期刊文献+
共找到103篇文章
< 1 2 6 >
每页显示 20 50 100
Lithium-Ion Battery Pack Based on Fuzzy Logic Control Research on Multi-Layer Equilibrium Circuits
1
作者 Tiezhou Wu Yukan Zhang 《Energy Engineering》 EI 2024年第8期2231-2255,共25页
In order to solve the problem of inconsistent energy in the charging and discharging cycles of lithium-ion battery packs,a new multilayer equilibrium topology is designed in this paper.The structure adopts a hierarchi... In order to solve the problem of inconsistent energy in the charging and discharging cycles of lithium-ion battery packs,a new multilayer equilibrium topology is designed in this paper.The structure adopts a hierarchical structure design,which includes intra-group equilibrium,primary inter-group equilibrium and secondary inter-group equilibrium.This structure greatly increases the number of equilibrium paths for lithium-ion batteries,thus shortening the time required for equilibrium,and improving the overall efficiency.In terms of control strategy,fuzzy logic control(FLC)is chosen to control the size of the equilibrium current during the equilibrium process.We performed rigorous modeling and simulation of the proposed system by MATLAB and Simulink software.Experiments show that the multilayer equilibrium circuit structure greatly exceeds the traditional single-layer equilibrium circuit in terms of efficacy,specifically,the Li-ion battery equilibrium speed is improved by 12.71%in static equilibrium,14.48%in charge equilibrium,and 11.19%in discharge equilibrium.In addition,compared with the maximum value algorithm,the use of the FLC algorithm reduces the equalization time by about 3.27%and improves the energy transfer efficiency by about 66.49%under the stationary condition,which verifies the feasibility of the equalization scheme. 展开更多
关键词 Lithium-ion battery for new energy vehicles lithium-ion battery equilibrium fuzzy logic control
下载PDF
Enhanced Fuzzy Logic Control Model and Sliding Mode Based on Field Oriented Control of Induction Motor
2
作者 Alaa Tahhan Feyzullah Temurtaş 《World Journal of Engineering and Technology》 2024年第1期65-79,共15页
In the context of induction motor control, there are various control strategies used to separately control torque and flux. One common approach is known as Field-Oriented Control (FOC). This technique involves transfo... In the context of induction motor control, there are various control strategies used to separately control torque and flux. One common approach is known as Field-Oriented Control (FOC). This technique involves transforming the three-phase currents and voltages into a rotating reference frame, commonly referred to as the “dq” frame. In this frame, the torque/speed and flux components are decoupled, allowing for independent control, by doing so, the motor’s speed can be regulated accurately and maintain a constant flux which is crucial to ensure optimal motor performance and efficiency. The research focused on studying and simulating a field-oriented control system using fuzzy control techniques for an induction motor. The aim was to address the issue of parameter variations, particularly the change in rotor resistance during motor operation, which causes the control system to deviate from the desired direction. This deviation implies to an increase in the magnetic flux value, specifically the flux component on the q-axis. By employing fuzzy logic techniques to regulate flux vector’s components in the dq frame, this problem was successfully resolved, ensuring that the magnetic flux value remains within the nominal limits. To enhance the control system’s performance, response speed, and efficiency of the motor, sliding mode controllers were implemented to regulate the current in the inner loop. The simulation results demonstrated the proficiency of the proposed methodology. 展开更多
关键词 Induction Motor Vector control fuzzy logic control Sliding Mode
下载PDF
Nonsingular Terminal Sliding Mode Control With Ultra-Local Model and Single Input Interval Type-2 Fuzzy Logic Control for Pitch Control of Wind Turbines 被引量:7
3
作者 Saber Abrazeh Ahmad Parvaresh +3 位作者 Saeid-Reza Mohseni Meisam Jahanshahi Zeitouni Meysam Gheisarnejad Mohammad Hassan Khooban 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第3期690-700,共11页
