In this study, we are first examining well-known approach to improve fuzzy reasoning model (FRM) by use of the genetic-based learning mechanism [1]. Later we propose our alternative way to build FRM, which has signifi...In this study, we are first examining well-known approach to improve fuzzy reasoning model (FRM) by use of the genetic-based learning mechanism [1]. Later we propose our alternative way to build FRM, which has significant precision advantages and does not require any adjustment/learning. We put together neuro-fuzzy system (NFS) to connect the set of exemplar input feature vectors (FV) with associated output label (target), both represented by their membership functions (MF). Next unknown FV would be classified by getting upper value of current output MF. After that the fuzzy truths for all MF upper values are maximized and the label of the winner is considered as the class of the input FV. We use the knowledge in the exemplar-label pairs directly with no training. It sets up automatically and then classifies all input FV from the same population as the exemplar FVs. We show that our approach statistically is almost twice as accurate, as well-known genetic-based learning mechanism FRM.展开更多
Estimating the intention of space objects plays an important role in air-craft design,aviation safety,military and otherfields,and is an important refer-ence basis for air situation analysis and command decision-making...Estimating the intention of space objects plays an important role in air-craft design,aviation safety,military and otherfields,and is an important refer-ence basis for air situation analysis and command decision-making.This paper studies an intention estimation method based on fuzzy theory,combining prob-ability to calculate the intention between two objects.This method takes a space object as the origin of coordinates,observes the target’s distance,speed,relative heading angle,altitude difference,steering trend and etc.,then introduces the spe-cific calculation methods of these parameters.Through calculation,values are input into the fuzzy inference model,andfinally the action intention of the target is obtained through the fuzzy rule table and historical weighted probability.Ver-ified by simulation experiment,the target intention inferred by this method is roughly the same as the actual behavior of the target,which proves that the meth-od for identifying the target intention is effective.展开更多
Spectral unmixing helps to identify different components present in the spectral mixtures which occur in the uppermost layer of the area owing to the low spatial resolution of hyperspectral images.Most spectral unmixi...Spectral unmixing helps to identify different components present in the spectral mixtures which occur in the uppermost layer of the area owing to the low spatial resolution of hyperspectral images.Most spectral unmixing methods are globally based and do not consider the spectral variability among its endmembers that occur due to illumination,atmospheric,and environmental conditions.Here,endmember bundle extraction plays a major role in overcoming the above-mentioned limitations leading to more accurate abundance fractions.Accordingly,a two-stage approach is proposed to extract endmembers through endmember bundles in hyperspectral images.The divide and conquer method is applied as the first step in subset images with only the non-redundant bands to extract endmembers using the Vertex Component Analysis(VCA)and N-FINDR algorithms.A fuzzy rule-based inference system utilizing spectral matching parameters is proposed in the second step to categorize endmembers.The endmember with the minimum error is chosen as the final endmember in each specific category.The proposed method is simple and automatically considers endmember variability in hyperspectral images.The efficiency of the proposed method is evaluated using two real hyperspectral datasets.The average spectral angle and abundance angle are used to analyze the performance measures.展开更多
The article presents an approach toward the implementation of an Autonomous Intelligent Actor’s (AIA) [1] fuzzy control mechanism, when each step of it is based on dynamically defined scale. Such a scale is directed ...The article presents an approach toward the implementation of an Autonomous Intelligent Actor’s (AIA) [1] fuzzy control mechanism, when each step of it is based on dynamically defined scale. Such a scale is directed by fuzzy conditional inference rule. The approach, offered in the article, allows “soft landing” of AIA on a Target even in a case of “unfriendly” docking situation.展开更多
Mechanical reliability prediction (MRP) is an important task of mechanical reliability design. In the initial design stage (IDS), the lack of reliability data and some fuzzy characteristics of MRP make this work hardn...Mechanical reliability prediction (MRP) is an important task of mechanical reliability design. In the initial design stage (IDS), the lack of reliability data and some fuzzy characteristics of MRP make this work hardness. Because fuzzy synthetical assessment (FSA) can well utilize expert′s experience and fuzzy data, it is used to assess the influence factors of reliability. On the basis of the assessed results, the predicted value of reliability is inferred by the fuzzy inference system (FIS). This approach particularly suits to predict the reliability of complex machinery (including other products) in IDS, so that it can remedy some defects of the existing methods. An example is discussed to interpret how to utilize it.展开更多
