In this work, AlN films were grown using gallium (Ga) as surfactant on 4° off-axis 4H-SiC substrates via microwave plasma chemical vapor deposition (MPCVD). We have found that AlN growth rate can be greatly impro...In this work, AlN films were grown using gallium (Ga) as surfactant on 4° off-axis 4H-SiC substrates via microwave plasma chemical vapor deposition (MPCVD). We have found that AlN growth rate can be greatly improved due to the catalytic effect of trimethyl-gallium (TMGa), but AlN crystal structure and composition are not affected. When the proportion of TMGa in gas phase was low, crystal quality of AlN can be improved and three-dimensional growth mode of AlN was enhanced with the increase of Ga source. When the proportion of TMGa in gas phase was high, two-dimensional growth mode of AlN was presented, with the increase of Ga source results in the deterioration of AlN crystal quality. Finally, employing a two-step growth approach, involving the initial growth of Ga-free AlN nucleation layer followed by Ga-assisted AlN growth, high quality of AlN film with flat surface was obtained and the full width at half maximum (FWHM) values of 415 nm AlN (002) and (102) planes were 465 and 597 arcsec.展开更多
Growth and electronic properties of ultrathin Ga films on Cd(0001) are investigated by low-temperature scanning tunneling microscopy(STM) and density functional theory(DFT) calculations. It is found that Ga films exhi...Growth and electronic properties of ultrathin Ga films on Cd(0001) are investigated by low-temperature scanning tunneling microscopy(STM) and density functional theory(DFT) calculations. It is found that Ga films exhibit the epitaxial growth with the pseudomorphic 1×1 lattice. The Ga islands deposited at 100 K show a ramified shape due to the suppressed edge diffusion and corner crossing. Furthermore, the majority of Ga islands reveal flat tops and a preferred height of three atomic layers, indicating the electronic growth at low temperature. Annealing to room temperature leads to not only the growth mode transition from electronic growth to conventional Stranski–Krastanov growth, but also the shape transition from ramified islands to smooth compact islands. Scanning tunneling spectroscopy(STS) measurements reveal that the Ga monolayer exhibits metallic behavior. DFT calculations indicate that all the interfacial Ga atoms occupy the energetically favorable hcp-hollow sites of the substrate. The charge density difference analysis demonstrates that the charge transfer from the Cd substrate to the Ga atoms is negligible, and there is weak interaction between Ga atoms and the Cd substrate. These results shall shed important light on fabrication of ultrathin Ga films on metal substrates with novel physical properties.展开更多
The soil chemistry of gallium, indium, and thallium is not well defined, particularly with emerging evidence that these elements have toxic properties and may influence food safety. The purpose of this investigation w...The soil chemistry of gallium, indium, and thallium is not well defined, particularly with emerging evidence that these elements have toxic properties and may influence food safety. The purpose of this investigation was to estimate the soil concentrations of gallium, indium, and thallium and determine if these elements have a soil chemistry like aluminum and therefore demonstrate significant concentration correlations with aluminum. Twenty-seven soil series were selected, and the elemental concentrations were determined using aqua regia digestion with analytical determination performed using inductively coupled plasma emission-mass spectroscopy. The concentrations of gallium, indium, and thallium generally compared with the known literature. Aluminum-gallium and aluminum-thallium exhibited significant concentration correlations across the soil horizons of the sampled soils. Aluminum, gallium, and thallium did demonstrate concentration increases in soil horizons having illuviation of phyllosilicates, implying these phyllosilicates have adsorption and isomorphic substitution behaviors involving these elements.展开更多
The anisotropic properties and applications ofβ-gallium oxide(β-Ga_(2)O_(3))are comprehensively reviewed.All the anisotropic properties are essentially resulted from the anisotropic crystal structure.The process flo...The anisotropic properties and applications ofβ-gallium oxide(β-Ga_(2)O_(3))are comprehensively reviewed.All the anisotropic properties are essentially resulted from the anisotropic crystal structure.The process flow of how to exfoliate nanoflakes from bulk material is introduced.Anisotropic optical properties,including optical bandgap,Raman and photolumines-cence characters are comprehensively reviewed.Three measurement configurations of angle-resolved polarized Raman spec-tra(ARPRS)are reviewed,with Raman intensity formulas calculated with Raman tensor elements.The method to obtain the Raman tensor elements of phonon modes through experimental fitting is also introduced.In addition,the anisotropy in elec-tron mobility and affinity are discussed.The applications,especially polarization photodetectors,based onβ-Ga_(2)O_(3)were summa-rized comprehensively.Three kinds of polarization detection mechanisms based on material dichroism,1D morphology and metal-grids are discussed in-depth.This review paper provides a framework for anisotropic optical and electric properties ofβ-Ga_(2)O_(3),as well as the applications based on these characters,and is expected to lead to a wider discussion on this topic.展开更多