As wind energy is becoming one of the fastestgrowing renewable energy resources,controlling large-scale wind turbines remains a challenging task due to its system model nonlinearities and high external uncertainties.T... As wind energy is becoming one of the fastestgrowing renewable energy resources,controlling large-scale wind turbines remains a challenging task due to its system model nonlinearities and high external uncertainties.The main goal of the current work is to propose an intelligent control of the wind turbine system without the need for model identification.For this purpose,a novel model-independent nonsingular terminal slidingmode control(MINTSMC)using the basic principles of the ultralocal model(ULM)and combined with the single input interval type-2 fuzzy logic control(SIT2-FLC)is developed for non-linear wind turbine pitch angle control.In the suggested control framework,the MINTSMC scheme is designed to regulate the wind turbine speed rotor,and a sliding-mode(SM)observer is adopted to estimate the unknown phenomena of the ULM.The auxiliary SIT2-FLC is added in the model-independent control structure to improve the rotor speed regulation and compensate for the SM observation estimation error.Extensive examinations and comparative analyses were made using a real-time softwarein-the-loop(RT-SiL)based on the dSPACE 1202 board to appraise the efficiency and applicability of the suggested modelindependent scheme in a real-time testbed. 展开更多
关键词 Interval type-2(IT2)fuzzy logic control modelindependent nonsingular terminal sliding-mode control(MINTSMC) pitch angle control real-time software-in-the-loop(RT-SiL)
下载PDF
ARTIFICIAL NEURAL NETWORK AND FUZZY LOGIC CONTROLLER FOR GTAW MODELING AND CONTROL 被引量:3
4
作者 Gao Xiangdong Faculty of Mechanical and Electrical Engineering,Guangdong University of Technology, Guangzhou 510090,China Huang Shisheng South China University of Technology 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2002年第1期53-56,共4页
An artificial neural network(ANN) and a self-adjusting fuzzy logiccontroller(FLC) for modeling and control of gas tungsten arc welding(GTAW) process are presented.The discussion is mainly focused on the modeling and c... An artificial neural network(ANN) and a self-adjusting fuzzy logiccontroller(FLC) for modeling and control of gas tungsten arc welding(GTAW) process are presented.The discussion is mainly focused on the modeling and control of the weld pool depth with ANN and theintelligent control for weld seam tracking with FLC. The proposed neural network can produce highlycomplex nonlinear multi-variable model of the GTAW process that offers the accurate prediction ofwelding penetration depth. A self-adjusting fuzzy controller used for seam tracking adjusts thecontrol parameters on-line automatically according to the tracking errors so that the torch positioncan be controlled accurately. 展开更多
关键词 Artificial neural network fuzzy logic control Weld pool depth Seamtracking
下载PDF
Fuzzy logic controller design with unevenly-distributed membership function for high performance chamber cooling system 被引量:2
5
作者 曹健鹏 Seok-Kwon Jeong Young-Mi Jung 《Journal of Central South University》 SCIE EI CAS 2014年第7期2684-2692,共9页
Fuzzy logic controller adopting unevenly-distributed membership function was presented with the purpose of enhancing performance of the temperature control precision and robustness for the chamber cooling system.Histo... Fuzzy logic controller adopting unevenly-distributed membership function was presented with the purpose of enhancing performance of the temperature control precision and robustness for the chamber cooling system.Histogram equalization and noise detection were performed to modify the evenly-distributed membership functions of error and error change rate into unevenly-distributed membership functions.Then,the experimental results with evenly and unevenly distributed membership functions were compared under the same outside environment conditions.The experimental results show that the steady-state error is reduced around 40% and the noise disturbance is rejected successfully even though noise range is 60% of the control precision range.The control precision is improved by reducing the steady-state error and the robustness is enhanced by rejecting noise disturbance through the fuzzy logic controller with unevenly-distributed membership function.Moreover,the system energy efficiency and lifetime of electronic expansion valve(EEV) installed in chamber cooling system are improved by adopting the unevenly-distributed membership function. 展开更多
关键词 chamber cooling system fuzzy logic controller unevenly-distributed membership function steady-state error reduction ROBUSTNESS variable speed refrigeration system
下载PDF
Fuzzy logic control strategy for submerged arc automatic welding of digital controlling 被引量:2
