugar concentration(TSSC)reached the highest.The multi-level fuzzy evaluation method was used to evaluate different indicators of cucumber.The weights of indicators in the first and second layer were determined by analytic hierarchy process(AHP)and entropy weight method,respectively.Then the fuzzy algorithm was used to comprehensively evaluate all the treatments.The evaluation results show that T4(irrigation,1957.6 m3/hm2;N,210 kg/hm2)is the best strategy for greenhouse cucumber irrigation and nitrogen management in the northwestern part of China.展开更多
Environmental risk assessment of tailings reservoir assessment system is complex and has many index factors.In order to accurately judge surrounding environmental risks of tailings reservoirs and determinate the corre...Environmental risk assessment of tailings reservoir assessment system is complex and has many index factors.In order to accurately judge surrounding environmental risks of tailings reservoirs and determinate the corresponding prevention and control work,multi-hierarchical fuzzy judgment and nested dominance relation of rough set theory are implemented to evaluate them and find out the rules of this evaluation system with 14 representative cases.The methods of multi-hierarchical fuzzy evaluation can overall consider each influence factor of risk assessment system and their mutual impact,and the index weight based on the analytic hierarchy process is relatively reasonable.Rough set theory based on dominance relation reduces each index attribute from the top down,largely simplifies the complexity of the original evaluation system,and considers the preferential information in each index.Furthermore,grey correlation theory is applied to analysis of importance of each reducted condition attribute.The results demonstrate the feasibility of the proposed safety evaluation system and the application potential.展开更多
According to nanoscratch results for the TiN film, an evaluation method for interfacial fracture toughness of thin hard films is presented with fuzzy concepts, which can account for such influential factors in scratch...According to nanoscratch results for the TiN film, an evaluation method for interfacial fracture toughness of thin hard films is presented with fuzzy concepts, which can account for such influential factors in scratch test as surface roughness and material imperfection. Based on configuration changes in scratching curves, the parameters RV and RF are defined as the relative ratios of tip vertical displacement and of friction coefficinet. Fuzzy features of the scratching curves are analyzed carefully. The critical load is deduced from fuzzy logic operations and used to calculate the value of interfacial fracture toughness. With this method, the interfacial fracture toughness of TiN/HSS is evaluated approximately as 4.18 MPam^1/2. Results show that the method is valid and can benefit the interfacial adhesion property investigation for thin hard films.展开更多
This paper explores the method of comprehensive evaluation of water resources carrying capacity and sets up an evaluation model applying the fuzzy comprehensive evaluation method. Based on the data of nature,society,e...This paper explores the method of comprehensive evaluation of water resources carrying capacity and sets up an evaluation model applying the fuzzy comprehensive evaluation method. Based on the data of nature,society,economics and water resources of the Tarim River Basin in 2002,we evaluated the water resources carrying capacity of the basin by means of the model. The results show that the comprehensive grades are 0.438 and 0.454 for Aksu and Kashi prefectures respectively,where the current water resources exploitation and utilization has reached a relative high degree and there is only a very limited water carrying capacity,0.620 for Kizilsu Kirgiz Autonomous Prefecture,where water resources carrying capacity is much higher,and in between for Hotan Prefecture and Bayingolin Mongo-lian Autonomous Prefecture. As a whole,the comprehensive grade of the Tarim River Basin is 0.508 and the current water resources exploitation and utilization has reached a relative high degree. Thus,we suggest that the integrated management of the water resources in the basin should be strengthened in order to utilize water resources scientifically and sustainably.展开更多
基金Natural Science Foundation of China(NSFC),Grant No.52404016(Lijuan Huang)Natural Science Foundation of Hubei Province,Grant No.2024AFB322(Lijuan Huang)Open Fund of Hubei Key Laboratory of Oil and Gas Drilling and Production Engineering(Yangtze University),Grant No.YQZC202405(Lijuan Huang).
文摘A comprehensive method to evaluate the factors affecting the production capacity of horizontal wells in Carboniferous volcanic rocks after fracturing is investigated.A systematic approach combining gray correlation analysis,hierarchical analysis and fuzzy evaluation is proposed.In particular,first the incidence of reservoir properties and fracturing parameters on production capacity is assessed.These parameters include reservoir base geological parameters(porosity,permeability,oil saturation,waterproof height)as well as engineering parameters(fracture halflength,fracture height,fracture conductivity,fracture distance).Afterwards,a two-by-two comparison judgment matrix of sensitive parameters is constructed by means of hierarchical analysis,and the weighting coefficients of the factors are determined,where oil saturation,fracture conductivity and fracture half-length are weighted higher.Finally,the horizontal wells in the target block are categorized in terms of production capacity based on the fuzzy evaluation method,and split accordingly into high-producing,relatively high-producing,medium-producing and low-producing wells.Such a categorization is intended to provide parametric guidance for reservoir fracturing and modification.