When designing solar systems and assessing the effectiveness of their many uses,estimating sun irradiance is a crucial first step.This study examined three approaches(ANN,GA-ANN,and ANFIS)for estimating daily global s...When designing solar systems and assessing the effectiveness of their many uses,estimating sun irradiance is a crucial first step.This study examined three approaches(ANN,GA-ANN,and ANFIS)for estimating daily global solar radiation(GSR)in the south of Algeria:Adrar,Ouargla,and Bechar.The proposed hybrid GA-ANN model,based on genetic algorithm-based optimization,was developed to improve the ANN model.The GA-ANN and ANFIS models performed better than the standalone ANN-based model,with GA-ANN being better suited for forecasting in all sites,and it performed the best with the best values in the testing phase of Coefficient of Determination(R=0.9005),Mean Absolute Percentage Error(MAPE=8.40%),and Relative Root Mean Square Error(rRMSE=12.56%).Nevertheless,the ANFIS model outperformed the GA-ANN model in forecasting daily GSR,with the best values of indicators when testing the model being R=0.9374,MAPE=7.78%,and rRMSE=10.54%.Generally,we may conclude that the initial ANN stand-alone model performance when forecasting solar radiation has been improved,and the results obtained after injecting the genetic algorithm into the ANN to optimize its weights were satisfactory.The model can be used to forecast daily GSR in dry climates and other climates and may also be helpful in selecting solar energy system installations and sizes.展开更多
Aiming at the shortcoming that the traditional industrial manipulator using off-line programming cannot change along with the change of external environment,the key technologies such as machine vision and manipulator ...Aiming at the shortcoming that the traditional industrial manipulator using off-line programming cannot change along with the change of external environment,the key technologies such as machine vision and manipulator control are studied,and a complete manipulator vision tracking system is designed.Firstly,Denavit-Hartenberg(D-H)parameters method is used to construct the model of the manipulator and analyze the forward and inverse kinematics equations of the manipulator.At the same time,a binocular camera is used to obtain the threedimensional position of the target.Secondly,in order to make the manipulator track the target more accurately,the fuzzy adaptive square root unscented Kalman filter(FSRUKF)is proposed to estimate the target state.Finally,the manipulator tracking system is built by using the position-based visual servo.The simulation experiments show that FSRUKF converges faster and with less error than the square root unscented Kalman filter(SRUKF),which meets the application requirements of the manipulator tracking system,and basically meets the application requirements of the manipulator tracking system in the practical experiments.展开更多
Helicopter mathematical model mainly depends on design helicopter control system, flight simulator, and real time control simulation system. But it is difficult to establish a helicopter flight dynamics mathematical ...Helicopter mathematical model mainly depends on design helicopter control system, flight simulator, and real time control simulation system. But it is difficult to establish a helicopter flight dynamics mathematical model that has features such as rapidness, reliability and precision, because there is no unique and precise expression to some sophisticated phenomenon of helicopter. In this paper a fuzzy helicopter flight model is constructed based on the flight experimental data. The fuzzy model, which is identified by fuzzy inference, has characteristics of computed rapidness and high precision. In order to guarantee the precision of the identified fuzzy model, a new method is adopted to handle the conflict fuzzy rules. Additionally, using fuzzy clustering technology can effectively reduce the number of rules of fuzzy model, namely, the order of the fuzzy model. The simulation results indicate that the method of this paper is effective and feasible.展开更多
A tool-wear monitoring system for metal turning operations is presented based on the combinative application of fuzzy logic and unsupervised neural network. A group of self-organizing map (SOM) neural networks is es...A tool-wear monitoring system for metal turning operations is presented based on the combinative application of fuzzy logic and unsupervised neural network. A group of self-organizing map (SOM) neural networks is established based on the typical cutting condition combinations, and each of networks is corresponding to a typical cutting condition. For a specifie cutting condition, the fuzzy logic method is used to select an optimum trained SOM network. The proposed monitoring system, ealled the Fuzzy-SOM-TWC, is used to classify tool states based on the in-time measurement of force, aeoustic emission(AE), and motor eurrent signals. An approximate 98%--100% correct classification of tool-wear status is obtained by testing the system with a series data samples under freely selected cutting conditions.展开更多
The adaptive neural fuzzy inference system (ANFIS) is used to make a ease study considering features of complex social-technical system with the target of increasing organizational efficiency of public scientific re...The adaptive neural fuzzy inference system (ANFIS) is used to make a ease study considering features of complex social-technical system with the target of increasing organizational efficiency of public scientific research institutions. An integrated ANFIS model is built and the effectiveness of the model is verified by means of investigation data and their processing results. The model merges the learning mechanism of neural network and the language inference ability of fuzzy system, and thereby remedies the defects of neural network and fuzzy logic system. Result of this case study shows that the model is suitable for complicated socio-technical systems and has bright application perspective to solve such problems of prediction, evaluation and policy-making in managerial fields.展开更多