6
作者 何宽芳 黄石生 +1 位作者 周漪清 王振民 《China Welding》 EI CAS 2008年第3期55-59,共5页
A microcomputer control system based on 80C320 and a switching regulation of wire feeder were designed. A correction factor based double model fuzzy logic controller (FLC) was introduced to achieve welding digital a... A microcomputer control system based on 80C320 and a switching regulation of wire feeder were designed. A correction factor based double model fuzzy logic controller (FLC) was introduced to achieve welding digital and intellectualized control by means of wire feeding speed feedback. The controller has many functions such as keyboard input, light emitting diode (LED) display and real-time intellectualized control of welding process etc. The controlling performance influenced by the coefficient of correction function was discussed. It was concluded by the experiments the relation between the coefficient of correction function and welding quality, when the coefficient of correction function is great, the dynamic character of controller is better, when the coefficient of correction function is small, the sensitivity character of controller is better. Experimental results also show that digital and fuzzy logic control method enable the improvement of appearance of weld and stability of welding process to be achieved in submerged arc automatic welding. 展开更多
关键词 submerged arc welding microcomputer control correction function fuzzy logic control
下载PDF
SPECTRUM HANDOFF IN COGNITIVE RADIO WITH FUZZY LOGIC CONTROL 被引量:2
7
作者 Tang Wanbin Peng Dong 《Journal of Electronics(China)》 2010年第5期708-714,共7页
The secondary usage of spectrum has been investigated in Cognitive Radio(CR) network to resolving the spectrum scarcity issue in wireless communication.When Primary Users(PU) who own the spectrum appear,spectrum hando... The secondary usage of spectrum has been investigated in Cognitive Radio(CR) network to resolving the spectrum scarcity issue in wireless communication.When Primary Users(PU) who own the spectrum appear,spectrum handoff is needed to maintain the communications of Secondary Users.But the decision making of spectrum handoff is a challenge issue for CR network,because the input of decision making,which obtain through spectrum sensing,is heterogeneous and inexact.In this paper we will use fuzzy logic control theory to solve this issue and make use of new information for handoff operation:the probability of PU's occupancy at a certain channel.Our new algorithm can make more intelligent decision compared to simple traditional spectrum handoff decision making and reduce the probability of spectrum handoff,also the performance of SU's communication can be enhanced. 展开更多
关键词 Cognitive Radio (CR) Spectrum handoff fuzzy logic control
下载PDF
Fuzzy Logic Control for Semi-Active Suspension System of Tracked Vehicle 被引量:1
8
作者 管继富 顾亮 +1 位作者 侯朝桢 王国丽 《Journal of Beijing Institute of Technology》 EI CAS 2004年第2期113-117,共5页
The model of half a tracked vehicle semi-active suspension is established. The fuzzy logic controller of the semi-active suspension system is constructed. The acceleration of driver's seat and its time derivative ... The model of half a tracked vehicle semi-active suspension is established. The fuzzy logic controller of the semi-active suspension system is constructed. The acceleration of driver's seat and its time derivative are used as the inputs of the fuzzy logic controller, and the fuzzy logic controller output determines the semi-active suspension controllable damping force. The fuzzy logic controller is to minimize the mean square root of acceleration of the driver's seat. The control forces of controllable dampers behind the first road wheel are obtained by time delay, and the delay times are determined by the vehicle speed and axles distances. The simulation results show that this control method can decrease the acceleration of driver's seat and the suspension travel of the first road wheel, the ride quality is improved obviously. 展开更多
关键词 tracked vehicle semi-active suspension fuzzy logic control
下载PDF
Fuzzy Logic Control of a Robotic Manipulator for Obstacles Avoidance 被引量:1
9
作者 Nabeel Kadim Abid Al-Sahib Israa Rafie Shareef 《Journal of Mechanics Engineering and Automation》 2012年第1期9-16,共8页