In the era of accelerated development in artificial intelligence as well as explosive growth of information and data throughput,underlying hardware devices that can integrate perception and memory while simultaneously...In the era of accelerated development in artificial intelligence as well as explosive growth of information and data throughput,underlying hardware devices that can integrate perception and memory while simultaneously offering the bene-fits of low power consumption and high transmission rates are particularly valuable.Neuromorphic devices inspired by the human brain are considered to be one of the most promising successors to the efficient in-sensory process.In this paper,a homojunction-based multi-functional optoelectronic synapse(MFOS)is proposed and testified.It enables a series of basic electri-cal synaptic plasticity,including paired-pulse facilitation/depression(PPF/PPD)and long-term promotion/depression(LTP/LTD).In addition,the synaptic behaviors induced by electrical signals could be instead achieved through optical signals,where its sen-sitivity to optical frequency allows the MFOS to simulate high-pass filtering applications in situ and the perception capability integrated into memory endows it with the information acquisition and processing functions as a visual system.Meanwhile,the MFOS exhibits its performances of associative learning and logic gates following the illumination with two different wave-lengths.As a result,the proposed MFOS offers a solution for the realization of intelligent visual system and bionic electronic eye,and will provide more diverse application scenarios for future neuromorphic computing.展开更多
Liquid metal gallium has been widely used in numerous fields, from nuclear engineering, catalysts, and energy storage to electronics owing to its remarkable thermal and electrical properties along with low viscosity a...Liquid metal gallium has been widely used in numerous fields, from nuclear engineering, catalysts, and energy storage to electronics owing to its remarkable thermal and electrical properties along with low viscosity and nontoxicity. Compared with high-temperature liquid metals, room-temperature liquid metals, such as gallium(Ga), are emerging as promising alternatives for fabricating advanced energy storage devices, such as phase change materials, by harvesting the advantageous properties of their liquid state maintained without external energy input. However, the thermal and electrical properties of liquid metals at the phase transition are rather poorly studied, limiting their practical applications. In this study, we reported on the physical properties of the solid–liquid phase transition of Ga using a custom-designed, solid–liquid electrical and thermal measurement system. We observed that the electrical conductivity of Ga progressively decreases with an increase in temperature. However, the Seebeck coefficient of Ga increases from 0.2 to 2.1 μV/K, and thermal conductivity from 7.6 to 33 W/(K·m). These electrical and thermal properties of Ga at solid–liquid phase transition would be useful for practical applications.展开更多
With technology computer-aided design(TCAD)simulation software,we design a new structure of gallium oxide on gallium-nitride Schottky barrier diode(SBD).The parameters of gallium oxide are defined as new material para...With technology computer-aided design(TCAD)simulation software,we design a new structure of gallium oxide on gallium-nitride Schottky barrier diode(SBD).The parameters of gallium oxide are defined as new material parameters in the material library,and the SBD turn-on and breakdown behavior are simulated.The simulation results reveal that this new structure has a larger turn-on current than Ga2O3 SBD and a larger breakdown voltage than Ga N SBD.Also,to solve the lattice mismatch problem in the real epitaxy,we add a Zn O layer as a transition layer.The simulations show that the device still has good properties after adding this layer.展开更多