文摘A quantitative and comprehensive method of product life cycle assessment(LCA) with fuzzy theory is developed, which will help designers to select the optimum design scheme for product life cycle design(LCD). Based on the theory of multiple attribute decision making, an algorithm of comprehensive and comparative evaluation for product environmental adaptability is presented. A program is built and used in an example of design improvement. The result shows that the proposed method and algorithm are practical and effective to the development of green products.
基金Shanxi Province Science and Technology Research Project(No.20140321008-03)
文摘The paper analyzes the factors influencing machine tool selection. By using fuzzy mathematics theory, we establish a theorietical model for optimal machine tool selection considering geometric features, clamping size, machining range, machining precision and surface roughness. By means of fuzzy comprehensive evaluation method, the membership degree of machine tool selection and the largest comprehensive evaluation index are determined. Then the reasonably automatic selection of machine tool is realized in the generative computer aided process planning (CAPP) system. Finally, the finite element model based on ABAQUS is established and the cutting process of machine tool is simulated. According to the theoretical and empirical cutting parameters and the curve of surface residual stress, the optimal cutting parameters can be determined.
基金Projects(40971170,51039001) supported by the National Natural Science Foundation of ChinaProject(2007AA10Z222) supported by the National High Technology Research and Development Program of China
文摘Using soil data of the Second National Field Survey,the soil fertility of wetland ecosystem of Dongting Lake was evaluated by using the technology of GIS and method of fuzzy evaluation.Integrated with the wetland actuality of Dongting Lake and particularity of paddy,seven factors (including soil organic matter,total nitrogen,total phosphorus,total potassium,available phosphorus,available potassium,and pH value),closely related with soil fertility,were chosen to establish the index system of synthetical evaluation.Based on the effect degree of each selected index on soil fertility,a judgment matrix was built,and the weight coefficient was determined by the method of correlation coefficient.Finally,under the support of the spatial analysis module of GIS (Geographic Information System),the spatial distribution properties of soil fertility in wetland ecosystem of Dongting Lake were studied.The results show that the soil fertility of Dongting Lake wetland ecosystem is not very good,and the area of type III and type IV achieves 69.8%.As a result,many countermeasures should be taken to improve the soil fertility.As for the spatial properties,the soil fertility level of central and west Dongting Lake is much higher than that of north and south part.The soil fertility of paddy field surpasses that of red soil,and the contents of soil organic matter and total nitrogen in paddy field are large.
基金support from the project of CNOOC China Limited-Shenzhen (Grant No. Z2007SLSZ-034)the foundation project of the State Key Laboratory of Petroleum Resource and Prospecting (Grant No. PRPDX2008-08) is gratefully acknowledged
文摘Drilling engineering has great uncertainty and it always involves huge investment and high risk. Risk analysis of extended reach drilling (ERD) is very important to prevent complex failures and to improve drilling efficiency. Nowadays there are few reports on how to analyze quantitatively the drilling risk for extended reach wells (ERWs). Based on the fuzzy set theory, a comprehensive fuzzy evaluation model for analyzing risks of ERD is proposed in this paper. Well B6ERW07 is a planned 8,000-meter ERW with a high ratio of horizontal displacement (HD) to vertical depth (VD) in the Liuhua Oilfield, the South China Sea, China. On the basis of the evaluation model developed in this study, the risk for drilling Well B6ERW07 was evaluated before drilling. The evaluation result shows that the success rate of drilling this well is predicted to be 51.9%, providing important rational and scientific information for the decisionmakers.
文摘Based on coal seam geological condition and mining technological characteristic in Jisan Mine, coal seamgeological condition is quantitative evaluated by using fuzzy evaluation with the view of coal mining and coalfaceproduction. The structure and index system of evaluation factor, the membership functions and weights of evaluationfactor, evaluation model and reliability in the coal seam geological conditions are expounded in detail. Eighty-twocoalfaces which will be exploited is classified. All of these have provided a theoretical foundation for the selection ofcoal mining technology and for sustainable development of the coal mine.