This work presents a Fuzzy Logic Controller (FLC) assigned to control a robotic arm motion while avoiding the obstacles that may face the robotic arm in its movement from the initial point to the final point in an o... This work presents a Fuzzy Logic Controller (FLC) assigned to control a robotic arm motion while avoiding the obstacles that may face the robotic arm in its movement from the initial point to the final point in an optimized manner, in addition to avoid the singularity phenomenon, and without any exceeding of the physical constraints of the robot arm. A real platform (5 DOF "Degree Of Freedom" Lab Volt 5150 Robotic Arm) is used to carry this work practically, in addition to providing it by a vision sensor, where a new approach is proposed to inspect the robot work environment using a designed integrated MATLAB program having the ability to recognize the changeable locations of each of the robotic arm's end-effector, the goal, and the multi existed obstacles through a recorded film taken by a webcam, then these information will be treated using the FLC where its outputs represent the values that must be delivered to the robot to adopt them in its next steps till reaching to the goal in collision-free movements. The experimental results showed that the developed robotic ann travels successfully from Start to Goal where a high percentage of accuracy in arriving to Goal was achieved, and without colliding with any obstacle ensuring the harmonization between the theoretical part and the experimental part in achieving the best results of controlling the robotic arm's motion. 展开更多
关键词 Robotic manipulator fuzzy logic controller obstacles avoidance.
下载PDF
Maximum Power Point Tracker Controller Using Fuzzy Logic Control with Battery Load for Photovoltaics Systems 被引量:1
10
作者 Mazen Yeselam Baramadeh Mohamed Abd Almonem Abouelela Saad Mubarak Alghuwainem 《Smart Grid and Renewable Energy》 2021年第10期163-181,共19页
<span style="font-family:Verdana;">The target of this paper is to model a Maximum Power Point Tracker (MPPT) using a Fuzzy Logic Control (FLC) algorithm and to investigate its behavior with a battery l... <span style="font-family:Verdana;">The target of this paper is to model a Maximum Power Point Tracker (MPPT) using a Fuzzy Logic Control (FLC) algorithm and to investigate its behavior with a battery load. The advantage of this study over other studies in this field is that it considers a battery load rather than the commonly used</span><span></span><span></span><b><span><span></span><span></span> </span></b><span style="font-family:Verdana;">resistive load especially when we deal with the relationship between MPPT and system load. The system is about 60</span><span style="font-family:""> </span><span style="font-family:Verdana;">kW which </span><span style="font-family:Verdana;">is </span><span style="font-family:Verdana;">simulated under various environmental conditions by Matlab/Simulink program. For this type of non-linear application, FLC naturally offers a superior controller for </span><span style="font-family:Verdana;">the </span><span style="font-family:Verdana;">real load case. The artificial intelligence approach also benefits from this method for overcoming the complexity of nonlinear system modelling. The results show that FLC provides high performance for MPPT of PV system with battery load due to its low settling time and limited oscillation around the steady state value. These are</span><span style="font-family:""> </span><span style="font-family:Verdana;">assistant factors for increasing battery life.</span> 展开更多
关键词 MPPT controller fuzzy logic control PV System Matlab Simulink
下载PDF
Fuzzy logic controller implementation on a microbial electrolysis cell for biohydrogen production and storage
11
作者 Gabriel Khew Mun Hong Mohd Azlan Hussain Ahmad Khairi Abdul Wahab 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第12期149-159,共11页
This work presents the implementation of fuzzy logic control(FLC) on a microbial electrolysis cell(MEC).Hydrogen has been touted as a potential alternative source of energy to the depleting fossil fuels. MEC is one of... This work presents the implementation of fuzzy logic control(FLC) on a microbial electrolysis cell(MEC).Hydrogen has been touted as a potential alternative source of energy to the depleting fossil fuels. MEC is one of the most extensively studied method of hydrogen production. The utilization of biowaste as its substrate by MEC promotes the waste to energy initiative. The hydrogen production within the MEC system, which involves microbial interaction contributes to the system's nonlinearity. Taking into account of the high complexity of MEC system, a precise process control system is required to ensure a wellcontrolled biohydrogen production flow rate and storage application inside a