A formalized calculus system called F_fuzzy calculus system, which is a symbol deduction system to formalize fuzzy inference, is constructed in this paper. The fuzzy modus ponens was completely formalized in this calc...A formalized calculus system called F_fuzzy calculus system, which is a symbol deduction system to formalize fuzzy inference, is constructed in this paper. The fuzzy modus ponens was completely formalized in this calculus system.展开更多
An efficient and accurate prediction of a precise tidal level in estuaries and coastal areas is indispensable for the management and decision-making of human activity in the field wok of marine engineering. The variat...An efficient and accurate prediction of a precise tidal level in estuaries and coastal areas is indispensable for the management and decision-making of human activity in the field wok of marine engineering. The variation of the tidal level is a time-varying process. The time-varying factors including interference from the external environment that cause the change of tides are fairly complicated. Furthermore, tidal variations are affected not only by periodic movement of celestial bodies but also by time-varying interference from the external environment. Consequently, for the efficient and precise tidal level prediction, a neuro-fuzzy hybrid technology based on the combination of harmonic analysis and adaptive network-based fuzzy inference system(ANFIS)model is utilized to construct a precise tidal level prediction system, which takes both advantages of the harmonic analysis method and the ANFIS network. The proposed prediction model is composed of two modules: the astronomical tide module caused by celestial bodies’ movement and the non-astronomical tide module caused by various meteorological and other environmental factors. To generate a fuzzy inference system(FIS) structure,three approaches which include grid partition(GP), fuzzy c-means(FCM) and sub-clustering(SC) are used in the ANFIS network constructing process. Furthermore, to obtain the optimal ANFIS based prediction model, large numbers of simulation experiments are implemented for each FIS generating approach. In this tidal prediction study, the optimal ANFIS model is used to predict the non-astronomical tide module, while the conventional harmonic analysis model is used to predict the astronomical tide module. The final prediction result is performed by combining the estimation outputs of the harmonious analysis model and the optimal ANFIS model. To demonstrate the applicability and capability of the proposed novel prediction model, measured tidal level samples of Fort Pulaski tidal station are selected as the testing database. Simulation and experimental results confirm that the proposed prediction approach can achieve precise predictions for the tidal level with high accuracy, satisfactory convergence and stability.展开更多
A novel centralized approach for Dynamic Spectrum Allocation (DSA) in the Cognitive Radio (CR) network is presented in this paper. Instead of giving the solution in terms of formulas modeling network environment such ...A novel centralized approach for Dynamic Spectrum Allocation (DSA) in the Cognitive Radio (CR) network is presented in this paper. Instead of giving the solution in terms of formulas modeling network environment such as linear programming or convex optimization, the new approach obtains the capability of iteratively on-line learning environment performance by using Reinforcement Learning (RL) algorithm after observing the variability and uncertainty of the heterogeneous wireless networks. Appropriate decision-making access actions can then be obtained by employing Fuzzy Inference System (FIS) which ensures the strategy being able to explore the possible status and exploit the experiences sufficiently. The new approach considers multi-objective such as spectrum efficiency and fairness between CR Access Points (AP) effectively. By interacting with the environment and accumulating comprehensive advantages, it can achieve the largest long-term reward expected on the desired objectives and implement the best action. Moreover, the present algorithm is relatively simple and does not require complex calculations. Simulation results show that the proposed approach can get better performance with respect to fixed frequency planning scheme or general dynamic spectrum allocation policy.展开更多
Semiconductor manufacturing (SM) system is one of the most complicated hybrid processes involved continuously variable dynamical systems and discrete event dynamical systems. The optimization and scheduling of semicon...Semiconductor manufacturing (SM) system is one of the most complicated hybrid processes involved continuously variable dynamical systems and discrete event dynamical systems. The optimization and scheduling of semiconductor fabrication has long been a hot research direction in automation. Bottleneck is the key factor to a SM system, which seriously influences the throughput rate, cycle time, time-delivery rate, etc. Efficient prediction for the bottleneck of a SM system provides the best support for the consequent scheduling. Because categorical data (product types, releasing strategies) and numerical data (work in process, processing time, utilization rate, buffer length, etc.) have significant effect on bottleneck, an improved adaptive network-based fuzzy inference system (ANFIS) was adopted in this study to predict bottleneck since conventional neural network-based methods accommodate only numerical inputs. In this improved ANFIS, the contribution of categorical inputs to firing strength is reflected through a transformation matrix. In order to tackle high-dimensional inputs, reduce the number of fuzzy rules and obtain high prediction accuracy, a fuzzy c-means method combining binary tree linear division method was applied to identify the initial structure of fuzzy inference system. According to the experimental results, the main-bottleneck and sub-bottleneck of SM system can be predicted accurately with the proposed method.展开更多