The complexation of gallium with 2-hydroxy-5-T-butylphenol-4’-methoxy-azobenzene (HR) has been studied by atomic absorption and spectrophotometric methods. The optimal conditions for the formation and extraction of t...The complexation of gallium with 2-hydroxy-5-T-butylphenol-4’-methoxy-azobenzene (HR) has been studied by atomic absorption and spectrophotometric methods. The optimal conditions for the formation and extraction of the complex were found. The maximum light absorption of the complex in n-butanol is in the range of 450 - 470 nm. The molar absorption coefficient is (3.3 - 4.2)<span style="white-space:nowrap;"><span style="white-space:nowrap;">⋅</span></span>10<sup>4</sup>. The stability constant of the gallium coordination compound in n-butanol is <em>β</em><sub>l</sub> = 4.2<span style="white-space:nowrap;"><span style="white-space:nowrap;">⋅</span></span>10<sup>10</sup>. The developed technique allows to determine the gallium content within n × 10<sup><span style="white-space:nowrap;"><span style="white-space:nowrap;">−</span></span>1</sup> - n × 10<sup><span style="white-space:nowrap;"><span style="white-space:nowrap;">−</span></span>4</sup>%. The selective and sensitive technique for the extraction-atomic absorption determination of gallium in soils has been developed.展开更多
Until very recently, gallium oxide(Ga_2O_3) has aroused more and more interests in the area of power electronics due to its ultra-wide bandgap of 4.5–4.8 eV, estimated critical field of 8 MV/cm and decent intrinsic e...Until very recently, gallium oxide(Ga_2O_3) has aroused more and more interests in the area of power electronics due to its ultra-wide bandgap of 4.5–4.8 eV, estimated critical field of 8 MV/cm and decent intrinsic electron mobility limit of250 cm2/(V·s), yielding a high Baliga's figures-of-merit(FOM) of more than 3000, which is several times higher than GaN and SiC.In addition to its excellent material properties, potential low-cost and large size substrate through melt-grown methodology also endows β-Ga_2O_3 more potential for future low-cost power devices. This article focuses on reviewing the most recent advances ofβ-Ga_2O_3 based power devices. It will be starting with a brief introduction to the material properties of β-Ga_2O_3 and then the growth techniques of its native substrate, followed by the thin film epitaxial growth. The performance of state-of-art β-Ga_2O_3 devices, including diodes and FETs are fully discussed and compared. Finally, potential solutions to the challenges of β-Ga_2O_3 are also discussed and explored.展开更多
Gallium oxide(Ga_2O_3), a typical ultra wide bandgap semiconductor, with a bandgap of ~4.9 e V, critical breakdown field of 8 MV/cm, and Baliga's figure of merit of 3444, is promising to be used in high-power and ...Gallium oxide(Ga_2O_3), a typical ultra wide bandgap semiconductor, with a bandgap of ~4.9 e V, critical breakdown field of 8 MV/cm, and Baliga's figure of merit of 3444, is promising to be used in high-power and high-voltage devices.Recently, a keen interest in employing Ga_2O_3 in power devices has been aroused. Many researches have verified that Ga_2O_3 is an ideal candidate for fabricating power devices. In this review, we summarized the recent progress of field-effect transistors(FETs) and Schottky barrier diodes(SBDs) based on Ga_2O_3, which may provide a guideline for Ga_2O_3 to be preferably used in power devices fabrication.展开更多
A kind of Levextrel resin separation process was developed for separation ofindium (III), gallium (III), and zinc (II) from aqueous sulfate solution with Levextrel resincontaining di(2-ethylhexyl) phosphoric acid (CL-...A kind of Levextrel resin separation process was developed for separation ofindium (III), gallium (III), and zinc (II) from aqueous sulfate solution with Levextrel resincontaining di(2-ethylhexyl) phosphoric acid (CL-P 204). The aim of the research is to collectpreliminary results for a pilot-scale production. Properties of adsorbing indium (III), gallium(III), and zinc (II) from sulfate solution with the Levextrel resin were first studied by batchoperation and column operation. The optimum pH, adsorption capacities and concentrations ofstripping agents for indium (III), gallium (III) were tested. The separation order of indium (III),gallium (III), and zinc (II) from sulfate solution with CL-P 204 Levextrel resin was found thatindium (III) could be first separated by adsorbing at the acidity of 1.0 mol/L whereas gallium (III)and zinc (II) could not, and they were adsorbed together by adsorbing at pH =2.8, then separatedfrom each other by stripping with 0.1 and 0.5 mol/L hydrochloric acid, respectively. The recoveriesof three metal ions were all higher than 99 percent. The cyclic properties of this resin are well.展开更多
Michael addition of indole and pyrrole to a variety of α, β-unsaturated ketones was efficiently promoted by a catalytic amount of GaCl3 in aqueous media to afford the corresponding products in good to excellent yields.