tank. Proportionalderivative-integral(PID) controller has been one of the pioneer control loop mechanism. However, it lacks the capability to adapt properly in the presence of disturbance. An advanced process control mechanism such as the FLC has proven to be a better solution to be implemented on a nonlinear system due to its similarity in human-natured thinking. The performance of the FLC has been evaluated based on its implementation on the MEC system through various control schemes progressively. Similar evaluations include the performance of Proportional-Integral(PI) and PID controller for comparison purposes. The tracking capability of FLC is also accessed against another advanced controller that is the model predictive controller(MPC). One of the key findings in this work is that the FLC resulted in a desirable hydrogen output via MEC over the PI and PID controller in terms of shorter settling time and lesser overshoot. 展开更多
关键词 fuzzy logic control Process control NONLINEAR Microbial electrolysis cell Renewable energy HYDROGEN
下载PDF
Analyses and Simulation of Fuzzy Logic Control for Suspension System of a Track Vehicle
12
作者 于杨 魏雪霞 张永发 《Journal of Beijing Institute of Technology》 EI CAS 2008年第2期164-167,共4页
The vibration caused by terrible road excitation affects the ride quality and safety of track vehicles. The vibration control of suspension systems is a very important factor for modern track vehicles. A fuzzy logic c... The vibration caused by terrible road excitation affects the ride quality and safety of track vehicles. The vibration control of suspension systems is a very important factor for modern track vehicles. A fuzzy logic control for suspension system of a track vehicle is presented. A mechanical model and a system of difft, rential equations of motion taking account of the mass of loading wheel are established. Then the fuzzy logic control is applied to control the vibration of suspension system of track vehicles for sine signal and random road surfaces. Numerical simulation shows that the maximum acceleration of suspension system can be reduced to 44 % of the original value for sine signal road surface, and the mean square root of acceleration of suspension system can be reduced to 21% for random road surface. Therefore, the proposed fuzzy logic control is an efficient method for the suspension systems of track vehicles. 展开更多
关键词 suspension system track vehicle VIBRATION fuzzy logic control numerical simulation
下载PDF
Fuzzy Logic Control for Suspension Systems of Tracked Vehicles
13
作者 于杨 魏雪霞 张永发 《Journal of Beijing Institute of Technology》 EI CAS 2009年第1期37-40,共4页
A scheme of fuzzy logic control for the suspension system of a tracked vehicle is presented. A mechanical model for the whole body of a tracked vehicle, which is totally a fifteen-degree-of-freedom system, is establis... A scheme of fuzzy logic control for the suspension system of a tracked vehicle is presented. A mechanical model for the whole body of a tracked vehicle, which is totally a fifteen-degree-of-freedom system, is established. The model includes the vertical motion, the pitch motion as well as the roll motion of the tracked vehicle. In contrast to most previous studies, the coupling effect among the vertical, the pitch and the roll motions of the suspension system of a tracked vehicle is considered simultaneously. The simulation of fuzzy logic control under road surface with random excitation shows that the acceleration, pitch angle and roll angle of suspension system can be efficiently controlled. 展开更多
关键词 suspension system tracked vehicle vibration control fuzzy logic control numerical simulation
下载PDF
A tunable fuzzy logic controller for the vehicle semi-active suspension system
14
作者 方子帆 DENG +1 位作者 Zhaoxiang 《Journal of Chongqing University》 CAS 2002年第2期16-19,共4页
On the basis of analyzing the system constitution of vehicle semi-active suspension, a 4-DOF (degree of freedom) dynamic model is established. A tunable fuzzy logic controller is designed by using without quantificati... On the basis of analyzing the system constitution of vehicle semi-active suspension, a 4-DOF (degree of freedom) dynamic model is established. A tunable fuzzy logic controller is designed by using without quantification method and taking into account the uncertainty, nonlinearity and complexity of parameters for a vehicle suspension system. Simulation to test the performance of this controller is performed under random excitations and definite disturbances of a C grade road, and the effects of time delay and changes of system parameters on the vehicle suspension system are researched. The numerical simulation shows that the performance of the designed tunable fuzzy logic controller is effective, stable and reliable. 展开更多