文摘Price plays an important role in water resources management. The price of water resources can also be considered as a “water resource tax” which reflects the value and opportunity cost of water, and people will pay for the right to use water. Currently, the water resource fees’ effect of regulating resource differential revenues is not manifest and it’s not enough to reflect the principle of paid use of resources as well as regulating resources differential revenues. Due to the ambiguity and complexity of water resources price, this paper uses methods relating to fuzzy mathematics for modeling and processing. The study had a comprehensive consideration of five factors including water quality, water resources per capita, household consumption level, per capita GNP, population or population density to evaluate the water resource price.
基金This work was supported by National Natural Science Foundation of China (No. 50875088 ) and Foundation for Distinguished Young Teachers' Training of Guangdong(Yq2013106).
文摘Based on standards and the expertise, 10 indicators such as crack, reinforcement and splash, etc. are selected for welds quality description. The indicators are classified into three categories: appearance defects, shape defects and weld defects, and corresponding fuzzy evaluation sets are designed. Membership functions of each indicator are determined with fuzzy inference system (FIS) editor in Matlab based on the actual welding experience. A two-stage fuzzy evaluation model for weld quality is established in Simulink. Finally, the model is tested through evaluating 7 different types of welds. The results show that fuzzy evaluation calculation can be simplified by combining Simulink with Matlab-FIS, and the evaluation results are more accurate and objective compared with the experts' subjective e', iluation.
文摘The reasonable determination of ecological flow is of great significance for the efforts to promote the transformation of water ecological environmental protection from pollution management to synergistic management of water resources,water ecology and water environment,and to promote them in an integrated manner.This paper analyzed and calculated the ecological flow process of the Bangsha River diversion power station using the minimum ecological flow method,the annual spreading method,the improved annual spreading method,the NGPRP method,and the month-by-month frequency method,and evaluated the reasonableness of the process and results of the ecological flow calculations by using the fuzzy evaluation model established.The study showed that the minimum ecological flow rate determined by improving the coupling of the spreading method and the NGPRP method was the best,and the suitable ecological flow rate determined by the month-by-month frequency method was the best;the minimum ecological flow rate of the Bangsha River diversion power station was at 0.43-4.21 m 3/s,and the suitable ecological flow rate was at 0.56-4.94 m 3/s,and the trend of its change showed the trend of first increasing and then decreasing,and the trend of change from January to July showed the trend of first increasing and then decreasing.Its trend of change showed an increasing and then decreasing trend,from January to July showed a gradually increasing trend,from August to December showed a gradually decreasing trend.It aimed to provide a theoretical basis for the reasonable determination of the ecological flow of the river hydropower station.
文摘Green supply chain is one of the trends of industry development. And performance measurement is the key to implementing the supply chain. So it is necessary to evaluate the environmental performance of supply chain .According to the connotation of green supply chain and the standards of environmental management, this paper designs green performance measurement systems which is composed of four main factors such as waste emissions and exposure hazard, resource utilization, product recovery, and environmental reputation. And the authors delve deeply these factors so that it forms a two-level measurement system. Then the effect on the traditional performance measurement of supply chain is studied after taking greening to the supply chain leveL At last the authors apply the method of multi-level fuzzy judgment to the environmental performance measurement system. An example is given to show the judgment process.
基金Traction Power State Key Laboratory of Southwest Jiaotong University,China(No.TPL1 312)Key Project of Technology Research and Development Plan of Railway Ministry,China(NO.2012J009-A)+1 种基金National Natural Science Foundation of Liaoning Province,China(No.2014028020)Liaoning Province Education Administration Project,China(No.L20138182)
文摘Based on the failure rate and design features allocation method,considering the multiple influential factors which affect electric multiple unit( EMU) bogies,maintainability allocation on EMU bogie was presented by interval analytic hierarchy analysis and fuzzy comprehensive assessment. The maintainability allocation model was established. Weight based on the influence degree of each factor on maintenance was assigned. Fuzzy interval numbers were used to substitute real numbers and express uncertain information.The maintenance weighting factors for each subsystem were calculated by fuzzy comprehensive assessment. Then the allocation method was applied to EMU bogie. The results show that the method is feasible. The problem difficult to quantify for EMU bogie maintenance allocation is solved effectively.