According to the randomness and uncertainty of information in the safety diagnosis of coal mine production system (CMPS), a novel safety diagnosis method was proposed by applying fuzzy logic inference method, which co...According to the randomness and uncertainty of information in the safety diagnosis of coal mine production system (CMPS), a novel safety diagnosis method was proposed by applying fuzzy logic inference method, which consists of safety diagnosis fuzzifier, defuzzifier, fuzzy rules base and inference engine. Through the safety diagnosis on coal mine roadway rail transportation system, the result shows that the unsafe probability is about 0.5 influenced by no speed reduction and over quick turnout on roadway, which is the most possible reason leading to the accident of roadway rail transportation system.展开更多
The roundabouts are widely used in China,some of which have central islands as scenic spots.The crosswalks connecting to the central islands,normally full of pedestrians,have negative impact on roundabout capability a...The roundabouts are widely used in China,some of which have central islands as scenic spots.The crosswalks connecting to the central islands,normally full of pedestrians,have negative impact on roundabout capability and pedestrian safety.Therefore,this study proposes a fuzzy cellular automata(FCA)model to explore the safety and efficiency impacts of pedestrian-vehicle conflicts at a two-lane roundabout.To reason the decision-making process of individual drivers before crosswalks,membership functions in the fuzzy inference system were calibrated with field data conducted in Changsha,China.Using specific indicators of efficiency and safety performance,it was shown that circulating vehicles can move smoothly in low traffic flow,but the roundabout system is prone to the traffic congestion if traffic flow reaches to a certain level.Also,the high yielding rate of drivers has a negative impact on the traffic efficiency but can improve pedestrian safety.Furthermore,a pedestrian restriction measure was deduced for the roundabout crosswalk from the FCA model and national guideline of setting traffic lights.展开更多
In practical multi-sensor information fusion systems, there exists uncertainty about the network structure, active state of sensors, and information itself (including fuzziness, randomness, incompleteness as well as ...In practical multi-sensor information fusion systems, there exists uncertainty about the network structure, active state of sensors, and information itself (including fuzziness, randomness, incompleteness as well as roughness, etc). Hence it requires investigating the problem of uncertain information fusion. Robust learning algorithm which adapts to complex environment and the fuzzy inference algorithm which disposes fuzzy information are explored to solve the problem. Based on the fusion technology of neural networks and fuzzy inference algorithm, a multi-sensor uncertain information fusion system is modeled. Also RANFIS learning algorithm and fusing weight synthesized inference algorithm are developed from the ANFIS algorithm according to the concept of robust neural networks. This fusion system mainly consists of RANFIS confidence estimator, fusing weight synthesized inference knowledge base and weighted fusion section. The simulation result demonstrates that the proposed fusion model and algorithm have the capability of uncertain information fusion, thus is obviously advantageous compared with the conventional Kalman weighted fusion algorithm.展开更多
A class of new fuzzy inference systems New-FISs is presented.Compared with the standard fuzzy system, New-FIS is still a universal approximator and has no fuzzy rule base and linearly parameter growth. Thus, it effect...A class of new fuzzy inference systems New-FISs is presented.Compared with the standard fuzzy system, New-FIS is still a universal approximator and has no fuzzy rule base and linearly parameter growth. Thus, it effectively overcomes the second "curse of dimensionality":there is an exponential growth in the number of parameters of a fuzzy system as the number of input variables,resulting in surprisingly reduced computational complexity and being especially suitable for applications,where the complexity is of the first importance with respect to the approximation accuracy.展开更多
Rock mass rating system (RMR) is based on the six parameters which was defined by Bieniawski (1989) [1]. Experts frequently relate joint and discontinuities and ground water conditions in linguistic terms with rou...Rock mass rating system (RMR) is based on the six parameters which was defined by Bieniawski (1989) [1]. Experts frequently relate joint and discontinuities and ground water conditions in linguistic terms with rough calculation. As a result, there is a sharp transition between two modules which create doubts. So, in this paper the proposed weights technique was applied for linguistic criteria. Then by using the fuzzy inference system and the multi-variable regression analysis, the accurate RMR is predicted. Before the performing of regression analysis, sensitivity analysis was applied for each of Bieniawski parameters. In this process, the best function was selected among linear, logarithmic, exponential and inverse func- tions and finally it was applied in the regression analysis for construction of a predictive equation. From the constructed regression equation the relative importance of the input parameters can also be observed. It should be noted that joint condition was identified as the most important effective parameter upon RMR. Finally, fuzzy and regression models were validated with the test datasets and it was found that the fuzzy model predicts more accurately RMR than reression models.展开更多