关键词 VEHICLE semi-active suspension system fuzzy logic control SIMULATION
下载PDF
Correction factor based double model fuzzy logic control strategy of arc voltage in pulsed MIG welding
15
作者 吴开源 黄石生 蒙永民 《China Welding》 EI CAS 2005年第1期63-67,共5页
According to the feature of arc voltage control in welding steel using pulsed MIG welding, a correction factor based double model fuzzy logic controller (FLC) was developed to realize the arc voltage control by means ... According to the feature of arc voltage control in welding steel using pulsed MIG welding, a correction factor based double model fuzzy logic controller (FLC) was developed to realize the arc voltage control by means of arc voltage feedback. When the error of peak arc voltage was great, a coarse adjusting fuzzy logic control rules with correction factor was designed, in the controller, the peak arc voltage was controlled by the wire feeding speed by means of arc voltage feedback. When the error of peak arc voltage was small, a fine adjusting fuzzy logic control rules with correction factor was designed, in this controller, the peak arc voltage was controlled by the background time by means of arc voltage feedback. The FLC was realized in a Look-Up Table (LUT) method. Experiments had been carried out aiming at implementing the control strategy to control the arc length change in welding process. Experimental results show that the controller proposed enables the consistency of arc length and the stability of arc voltage and welding process to be achieved in pulsed MIG welding process. 展开更多
关键词 pulsed MIG welding arc voltage adjustment fuzzy logic control
下载PDF
Application of Fuzzy Logic Controller for Development of Control Strategy in PHEV
16
作者 Maged N.F. Nashed Said Wahsh +1 位作者 Hamed Galal Tarak Dakrory 《Computer Technology and Application》 2012年第1期1-7,共7页
In this paper, implantation of fuzzy logic controller for parallel hybrid electric vehicles (PHEV) is presented. In PHEV the required torque is generated by a combination of internal-combustion engine (ICE) and an... In this paper, implantation of fuzzy logic controller for parallel hybrid electric vehicles (PHEV) is presented. In PHEV the required torque is generated by a combination of internal-combustion engine (ICE) and an electric motor. The controller simulated using the SIMULINK/MATLAB package. The controller is designed based on the desired speed for driving and the state of speed error. In the other hand, performance of PHEV and ICE under different road cycle is given. The hardware setup is done for electric propulsion system; the system contains the induction motor, the three phase IGBT inverter with control circuit using microcontroller. The closed loop control system used a DC permanent generator whose output voltage is related to motor speed. Comparison between simulation and experimental results show accurate matching. 展开更多
关键词 Hybrid electric vehicles-induction motor internal combustion engine fuzzy logic control.
下载PDF
Improvement of PV/T Based Reverse Osmosis Desalination Plant Performances Using Fuzzy Logic Controller
17
作者 Mahmoud Ammous Sana Charfi +1 位作者 Ahmad Harb Maher Chaabene 《International Journal of Modern Nonlinear Theory and Application》 2016年第1期11-27,共17页
Photovoltaic based reverse osmosis desalination systems (PV/RO) present an effective method of water desalination especially in remote areas. The increase of the feed water temperature leads to an amelioration of the ... Photovoltaic based reverse osmosis desalination systems (PV/RO) present an effective method of water desalination especially in remote areas. The increase of the feed water temperature leads to an amelioration of the plant performances. Photovoltaic Thermal Collector (PV/T) represents an ideal power source as it provides both electric and thermal energies for the reverse osmosis process. Nevertheless, PV/T based RO plants should be controlled in order to solve operation problems related to electrical efficiency, reverse osmosis membrane, produced water and the rejected salts. This paper suggests a fuzzy logic controller for the flow rate of the circulating fluid into the PV/T collectors so as to ameliorate the system performances. The designed controller has improved the PV/T field electrical efficiency and preserved the reverse osmosis membrane which upgrades the system productivity. LABVIEW software is used to simulate the controlled system and validate the effectiveness of the controller. 展开更多