文摘As the core of the rocket system,the performance and quality of rocket engines are of paramount impor-tance.Currently,the production of aerospace model rocket engines does not differentiate the production and selection of motors according to the importance of the mission,which is insufficient to ensure the high reliability requirements of important launch missions.To select rocket engines with better performance quality for more critical launch missions,this paper uses fuzzy comprehensive evaluation and TOPSIS methods based on the test value or assessment informa-tion of evaluation indicators.The method scientifically and accurately ranks the performance quality of rocket engines,choosing the engines with better performance quality for more strategic missions,and providing technical support for national management decisions.
文摘In this paper, traffic environment quality assessment is achieved by applying fuzzy mathematics methods. Set up an assessment system, determine assessment criterion, formulate membership function, make program designs and conduct example analysis. The evaluation result is consistent with the real case. So that the method of the fuzzy evaluation is a good one for the environment quality assessment.
基金Supported by Jiangsu Agricultural Science and Technology Innovation Fund(CX(12)5035)Jiangsu Agricultural "Three New Engineering" Project(SXGC[2014]299)~~
文摘[Objective] The aim was to propose a new entropy weight fuzzy compre- hensive evaluation method for assessing cotton salt tolerance, realizing the objective, accurate and comprehensive evaluation of salt tolerance of cotton. [Method] A sand culture experiment under salt stress of 150 mmol/L of NaCI was designed. The in- dicator weight was determined with the entropy weight fuzzy comprehensive evalu- ation method, based on the salt injury index of indicators. The salt tolerance of cotton was evaluated comprehensively. [Result] At the germination stage, the entropy and weight of salt injury index of germination energy, vigor index, hypocotyl length and fresh weight were highest, followed by germination rate and germination index, and of root length were lowest. At the seedling stage, the entropy and weight of salt injury index of plasma membrane permeability, root vigor and leaf expansion rate were highest, followed by plant height and net photosynthetic rate, and of shoot dry weight and root dry weight were lowest. The salt tolerance of cotton differed a- mong growth stages and cultivars. Among the 11 cultivars, CCRI-44 and CCRI-75 were steadily salt-tolerant at both germination and seedling stages; CCRI-17, Sumi- an 22, Sumian 15 and Dexiamianl had a stable moderate salt tolerance; while Sumian 12 and Simian 3 were steadily salt-sensitive. [Conclusion] The evaluated result was objective and exact, which indicated that this method could be used in comprehensive evaluation of salt tolerance of cotton.
基金Supported by the Major Project of Application Foundation and Advanced Technology of Tianjin (the Natural Science Foundation of Tianjin) (09JCZDJC19200),China~~
文摘[Objective] This study was to provide references for the evaluation of water quality in aquaculture ponds by evaluating the pond water quality using fuzzy comprehensive evaluation method based on entropy weight. [Method] The fuzzy compre- hensive evaluation method based on entropy weight was used to evaluate the water quality in the ponds with Ukraine scale carp (Cyprinus carpio) as the main cultivated fish. The average size of the fish was 71.4 g/ind, and totally three groups of pond were set with the population density of 6 000, 9 000, 12 000 ind/hm2. [Result] According to the GB3838-2002 Environmental Quality Standards for Surface Water of China, the water quality of 6 000 ind/hm2 group was Grade I, and the water quality of 9 000 and 12 000 ind/hm2 were Grade V. [Conclusion] With the increasing of feeding density, the pond water quality would worsen, however, there is no difference on water quality between 9 000 and 12 000 ind/hm2 groups.
基金the National Natural Science Foundation of China(U1966210).
文摘Life-cycle cost(LCC)theory can be effectively applied to improve the efficiency and quality of power plant equipment and asset management.However,specific aspects of the LCC calculation and evaluation model require further research for practical application.This paper proposes an LCC assessment model for the management of electric power plant equipment during its service life.A membership function method based on fuzzy logic is used to improve the allocation of modernization and overhaul projects to multiple equipment assets.An LCC assessment model and evaluation system for power equipment are proposed and successfully applied to the equipment and project management of a Guangzhou power plant in the China Southern Power Grid,providing a decision-making mechanism that facilitates efficient operation and optimal utilization of power plant equipment and assets.
基金This work was partially supported by the Key Research and Development Program of Shaanxi Province in China(Grant No.2018TSCXL-NY-05-03)the Xi'an Science and Technology Program in China(Grant No.2017050NC/NY011(2))the Key project for Innovation in Production,Education and Research of Yangling in China(Grant No.2017CXY-07).