A new kind of optimal fuzzy PID controller is proposed, which contains two parts. One is an on line fuzzy inference system, and the other is a conventional PID controller. In the fuzzy inference system, three adjustab...A new kind of optimal fuzzy PID controller is proposed, which contains two parts. One is an on line fuzzy inference system, and the other is a conventional PID controller. In the fuzzy inference system, three adjustable factors x p, x i , and x d are introduced. Their functions are to further modify and optimize the result of the fuzzy inference so as to make the controller have the optimal control effect on a given object. The optimal values of these adjustable factors are determined based on the ITAE criterion and the Nelder and Mead′s flexible polyhedron search algorithm. This optimal fuzzy PID controller has been used to control the executive motor of the intelligent artificial leg designed by the authors. The result of computer simulation indicates that this controller is very effective and can be widely used to control different kinds of objects and processes.展开更多
文摘In this study, we are first examining well-known approach to improve fuzzy reasoning model (FRM) by use of the genetic-based learning mechanism [1]. Later we propose our alternative way to build FRM, which has significant precision advantages and does not require any adjustment/learning. We put together neuro-fuzzy system (NFS) to connect the set of exemplar input feature vectors (FV) with associated output label (target), both represented by their membership functions (MF). Next unknown FV would be classified by getting upper value of current output MF. After that the fuzzy truths for all MF upper values are maximized and the label of the winner is considered as the class of the input FV. We use the knowledge in the exemplar-label pairs directly with no training. It sets up automatically and then classifies all input FV from the same population as the exemplar FVs. We show that our approach statistically is almost twice as accurate, as well-known genetic-based learning mechanism FRM.
基金supported by the National Key R&D Program of China,Grant No.2018YFA0306703 and J2019-V-0001-0092.
文摘Estimating the intention of space objects plays an important role in air-craft design,aviation safety,military and otherfields,and is an important refer-ence basis for air situation analysis and command decision-making.This paper studies an intention estimation method based on fuzzy theory,combining prob-ability to calculate the intention between two objects.This method takes a space object as the origin of coordinates,observes the target’s distance,speed,relative heading angle,altitude difference,steering trend and etc.,then introduces the spe-cific calculation methods of these parameters.Through calculation,values are input into the fuzzy inference model,andfinally the action intention of the target is obtained through the fuzzy rule table and historical weighted probability.Ver-ified by simulation experiment,the target intention inferred by this method is roughly the same as the actual behavior of the target,which proves that the meth-od for identifying the target intention is effective.
文摘Spectral unmixing helps to identify different components present in the spectral mixtures which occur in the uppermost layer of the area owing to the low spatial resolution of hyperspectral images.Most spectral unmixing methods are globally based and do not consider the spectral variability among its endmembers that occur due to illumination,atmospheric,and environmental conditions.Here,endmember bundle extraction plays a major role in overcoming the above-mentioned limitations leading to more accurate abundance fractions.Accordingly,a two-stage approach is proposed to extract endmembers through endmember bundles in hyperspectral images.The divide and conquer method is applied as the first step in subset images with only the non-redundant bands to extract endmembers using the Vertex Component Analysis(VCA)and N-FINDR algorithms.A fuzzy rule-based inference system utilizing spectral matching parameters is proposed in the second step to categorize endmembers.The endmember with the minimum error is chosen as the final endmember in each specific category.The proposed method is simple and automatically considers endmember variability in hyperspectral images.The efficiency of the proposed method is evaluated using two real hyperspectral datasets.The average spectral angle and abundance angle are used to analyze the performance measures.
文摘The article presents an approach toward the implementation of an Autonomous Intelligent Actor’s (AIA) [1] fuzzy control mechanism, when each step of it is based on dynamically defined scale. Such a scale is directed by fuzzy conditional inference rule. The approach, offered in the article, allows “soft landing” of AIA on a Target even in a case of “unfriendly” docking situation.
文摘Mechanical reliability prediction (MRP) is an important task of mechanical reliability design. In the initial design stage (IDS), the lack of reliability data and some fuzzy characteristics of MRP make this work hardness. Because fuzzy synthetical assessment (FSA) can well utilize expert′s experience and fuzzy data, it is used to assess the influence factors of reliability. On the basis of the assessed results, the predicted value of reliability is inferred by the fuzzy inference system (FIS). This approach particularly suits to predict the reliability of complex machinery (including other products) in IDS, so that it can remedy some defects of the existing methods. An example is discussed to interpret how to utilize it.