The effects of Ga on microstructures and mechanical properties of the cadmium-free silver based brazing filler metals have been investigated. The results indicated that C,a additions had the noticeable effect on the m...The effects of Ga on microstructures and mechanical properties of the cadmium-free silver based brazing filler metals have been investigated. The results indicated that C,a additions had the noticeable effect on the microstructure, especially on the shape of the phases. With the increase of Ga addition, the amount of eutectic structure increased, and the acicular eutectic structure changed into the fine eutectic structure with micro-vermiform and rod-like shape. When the addition of Ga was 3.0 wt. %, none of defects exist in the microstructure of the brazed joint. The tensile strength increased from 382 MPa to 511 MPa with the content of Ga increasing from 0 to 3.0 wt. %.展开更多
Due to the remarkable growth rate compared to another growth methods for gallium nitride(GaN)growth,hydride vapor phase epitaxy(HVPE)is now the only method for mass product GaN substrates.In this review,commercial HVP...Due to the remarkable growth rate compared to another growth methods for gallium nitride(GaN)growth,hydride vapor phase epitaxy(HVPE)is now the only method for mass product GaN substrates.In this review,commercial HVPE systems and the GaN crystals grown by them are demonstrated.This article also illustrates some innovative attempts to develop homebuilt HVPE systems.Finally,the prospects for the further development of HVPE for GaN crystal growth in the future are also discussed.展开更多
Zinc concentrate with high gallium content is one of the main resources of gallium.The gallium presents in the form of isomorphism in tetrahedron coordination with sulfur in sphalerite.The research was to investigate ...Zinc concentrate with high gallium content is one of the main resources of gallium.The gallium presents in the form of isomorphism in tetrahedron coordination with sulfur in sphalerite.The research was to investigate the amenability of zinc concentrate with high gallium to pressure oxygen leaching.The particle size,sulfuric acid concentration,oxygen partial pressure,additive amount,and time of reaction were studied.The extraction yields of gallium and zinc are 86%and 98%,respectively.The optimal condition is 100 g of zinc concentrate with particle size smaller than 38 lm,sulfuric acid concentration150 g L-1,leaching temperature 150℃,leaching time120 min,oxygen partial pressure 0.7 MPa,additive amount of 0.2 wt%.展开更多
Ultraviolet(UV) photodetectors(PDs) have drawn great attention in recent years due to their potential application in civil and military fields. Because of its ultrawide bandgap, low cost, strong radiation hardness, an...Ultraviolet(UV) photodetectors(PDs) have drawn great attention in recent years due to their potential application in civil and military fields. Because of its ultrawide bandgap, low cost, strong radiation hardness, and high thermal and chemical stability with high visible-light transparency, Ga_2O_3 is regarded as the most promising candidate for UV detection.Furthermore, the bandgap of Ga_2O_3 is as high as 4.7–4.9 eV, directly corresponding to the solar-blind UV detection band with wavelength less than 280 nm. There is no need of doping in Ga_2O_3 to tune its bandgap, compared to AlGaN, MgZnO,etc, thereby avoiding alloy composition fluctuations and phase separation. At present, solar-blind Ga_2O_3 photodetectors based on single crystal or amorphous Ga_2O_3 are mainly focused on metal–semiconductor–metal and Schottky photodiodes.In this work, the recent achievements of Ga_2O_3 photodetectors are systematically reviewed. The characteristics and performances of different photodetector structures based on single crystal Ga_2O_3 and amorphous Ga_2O_3 thin film are analyzed and compared. Finally, the prospects of Ga_2O_3 UV photodetectors are forecast.展开更多
GaAs nanocrystals were prepared via a simple mechanical ball milling technique. The prepared GaAs nanocrystals have high purity and could form colloidal ethanol suspension without any surfactant additives. The colloid...GaAs nanocrystals were prepared via a simple mechanical ball milling technique. The prepared GaAs nanocrystals have high purity and could form colloidal ethanol suspension without any surfactant additives. The colloidal GaAs nanocrystal suspension displayed excellent two-photon absorption property over the visible and near-infrared region from 490 nm to 1064 nm, which enables it to become a promising broadband optical limiting material.展开更多
The The research progress in trialkyl compounds of gallium andindium was discussed from two aspect, one was the chemical synthesisof the compounds and the other was the purification of them. Thereare three synthesis r...The The research progress in trialkyl compounds of gallium andindium was discussed from two aspect, one was the chemical synthesisof the compounds and the other was the purification of them. Thereare three synthesis routes be- ing reported in the first aspect, i.e.the route staring form pure metal, the route starting from the puremetal trihalides, and the electrochemical route. In the secondaspect, the purifying methods of decomposition-distillation and zonerefining were reviewed.展开更多
Tetrahydrofuran ring can be opened with acyl chlorides or anhydrides catalyzed by gallium triiodides to afford iodo esters under mild conditions in good yields.