文摘In the northwestern part of China,rational and efficient management of irrigation and nitrogen significantly affects the intensive production of greenhouse cucumbers(Cucumis sativus L).To evaluate the effects of different combinations of water use and nitrogen(N)on yield,quality,and profitability of the greenhouse cucumbers that planted in 2018 Spring,nine combined treatments were applied.Results indicated the optimal irrigation and nitrogen demands for yield,quality and other indicators were different.The irrigation amount significantly affected the yield,and the yield gradually increased with increasing in irrigation.Single fruit weight(SFW)was significantly affected by the amount of irrigation,nitrogen and their interactions,and the higher amounts of N and irrigation were beneficial to the increase of SFW.The partial factor productivity of the applied N(PFPN)gradually increased with the nitrogen amount decline.Irrigation water use efficiency(IWUE)was closely related to the amount of irrigation.The higher irrigation amount would lead to the lower IWUE.When the amounts of irrigation and nitrogen were at an intermediate level,the content of vitamin C(VC)reached the maximum.As the amount of nitrogen was increased or irrigation was decreased,the Nitrate content(NC)would increase.Free amino acid(FAA)and NC followed a similar variation.When the amounts of irrigation and nitrogen both were at medium levels,the total soluble sugar concentration(TSSC)reached the highest.The multi-level fuzzy evaluation method was used to evaluate different indicators of cucumber.The weights of indicators in the first and second layer were determined by analytic hierarchy process(AHP)and entropy weight method,respectively.Then the fuzzy algorithm was used to comprehensively evaluate all the treatments.The evaluation results show that T4(irrigation,1957.6 m3/hm2;N,210 kg/hm2)is the best strategy for greenhouse cucumber irrigation and nitrogen management in the northwestern part of China.
基金Project(51374242)supported by the National Natural Science Foundation of ChinaProject(200449)supported by National Outstanding Doctoral Dissertations Special Fund of ChinaProject(2012QNZT028)supported by the Free Exploration Fund of Central South University,China
文摘Environmental risk assessment of tailings reservoir assessment system is complex and has many index factors.In order to accurately judge surrounding environmental risks of tailings reservoirs and determinate the corresponding prevention and control work,multi-hierarchical fuzzy judgment and nested dominance relation of rough set theory are implemented to evaluate them and find out the rules of this evaluation system with 14 representative cases.The methods of multi-hierarchical fuzzy evaluation can overall consider each influence factor of risk assessment system and their mutual impact,and the index weight based on the analytic hierarchy process is relatively reasonable.Rough set theory based on dominance relation reduces each index attribute from the top down,largely simplifies the complexity of the original evaluation system,and considers the preferential information in each index.Furthermore,grey correlation theory is applied to analysis of importance of each reducted condition attribute.The results demonstrate the feasibility of the proposed safety evaluation system and the application potential.
文摘According to nanoscratch results for the TiN film, an evaluation method for interfacial fracture toughness of thin hard films is presented with fuzzy concepts, which can account for such influential factors in scratch test as surface roughness and material imperfection. Based on configuration changes in scratching curves, the parameters RV and RF are defined as the relative ratios of tip vertical displacement and of friction coefficinet. Fuzzy features of the scratching curves are analyzed carefully. The critical load is deduced from fuzzy logic operations and used to calculate the value of interfacial fracture toughness. With this method, the interfacial fracture toughness of TiN/HSS is evaluated approximately as 4.18 MPam^1/2. Results show that the method is valid and can benefit the interfacial adhesion property investigation for thin hard films.
基金Under the auspices of Knowledge Innovation Program of Chinese Academy of Sciences (No. KZCX2-YW-127)National Natural Science Foundation of China (No. 40671014, 90502007)
文摘This paper explores the method of comprehensive evaluation of water resources carrying capacity and sets up an evaluation model applying the fuzzy comprehensive evaluation method. Based on the data of nature,society,economics and water resources of the Tarim River Basin in 2002,we evaluated the water resources carrying capacity of the basin by means of the model. The results show that the comprehensive grades are 0.438 and 0.454 for Aksu and Kashi prefectures respectively,where the current water resources exploitation and utilization has reached a relative high degree and there is only a very limited water carrying capacity,0.620 for Kizilsu Kirgiz Autonomous Prefecture,where water resources carrying capacity is much higher,and in between for Hotan Prefecture and Bayingolin Mongo-lian Autonomous Prefecture. As a whole,the comprehensive grade of the Tarim River Basin is 0.508 and the current water resources exploitation and utilization has reached a relative high degree. Thus,we suggest that the integrated management of the water resources in the basin should be strengthened in order to utilize water resources scientifically and sustainably.