文摘When designing solar systems and assessing the effectiveness of their many uses,estimating sun irradiance is a crucial first step.This study examined three approaches(ANN,GA-ANN,and ANFIS)for estimating daily global solar radiation(GSR)in the south of Algeria:Adrar,Ouargla,and Bechar.The proposed hybrid GA-ANN model,based on genetic algorithm-based optimization,was developed to improve the ANN model.The GA-ANN and ANFIS models performed better than the standalone ANN-based model,with GA-ANN being better suited for forecasting in all sites,and it performed the best with the best values in the testing phase of Coefficient of Determination(R=0.9005),Mean Absolute Percentage Error(MAPE=8.40%),and Relative Root Mean Square Error(rRMSE=12.56%).Nevertheless,the ANFIS model outperformed the GA-ANN model in forecasting daily GSR,with the best values of indicators when testing the model being R=0.9374,MAPE=7.78%,and rRMSE=10.54%.Generally,we may conclude that the initial ANN stand-alone model performance when forecasting solar radiation has been improved,and the results obtained after injecting the genetic algorithm into the ANN to optimize its weights were satisfactory.The model can be used to forecast daily GSR in dry climates and other climates and may also be helpful in selecting solar energy system installations and sizes.
基金supported by Natural Science Basic Research Program of Shaanxi(2022JQ-593)Key Research and Development Program of Shaanxi(2022GY-089)。
文摘Aiming at the shortcoming that the traditional industrial manipulator using off-line programming cannot change along with the change of external environment,the key technologies such as machine vision and manipulator control are studied,and a complete manipulator vision tracking system is designed.Firstly,Denavit-Hartenberg(D-H)parameters method is used to construct the model of the manipulator and analyze the forward and inverse kinematics equations of the manipulator.At the same time,a binocular camera is used to obtain the threedimensional position of the target.Secondly,in order to make the manipulator track the target more accurately,the fuzzy adaptive square root unscented Kalman filter(FSRUKF)is proposed to estimate the target state.Finally,the manipulator tracking system is built by using the position-based visual servo.The simulation experiments show that FSRUKF converges faster and with less error than the square root unscented Kalman filter(SRUKF),which meets the application requirements of the manipulator tracking system,and basically meets the application requirements of the manipulator tracking system in the practical experiments.
文摘Helicopter mathematical model mainly depends on design helicopter control system, flight simulator, and real time control simulation system. But it is difficult to establish a helicopter flight dynamics mathematical model that has features such as rapidness, reliability and precision, because there is no unique and precise expression to some sophisticated phenomenon of helicopter. In this paper a fuzzy helicopter flight model is constructed based on the flight experimental data. The fuzzy model, which is identified by fuzzy inference, has characteristics of computed rapidness and high precision. In order to guarantee the precision of the identified fuzzy model, a new method is adopted to handle the conflict fuzzy rules. Additionally, using fuzzy clustering technology can effectively reduce the number of rules of fuzzy model, namely, the order of the fuzzy model. The simulation results indicate that the method of this paper is effective and feasible.
基金Supported by the International Science and Technology Cooperation Project(2008DFA71750)the National Key Technology R&D Program(2008BAF32B00)~~
文摘A tool-wear monitoring system for metal turning operations is presented based on the combinative application of fuzzy logic and unsupervised neural network. A group of self-organizing map (SOM) neural networks is established based on the typical cutting condition combinations, and each of networks is corresponding to a typical cutting condition. For a specifie cutting condition, the fuzzy logic method is used to select an optimum trained SOM network. The proposed monitoring system, ealled the Fuzzy-SOM-TWC, is used to classify tool states based on the in-time measurement of force, aeoustic emission(AE), and motor eurrent signals. An approximate 98%--100% correct classification of tool-wear status is obtained by testing the system with a series data samples under freely selected cutting conditions.
基金Supported by the Soft Science Program of Jiangsu Province(BR2010079)~~
文摘The adaptive neural fuzzy inference system (ANFIS) is used to make a ease study considering features of complex social-technical system with the target of increasing organizational efficiency of public scientific research institutions. An integrated ANFIS model is built and the effectiveness of the model is verified by means of investigation data and their processing results. The model merges the learning mechanism of neural network and the language inference ability of fuzzy system, and thereby remedies the defects of neural network and fuzzy logic system. Result of this case study shows that the model is suitable for complicated socio-technical systems and has bright application perspective to solve such problems of prediction, evaluation and policy-making in managerial fields.
文摘A formalized calculus system called F_fuzzy calculus system, which is a symbol deduction system to formalize fuzzy inference, is constructed in this paper. The fuzzy modus ponens was completely formalized in this calculus system.