In order to extract gallium from a high-silica-content flue dust generated in corundum production,a mixed acid solution of H2SO4 and HF was used for leaching,and test parameters of the leaching process were optimized....In order to extract gallium from a high-silica-content flue dust generated in corundum production,a mixed acid solution of H2SO4 and HF was used for leaching,and test parameters of the leaching process were optimized.Experimental results show that the leaching rate of gallium was only 38%when H2SO4 was used as leaching agent.Composition analysis results of micro areas in this corundum flue dust indicate that the content of gallium in silica-enriched phases was high;this portion of gallium was insoluble in H2SO4 solution.The leaching rate of gallium increased significantly with addition of HF due to corrosion of silica.Effects of reaction time,temperature,and concentrations of HF and H2SO4 on leaching rates of gallium were investigated.The leaching rate of gallium reached 91%when this corundum flue dust was leached in a mixed acid solution of H2SO4 and HF for 4 h,at a temperature of 80°C,with a liquid-to-solid ratio of 5:1(mL/g).The optimal concentrations of H2SO4 and HF in the mixed acid solution were 1.5 and 6.4 mol/L,respectively.展开更多
基金supported by the Key Research and Development Program of Jilin Provincial Department of Science and Technology (No. 20210201031GX)Innovation capacity building project of Jilin Province (No. 2023C031-2)The Key Research and Development Program of Jiangsu Province (No. BE2022057-1)。
文摘In this work, AlN films were grown using gallium (Ga) as surfactant on 4° off-axis 4H-SiC substrates via microwave plasma chemical vapor deposition (MPCVD). We have found that AlN growth rate can be greatly improved due to the catalytic effect of trimethyl-gallium (TMGa), but AlN crystal structure and composition are not affected. When the proportion of TMGa in gas phase was low, crystal quality of AlN can be improved and three-dimensional growth mode of AlN was enhanced with the increase of Ga source. When the proportion of TMGa in gas phase was high, two-dimensional growth mode of AlN was presented, with the increase of Ga source results in the deterioration of AlN crystal quality. Finally, employing a two-step growth approach, involving the initial growth of Ga-free AlN nucleation layer followed by Ga-assisted AlN growth, high quality of AlN film with flat surface was obtained and the full width at half maximum (FWHM) values of 415 nm AlN (002) and (102) planes were 465 and 597 arcsec.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.11874304 and 11574253)。
文摘Growth and electronic properties of ultrathin Ga films on Cd(0001) are investigated by low-temperature scanning tunneling microscopy(STM) and density functional theory(DFT) calculations. It is found that Ga films exhibit the epitaxial growth with the pseudomorphic 1×1 lattice. The Ga islands deposited at 100 K show a ramified shape due to the suppressed edge diffusion and corner crossing. Furthermore, the majority of Ga islands reveal flat tops and a preferred height of three atomic layers, indicating the electronic growth at low temperature. Annealing to room temperature leads to not only the growth mode transition from electronic growth to conventional Stranski–Krastanov growth, but also the shape transition from ramified islands to smooth compact islands. Scanning tunneling spectroscopy(STS) measurements reveal that the Ga monolayer exhibits metallic behavior. DFT calculations indicate that all the interfacial Ga atoms occupy the energetically favorable hcp-hollow sites of the substrate. The charge density difference analysis demonstrates that the charge transfer from the Cd substrate to the Ga atoms is negligible, and there is weak interaction between Ga atoms and the Cd substrate. These results shall shed important light on fabrication of ultrathin Ga films on metal substrates with novel physical properties.
文摘The soil chemistry of gallium, indium, and thallium is not well defined, particularly with emerging evidence that these elements have toxic properties and may influence food safety. The purpose of this investigation was to estimate the soil concentrations of gallium, indium, and thallium and determine if these elements have a soil chemistry like aluminum and therefore demonstrate significant concentration correlations with aluminum. Twenty-seven soil series were selected, and the elemental concentrations were determined using aqua regia digestion with analytical determination performed using inductively coupled plasma emission-mass spectroscopy. The concentrations of gallium, indium, and thallium generally compared with the known literature. Aluminum-gallium and aluminum-thallium exhibited significant concentration correlations across the soil horizons of the sampled soils. Aluminum, gallium, and thallium did demonstrate concentration increases in soil horizons having illuviation of phyllosilicates, implying these phyllosilicates have adsorption and isomorphic substitution behaviors involving these elements.
基金supported by the National Natural Science Foundation of China(Grant No.61505109)Youth Innovative Talents Attracting and Cultivating Plan of Colleges and Universities in Shandong Province(No.21)+1 种基金Youth Innovation Team of colleges and universities in Shandong Province(Grant No.2022KJ223)Shandong Provincial Natural Science Foundation(Grant No.ZR2021QF020).