关键词 PV/T Collector Reverse Osmosis control fuzzy logic controller
下载PDF
A Fuzzy Logic Controller for Maximum Power Point Tracking with 8-Bit Microcontroller
18
作者 Y.R. Yang 《Journal of Energy and Power Engineering》 2011年第11期1078-1086,共9页
This paper presents the implementation of maximum power point tracking (MPPT) with fuzzy logic controller. For cost consideration, an inexpensive 8-bit microcontroller, PIC 16F877A, is selected and programmed with C... This paper presents the implementation of maximum power point tracking (MPPT) with fuzzy logic controller. For cost consideration, an inexpensive 8-bit microcontroller, PIC 16F877A, is selected and programmed with C language and integer variables For evaluation, the implemented fuzzy logic controller (FLC) is compared with the MPPT controller of using perturbation and observation (P&O). Both types of MPPT controllers are tested on the same voltage source with a series-connected resistor. Experimental results show that the implemented FLC with appropriate design meets the control requirements of MPPT. The FLC based on linguistic fuzzy rules has more flexibility and intelligence than conventional P&O controller, but the FLC spends more RAM and ROM spaces than the P&O tracker does. 展开更多
关键词 fuzzy logic controllers maximum power point tracking microcontrollers.
下载PDF
Fuzzy Logic Controlled Induction Motor Based Intelligent Controller
19
作者 Salim Mahdab Linda Barazane Seghir Boucherit 《Journal of Energy and Power Engineering》 2013年第6期1192-1197,共6页
The indirect vector controlled IM (induction motor) drive involves decoupling of the stator current into torque and flux producing components. This paper proposes the implementation of a fuzzy logic control scheme a... The indirect vector controlled IM (induction motor) drive involves decoupling of the stator current into torque and flux producing components. This paper proposes the implementation of a fuzzy logic control scheme applied to a two d-q current components model of an induction motor. An intelligent based on fuzzy logic controller is developed with the help of knowledge rule base for efficient control. The performance of fuzzy logic controller is compared with that of the proportional integral controller in terms of the settling time and dynamic response to sudden load changes. The harmonic pattern of the output current is evaluated for both fixed gain proportional integral controller and the fuzzy logic based controller. The performance of the IM drive has been analyzed under steady state and transient conditions. Simulation results of both the controllers are presented for comparison. 展开更多
关键词 IVC (indirect vector control PI controller FLC fuzzy logic controller).
下载PDF
Position Control of Electro-hydraulic Actuator System Using Fuzzy Logic Controller Optimized by Particle Swarm Optimization 被引量:17
20
作者 Daniel M. Wonohadidjojo Ganesh Kothapalli Mohammed Y. Hassan 《International Journal of Automation and computing》 EI CSCD 2013年第3期181-193,共13页
The position control system of an electro-hydraulic actuator system (EHAS) is investigated in this paper. The EHAS is developed by taking into consideration the nonlinearities of the system: the friction and the in... The position control system of an electro-hydraulic actuator system (EHAS) is investigated in this paper. The EHAS is developed by taking into consideration the nonlinearities of the system: the friction and the internal leakage. A variable load that simulates a realistic load in robotic excavator is taken as the trajectory reference. A method of control strategy that is implemented by employing a fuzzy logic controller (FLC) whose parameters are optimized using particle swarm optimization (PSO) is proposed. The scaling factors of the fuzzy inference system are tuned to obtain the optimal values which yield the best system performance. The simulation results show that the FLC is able to track the trajectory reference accurately for a range of values of orifice opening. Beyond that range, the orifice opening may introduce chattering, which the FLC alone is not sufficient to overcome. The PSO optimized FLC can reduce the chattering significantly. This result justifies the implementation of the proposed method in position control of EHAS. 展开更多
关键词 Position control electro-hydraulic actuator fuzzy logic controller particle swarm optimization (PSO) nonlinear.
原文传递
上一页 1 2 6 下一页 到第
使用帮助 返回顶部