基金The National Natural Science Foundation of China under contract No.51379002the Fundamental Research Funds for the Central Universities of China under contract Nos 3132016322 and 3132016314the Applied Basic Research Project Fund of the Chinese Ministry of Transport of China under contract No.2014329225010
文摘An efficient and accurate prediction of a precise tidal level in estuaries and coastal areas is indispensable for the management and decision-making of human activity in the field wok of marine engineering. The variation of the tidal level is a time-varying process. The time-varying factors including interference from the external environment that cause the change of tides are fairly complicated. Furthermore, tidal variations are affected not only by periodic movement of celestial bodies but also by time-varying interference from the external environment. Consequently, for the efficient and precise tidal level prediction, a neuro-fuzzy hybrid technology based on the combination of harmonic analysis and adaptive network-based fuzzy inference system(ANFIS)model is utilized to construct a precise tidal level prediction system, which takes both advantages of the harmonic analysis method and the ANFIS network. The proposed prediction model is composed of two modules: the astronomical tide module caused by celestial bodies’ movement and the non-astronomical tide module caused by various meteorological and other environmental factors. To generate a fuzzy inference system(FIS) structure,three approaches which include grid partition(GP), fuzzy c-means(FCM) and sub-clustering(SC) are used in the ANFIS network constructing process. Furthermore, to obtain the optimal ANFIS based prediction model, large numbers of simulation experiments are implemented for each FIS generating approach. In this tidal prediction study, the optimal ANFIS model is used to predict the non-astronomical tide module, while the conventional harmonic analysis model is used to predict the astronomical tide module. The final prediction result is performed by combining the estimation outputs of the harmonious analysis model and the optimal ANFIS model. To demonstrate the applicability and capability of the proposed novel prediction model, measured tidal level samples of Fort Pulaski tidal station are selected as the testing database. Simulation and experimental results confirm that the proposed prediction approach can achieve precise predictions for the tidal level with high accuracy, satisfactory convergence and stability.
基金supported in part by National Science Fund for Distinguished Young Scholars project under Grant No.60725105National Basic Research Program of China (973 Pro-gram) under Grant No.2009CB320404+1 种基金National Natural Science Foundation of China under Grant No.61072068Fundamental Research Funds for the Central Universities under Grant No.JY10000901031
文摘A novel centralized approach for Dynamic Spectrum Allocation (DSA) in the Cognitive Radio (CR) network is presented in this paper. Instead of giving the solution in terms of formulas modeling network environment such as linear programming or convex optimization, the new approach obtains the capability of iteratively on-line learning environment performance by using Reinforcement Learning (RL) algorithm after observing the variability and uncertainty of the heterogeneous wireless networks. Appropriate decision-making access actions can then be obtained by employing Fuzzy Inference System (FIS) which ensures the strategy being able to explore the possible status and exploit the experiences sufficiently. The new approach considers multi-objective such as spectrum efficiency and fairness between CR Access Points (AP) effectively. By interacting with the environment and accumulating comprehensive advantages, it can achieve the largest long-term reward expected on the desired objectives and implement the best action. Moreover, the present algorithm is relatively simple and does not require complex calculations. Simulation results show that the proposed approach can get better performance with respect to fixed frequency planning scheme or general dynamic spectrum allocation policy.
基金Supported by the National Key Basic Research and Development Program of China (2009CB320602)the National Natural Science Foundation of China (60834004, 61025018)+2 种基金the Open Project Program of the State Key Lab of Industrial ControlTechnology (ICT1108)the Open Project Program of the State Key Lab of CAD & CG (A1120)the Foundation of Key Laboratory of System Control and Information Processing (SCIP2011005),Ministry of Education,China
文摘Semiconductor manufacturing (SM) system is one of the most complicated hybrid processes involved continuously variable dynamical systems and discrete event dynamical systems. The optimization and scheduling of semiconductor fabrication has long been a hot research direction in automation. Bottleneck is the key factor to a SM system, which seriously influences the throughput rate, cycle time, time-delivery rate, etc. Efficient prediction for the bottleneck of a SM system provides the best support for the consequent scheduling. Because categorical data (product types, releasing strategies) and numerical data (work in process, processing time, utilization rate, buffer length, etc.) have significant effect on bottleneck, an improved adaptive network-based fuzzy inference system (ANFIS) was adopted in this study to predict bottleneck since conventional neural network-based methods accommodate only numerical inputs. In this improved ANFIS, the contribution of categorical inputs to firing strength is reflected through a transformation matrix. In order to tackle high-dimensional inputs, reduce the number of fuzzy rules and obtain high prediction accuracy, a fuzzy c-means method combining binary tree linear division method was applied to identify the initial structure of fuzzy inference system. According to the experimental results, the main-bottleneck and sub-bottleneck of SM system can be predicted accurately with the proposed method.
基金Project(2006BAK04B0302)supported by the National Science and Technology Pillar Program during the 11th Five-year Plan of China
文摘According to the randomness and uncertainty of information in the safety diagnosis of coal mine production system (CMPS), a novel safety diagnosis method was proposed by applying fuzzy logic inference method, which consists of safety diagnosis fuzzifier, defuzzifier, fuzzy rules base and inference engine. Through the safety diagnosis on coal mine roadway rail transportation system, the result shows that the unsafe probability is about 0.5 influenced by no speed reduction and over quick turnout on roadway, which is the most possible reason leading to the accident of roadway rail transportation system.