文摘The anisotropic properties and applications ofβ-gallium oxide(β-Ga_(2)O_(3))are comprehensively reviewed.All the anisotropic properties are essentially resulted from the anisotropic crystal structure.The process flow of how to exfoliate nanoflakes from bulk material is introduced.Anisotropic optical properties,including optical bandgap,Raman and photolumines-cence characters are comprehensively reviewed.Three measurement configurations of angle-resolved polarized Raman spec-tra(ARPRS)are reviewed,with Raman intensity formulas calculated with Raman tensor elements.The method to obtain the Raman tensor elements of phonon modes through experimental fitting is also introduced.In addition,the anisotropy in elec-tron mobility and affinity are discussed.The applications,especially polarization photodetectors,based onβ-Ga_(2)O_(3)were summa-rized comprehensively.Three kinds of polarization detection mechanisms based on material dichroism,1D morphology and metal-grids are discussed in-depth.This review paper provides a framework for anisotropic optical and electric properties ofβ-Ga_(2)O_(3),as well as the applications based on these characters,and is expected to lead to a wider discussion on this topic.
基金supported by the National Natural Science Foundation of China under Grant(62174068,61625404).
文摘In the era of accelerated development in artificial intelligence as well as explosive growth of information and data throughput,underlying hardware devices that can integrate perception and memory while simultaneously offering the bene-fits of low power consumption and high transmission rates are particularly valuable.Neuromorphic devices inspired by the human brain are considered to be one of the most promising successors to the efficient in-sensory process.In this paper,a homojunction-based multi-functional optoelectronic synapse(MFOS)is proposed and testified.It enables a series of basic electri-cal synaptic plasticity,including paired-pulse facilitation/depression(PPF/PPD)and long-term promotion/depression(LTP/LTD).In addition,the synaptic behaviors induced by electrical signals could be instead achieved through optical signals,where its sen-sitivity to optical frequency allows the MFOS to simulate high-pass filtering applications in situ and the perception capability integrated into memory endows it with the information acquisition and processing functions as a visual system.Meanwhile,the MFOS exhibits its performances of associative learning and logic gates following the illumination with two different wave-lengths.As a result,the proposed MFOS offers a solution for the realization of intelligent visual system and bionic electronic eye,and will provide more diverse application scenarios for future neuromorphic computing.
基金the support provided by A*STAR and the Industry Alignment Fund through the Pharos “Hybrid thermoelectric materials for ambient applications” Program (No.1527200021)。
文摘Liquid metal gallium has been widely used in numerous fields, from nuclear engineering, catalysts, and energy storage to electronics owing to its remarkable thermal and electrical properties along with low viscosity and nontoxicity. Compared with high-temperature liquid metals, room-temperature liquid metals, such as gallium(Ga), are emerging as promising alternatives for fabricating advanced energy storage devices, such as phase change materials, by harvesting the advantageous properties of their liquid state maintained without external energy input. However, the thermal and electrical properties of liquid metals at the phase transition are rather poorly studied, limiting their practical applications. In this study, we reported on the physical properties of the solid–liquid phase transition of Ga using a custom-designed, solid–liquid electrical and thermal measurement system. We observed that the electrical conductivity of Ga progressively decreases with an increase in temperature. However, the Seebeck coefficient of Ga increases from 0.2 to 2.1 μV/K, and thermal conductivity from 7.6 to 33 W/(K·m). These electrical and thermal properties of Ga at solid–liquid phase transition would be useful for practical applications.
文摘With technology computer-aided design(TCAD)simulation software,we design a new structure of gallium oxide on gallium-nitride Schottky barrier diode(SBD).The parameters of gallium oxide are defined as new material parameters in the material library,and the SBD turn-on and breakdown behavior are simulated.The simulation results reveal that this new structure has a larger turn-on current than Ga2O3 SBD and a larger breakdown voltage than Ga N SBD.Also,to solve the lattice mismatch problem in the real epitaxy,we add a Zn O layer as a transition layer.The simulations show that the device still has good properties after adding this layer.
文摘The complexation of gallium with 2-hydroxy-5-T-butylphenol-4’-methoxy-azobenzene (HR) has been studied by atomic absorption and spectrophotometric methods. The optimal conditions for the formation and extraction of the complex were found. The maximum light absorption of the complex in n-butanol is in the range of 450 - 470 nm. The molar absorption coefficient is (3.3 - 4.2)<span style="white-space:nowrap;"><span style="white-space:nowrap;">⋅</span></span>10<sup>4</sup>. The stability constant of the gallium coordination compound in n-butanol is <em>β</em><sub>l</sub> = 4.2<span style="white-space:nowrap;"><span style="white-space:nowrap;">⋅</span></span>10<sup>10</sup>. The developed technique allows to determine the gallium content within n × 10<sup><span style="white-space:nowrap;"><span style="white-space:nowrap;">−</span></span>1</sup> - n × 10<sup><span style="white-space:nowrap;"><span style="white-space:nowrap;">−</span></span>4</sup>%. The selective and sensitive technique for the extraction-atomic absorption determination of gallium in soils has been developed.