基金Project(2020YFB1600400)supported by the National Key Research and Development Program of ChinaProject(2019JJ50837)supported by the Natural Science Foundation of Hunan Province,ChinaProject(71801227)supported by the National Natural Science Foundation of China。
文摘The roundabouts are widely used in China,some of which have central islands as scenic spots.The crosswalks connecting to the central islands,normally full of pedestrians,have negative impact on roundabout capability and pedestrian safety.Therefore,this study proposes a fuzzy cellular automata(FCA)model to explore the safety and efficiency impacts of pedestrian-vehicle conflicts at a two-lane roundabout.To reason the decision-making process of individual drivers before crosswalks,membership functions in the fuzzy inference system were calibrated with field data conducted in Changsha,China.Using specific indicators of efficiency and safety performance,it was shown that circulating vehicles can move smoothly in low traffic flow,but the roundabout system is prone to the traffic congestion if traffic flow reaches to a certain level.Also,the high yielding rate of drivers has a negative impact on the traffic efficiency but can improve pedestrian safety.Furthermore,a pedestrian restriction measure was deduced for the roundabout crosswalk from the FCA model and national guideline of setting traffic lights.
基金This project was supported by the National Natural Science Foundation of China (60572038)
文摘In practical multi-sensor information fusion systems, there exists uncertainty about the network structure, active state of sensors, and information itself (including fuzziness, randomness, incompleteness as well as roughness, etc). Hence it requires investigating the problem of uncertain information fusion. Robust learning algorithm which adapts to complex environment and the fuzzy inference algorithm which disposes fuzzy information are explored to solve the problem. Based on the fusion technology of neural networks and fuzzy inference algorithm, a multi-sensor uncertain information fusion system is modeled. Also RANFIS learning algorithm and fusing weight synthesized inference algorithm are developed from the ANFIS algorithm according to the concept of robust neural networks. This fusion system mainly consists of RANFIS confidence estimator, fusing weight synthesized inference knowledge base and weighted fusion section. The simulation result demonstrates that the proposed fusion model and algorithm have the capability of uncertain information fusion, thus is obviously advantageous compared with the conventional Kalman weighted fusion algorithm.
基金This work was supported by the RGC Competitive Earmarked Research Grant (No. PolyU 5065/98E)Natural Science Foundation of China (No. 60225015)+1 种基金Natural Science Foundation of Jiangsu Province (No. BK2003017)National Key Labruary of Novel Software Tech
文摘A class of new fuzzy inference systems New-FISs is presented.Compared with the standard fuzzy system, New-FIS is still a universal approximator and has no fuzzy rule base and linearly parameter growth. Thus, it effectively overcomes the second "curse of dimensionality":there is an exponential growth in the number of parameters of a fuzzy system as the number of input variables,resulting in surprisingly reduced computational complexity and being especially suitable for applications,where the complexity is of the first importance with respect to the approximation accuracy.
文摘Rock mass rating system (RMR) is based on the six parameters which was defined by Bieniawski (1989) [1]. Experts frequently relate joint and discontinuities and ground water conditions in linguistic terms with rough calculation. As a result, there is a sharp transition between two modules which create doubts. So, in this paper the proposed weights technique was applied for linguistic criteria. Then by using the fuzzy inference system and the multi-variable regression analysis, the accurate RMR is predicted. Before the performing of regression analysis, sensitivity analysis was applied for each of Bieniawski parameters. In this process, the best function was selected among linear, logarithmic, exponential and inverse func- tions and finally it was applied in the regression analysis for construction of a predictive equation. From the constructed regression equation the relative importance of the input parameters can also be observed. It should be noted that joint condition was identified as the most important effective parameter upon RMR. Finally, fuzzy and regression models were validated with the test datasets and it was found that the fuzzy model predicts more accurately RMR than reression models.
文摘A new kind of optimal fuzzy PID controller is proposed, which contains two parts. One is an on line fuzzy inference system, and the other is a conventional PID controller. In the fuzzy inference system, three adjustable factors x p, x i , and x d are introduced. Their functions are to further modify and optimize the result of the fuzzy inference so as to make the controller have the optimal control effect on a given object. The optimal values of these adjustable factors are determined based on the ITAE criterion and the Nelder and Mead′s flexible polyhedron search algorithm. This optimal fuzzy PID controller has been used to control the executive motor of the intelligent artificial leg designed by the authors. The result of computer simulation indicates that this controller is very effective and can be widely used to control different kinds of objects and processes.