文摘Until very recently, gallium oxide(Ga_2O_3) has aroused more and more interests in the area of power electronics due to its ultra-wide bandgap of 4.5–4.8 eV, estimated critical field of 8 MV/cm and decent intrinsic electron mobility limit of250 cm2/(V·s), yielding a high Baliga's figures-of-merit(FOM) of more than 3000, which is several times higher than GaN and SiC.In addition to its excellent material properties, potential low-cost and large size substrate through melt-grown methodology also endows β-Ga_2O_3 more potential for future low-cost power devices. This article focuses on reviewing the most recent advances ofβ-Ga_2O_3 based power devices. It will be starting with a brief introduction to the material properties of β-Ga_2O_3 and then the growth techniques of its native substrate, followed by the thin film epitaxial growth. The performance of state-of-art β-Ga_2O_3 devices, including diodes and FETs are fully discussed and compared. Finally, potential solutions to the challenges of β-Ga_2O_3 are also discussed and explored.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61774019,51572033,and 51572241)the Beijing Municipal Commission of Science and Technology,China(Grant No.SX2018-04)
文摘Gallium oxide(Ga_2O_3), a typical ultra wide bandgap semiconductor, with a bandgap of ~4.9 e V, critical breakdown field of 8 MV/cm, and Baliga's figure of merit of 3444, is promising to be used in high-power and high-voltage devices.Recently, a keen interest in employing Ga_2O_3 in power devices has been aroused. Many researches have verified that Ga_2O_3 is an ideal candidate for fabricating power devices. In this review, we summarized the recent progress of field-effect transistors(FETs) and Schottky barrier diodes(SBDs) based on Ga_2O_3, which may provide a guideline for Ga_2O_3 to be preferably used in power devices fabrication.
文摘A kind of Levextrel resin separation process was developed for separation ofindium (III), gallium (III), and zinc (II) from aqueous sulfate solution with Levextrel resincontaining di(2-ethylhexyl) phosphoric acid (CL-P 204). The aim of the research is to collectpreliminary results for a pilot-scale production. Properties of adsorbing indium (III), gallium(III), and zinc (II) from sulfate solution with the Levextrel resin were first studied by batchoperation and column operation. The optimum pH, adsorption capacities and concentrations ofstripping agents for indium (III), gallium (III) were tested. The separation order of indium (III),gallium (III), and zinc (II) from sulfate solution with CL-P 204 Levextrel resin was found thatindium (III) could be first separated by adsorbing at the acidity of 1.0 mol/L whereas gallium (III)and zinc (II) could not, and they were adsorbed together by adsorbing at pH =2.8, then separatedfrom each other by stripping with 0.1 and 0.5 mol/L hydrochloric acid, respectively. The recoveriesof three metal ions were all higher than 99 percent. The cyclic properties of this resin are well.
基金support by the Natural Science Foundation of Zhejiang Province(No.Y4051137,Y405015 and Y4080177)
文摘Michael addition of indole and pyrrole to a variety of α, β-unsaturated ketones was efficiently promoted by a catalytic amount of GaCl3 in aqueous media to afford the corresponding products in good to excellent yields.
文摘The effects of Ga on microstructures and mechanical properties of the cadmium-free silver based brazing filler metals have been investigated. The results indicated that C,a additions had the noticeable effect on the microstructure, especially on the shape of the phases. With the increase of Ga addition, the amount of eutectic structure increased, and the acicular eutectic structure changed into the fine eutectic structure with micro-vermiform and rod-like shape. When the addition of Ga was 3.0 wt. %, none of defects exist in the microstructure of the brazed joint. The tensile strength increased from 382 MPa to 511 MPa with the content of Ga increasing from 0 to 3.0 wt. %.
基金supported by the National Key Research and Development Plan (No. 2017YFB0404201)the National Science Foundation of China (Nos. 61774147, 61874108)
文摘Due to the remarkable growth rate compared to another growth methods for gallium nitride(GaN)growth,hydride vapor phase epitaxy(HVPE)is now the only method for mass product GaN substrates.In this review,commercial HVPE systems and the GaN crystals grown by them are demonstrated.This article also illustrates some innovative attempts to develop homebuilt HVPE systems.Finally,the prospects for the further development of HVPE for GaN crystal growth in the future are also discussed.
基金supported by the National Basic Research Program of China (No. 2010CB630905)
文摘Zinc concentrate with high gallium content is one of the main resources of gallium.The gallium presents in the form of isomorphism in tetrahedron coordination with sulfur in sphalerite.The research was to investigate the amenability of zinc concentrate with high gallium to pressure oxygen leaching.The particle size,sulfuric acid concentration,oxygen partial pressure,additive amount,and time of reaction were studied.The extraction yields of gallium and zinc are 86%and 98%,respectively.The optimal condition is 100 g of zinc concentrate with particle size smaller than 38 lm,sulfuric acid concentration150 g L-1,leaching temperature 150℃,leaching time120 min,oxygen partial pressure 0.7 MPa,additive amount of 0.2 wt%.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61521064,61522408,61574169,61334007,61474136,and 61574166)the Ministry of Science and Technology of China(Grant Nos.2018YFB0406504,2016YFA0201803,2016YFA0203800,and 2017YFB0405603)+1 种基金the Key Research Program of Frontier Sciences of Chinese Academy of Sciences(Grant Nos.QYZDB-SSW-JSC048 and QYZDY-SSW-JSC001)the Beijing Municipal Science and Technology Project,China(Grant No.Z171100002017011)
文摘Ultraviolet(UV) photodetectors(PDs) have drawn great attention in recent years due to their potential application in civil and military fields. Because of its ultrawide bandgap, low cost, strong radiation hardness, and high thermal and chemical stability with high visible-light transparency, Ga_2O_3 is regarded as the most promising candidate for UV detection.Furthermore, the bandgap of Ga_2O_3 is as high as 4.7–4.9 eV, directly corresponding to the solar-blind UV detection band with wavelength less than 280 nm. There is no need of doping in Ga_2O_3 to tune its bandgap, compared to AlGaN, MgZnO,etc, thereby avoiding alloy composition fluctuations and phase separation. At present, solar-blind Ga_2O_3 photodetectors based on single crystal or amorphous Ga_2O_3 are mainly focused on metal–semiconductor–metal and Schottky photodiodes.In this work, the recent achievements of Ga_2O_3 photodetectors are systematically reviewed. The characteristics and performances of different photodetector structures based on single crystal Ga_2O_3 and amorphous Ga_2O_3 thin film are analyzed and compared. Finally, the prospects of Ga_2O_3 UV photodetectors are forecast.
基金The work was financially supported by the National Natural Science Foundation of China (Nos. 10104003, 10204003, 90206003, and 90101027) and the National Key Basic Research Special Foundation of China (No.TG1999075207).
文摘GaAs nanocrystals were prepared via a simple mechanical ball milling technique. The prepared GaAs nanocrystals have high purity and could form colloidal ethanol suspension without any surfactant additives. The colloidal GaAs nanocrystal suspension displayed excellent two-photon absorption property over the visible and near-infrared region from 490 nm to 1064 nm, which enables it to become a promising broadband optical limiting material.
文摘The The research progress in trialkyl compounds of gallium andindium was discussed from two aspect, one was the chemical synthesisof the compounds and the other was the purification of them. Thereare three synthesis routes be- ing reported in the first aspect, i.e.the route staring form pure metal, the route starting from the puremetal trihalides, and the electrochemical route. In the secondaspect, the purifying methods of decomposition-distillation and zonerefining were reviewed.
基金the National Natural Science Foundation of China !298720I0the NSF of she-hang Provincethe Laboratory of Organometallic Ch
文摘Tetrahydrofuran ring can be opened with acyl chlorides or anhydrides catalyzed by gallium triiodides to afford iodo esters under mild conditions in good yields.
基金Projects(51274240,51204209)supported by the National Natural Science Foundation of China
文摘In order to extract gallium from a high-silica-content flue dust generated in corundum production,a mixed acid solution of H2SO4 and HF was used for leaching,and test parameters of the leaching process were optimized.Experimental results show that the leaching rate of gallium was only 38%when H2SO4 was used as leaching agent.Composition analysis results of micro areas in this corundum flue dust indicate that the content of gallium in silica-enriched phases was high;this portion of gallium was insoluble in H2SO4 solution.The leaching rate of gallium increased significantly with addition of HF due to corrosion of silica.Effects of reaction time,temperature,and concentrations of HF and H2SO4 on leaching rates of gallium were investigated.The leaching rate of gallium reached 91%when this corundum flue dust was leached in a mixed acid solution of H2SO4 and HF for 4 h,at a temperature of 80°C,with a liquid-to-solid ratio of 5:1(mL/g).The optimal concentrations of H2SO4 and HF in the mixed acid solution were 1.5 and 6.4 mol/L,respectively.