期刊文献+
共找到807篇文章
< 1 2 41 >
每页显示 20 50 100
Microscopic experiment on efficient construction of underground gas storages converted from water-invaded gas reservoirs
1
作者 JIANG Tongwen QI Huan +4 位作者 WANG Zhengmao LI Yiqiang WANG Jinfang LIU Zheyu CAO Jinxin 《Petroleum Exploration and Development》 SCIE 2024年第1期203-212,共10页
Based on the microfluidic technology,a microscopic visualization model was used to simulate the gas injection process in the initial construction stage and the bottom water invasion/gas injection process in the cyclic... Based on the microfluidic technology,a microscopic visualization model was used to simulate the gas injection process in the initial construction stage and the bottom water invasion/gas injection process in the cyclical injection-production stage of the underground gas storage(UGS)rebuilt from water-invaded gas reservoirs.Through analysis of the gas-liquid contact stabilization mechanism,flow and occurrence,the optimal control method for lifecycle efficient operation of UGS was explored.The results show that in the initial construction stage of UGS,the action of gravity should be fully utilized by regulating the gas injection rate,so as to ensure the macroscopically stable migration of the gas-liquid contact,and greatly improve the gas sweeping capacity,providing a large pore space for gas storage in the subsequent cyclical injection-production stage.In the cyclical injection-production stage of UGS,a constant gas storage and production rate leads to a low pore space utilization.Gradually increasing the gas storage and production rate,that is,transitioning from small volume to large volume,can continuously break the hydraulic equilibrium of the remaining fluid in the porous media,which then expands the pore space and flow channels.This is conducive to the expansion of UGS capacity and efficiency for purpose of peak shaving and supply guarantee. 展开更多
关键词 water-invaded gas-reservoir underground gas storage cyclical injection-production gas-water contact gas storage and production rate UGS capacity expansion control method
下载PDF
Simulation study of hydrogen sulfide removal in underground gas storage converted from the multilayered sour gas field
2
作者 Yi Yang Longxin Li +4 位作者 Xia Wang Nan Qin Ruihan Zhang Yulong Zhao Ye Tian 《International Journal of Coal Science & Technology》 EI CAS CSCD 2023年第5期107-118,共12页
A simulation study was carried out to investigate the temporal evolution of H_(2)S in the Huangcaoxia underground gas storage (UGS), which is converted from a depleted sulfur-containing gas field. Based on the rock an... A simulation study was carried out to investigate the temporal evolution of H_(2)S in the Huangcaoxia underground gas storage (UGS), which is converted from a depleted sulfur-containing gas field. Based on the rock and fluid properties of the Huangcaoxia gas field, a multilayered model was built. The upper layer Jia-2 contains a high concentration of H_(2)S (27.2 g/m^(3)), and the lower layer Jia-1 contains a low concentration of H_(2)S (14.0 mg/m^(3)). There is also a low-permeability interlayer between Jia-1 and Jia-2. The multi-component fluid characterizations for Jia-1 and Jia-2 were implemented separately using the Peng-Robinson equation of state in order to perform the compositional simulation. The H_(2)S concentration gradually increased in a single cycle and peaked at the end of the production season. The peak H_(2)S concentration in each cycle showed a decreasing trend when the recovery factor (RF) of the gas field was lower than 70%. When the RF was above 70%, the peak H_(2)S concentration increased first and then decreased. A higher reservoir RF, a higher maximum working pressure, and a higher working gas ratio will lead to a higher H_(2)S removal efficiency. Similar to developing multi-layered petroleum fields, the operation of multilayered gas storage can also be divided into multi-layer commingled operation and independent operation for different layers. When the two layers are combined to build the storage, the sweet gas produced from Jia-1 can spontaneously mix with the sour gas produced from Jia-2 within the wellbore, which can significantly reduce the overall H_(2)S concentration in the wellstream. When the working gas volume is set constant, the allocation ratio between the two layers has little effect on the H_(2)S removal. After nine cycles, the produced gas’s H_(2)S concentration can be lowered to 20 mg/m^(3). Our study recommends combining the Jia-2 and Jia-1 layers to build the Huangcaoxia underground gas storage. This plan can quickly reduce the H_(2)S concentration of the produced gas to 20 mg/m^(3), thus meeting the gas export standards as well as the HSE (Health, Safety, and Environment) requirements in the field. This study helps the engineers understand the H_(2)S removal for sulfur-containing UGS as well as provides technical guidelines for converting other multilayered sour gas fields into underground storage sites. 展开更多
关键词 Underground gas storage Multilayered gas field-Sour gas reservoir Hydrogen sulfide removal.Compositional simulation
下载PDF
Air tightness of compressed air storage energy caverns with polymer sealing layer subjected to various air pressures 被引量:3
3
作者 Shikang Qin Caichu Xia Shuwei Zhou 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第8期2105-2116,共12页
During the operation of compressed air storage energy system,the rapid change of air pressure in a cavern will cause drastic changes in air density and permeability coefficient of sealing layer.To calculate and proper... During the operation of compressed air storage energy system,the rapid change of air pressure in a cavern will cause drastic changes in air density and permeability coefficient of sealing layer.To calculate and properly evaluate air tightness of polymer sealing caverns,the air-pressure-related air density and permeability must be considered.In this context,the high-pressure air penetration in the polymer sealing layer is studied in consideration of thermodynamic change of the cavern structure during the system operation.The air tightness model of compressed air storage energy caverns is then established.In the model,the permeability coefficient and air density of sealing layer vary with air pressure,and the effectiveness of the model is verified by field data in two test caverns.Finally,a compressed air storage energy cavern is taken as an example to understand the air tightness.The air leakage rate in the caverns is larger than that using air-pressure-independent permeability coefficient and air density,which is constant and small in the previous leakage rate calculation.Under the operating pressure of 4.5-10 MPa,the daily air leakage in the compressed air storage energy cavern of Yungang Mine with high polymer butyl rubber as the sealing material is 0.62%,which can meet the sealing requirements of compressed air storage energy caverns.The air tightness of the polymer sealing cavern is mainly affected by the cavern operating pressure,injected air temperature,cavern radius,and sealing layer thickness.The cavern air leakage rate will be decreased to reduce the cavern operating pressure the injection air temperature,or the cavern radius and sealing layer thickness will be increased. 展开更多
关键词 Compressed air storage energy Polymer sealing layer Air tightness Permeability coefficient Air density
下载PDF
Atomic layer deposition to heterostructures for application in gas sensors 被引量:1
4
作者 Hongyin Pan Lihao Zhou +3 位作者 Wei Zheng Xianghong Liu Jun Zhang Nicola Pinna 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第2期171-188,共18页
Atomic layer deposition(ALD) is a versatile technique to deposit metals and metal oxide sensing materials at the atomic scale to achieve improved sensor functions. This article reviews metals and metal oxide semicondu... Atomic layer deposition(ALD) is a versatile technique to deposit metals and metal oxide sensing materials at the atomic scale to achieve improved sensor functions. This article reviews metals and metal oxide semiconductor(MOS) heterostructures for gas sensing applications in which at least one of the preparation steps is carried out by ALD. In particular, three types of MOS-based heterostructures synthesized by ALD are discussed, including ALD of metal catalysts on MOS, ALD of metal oxides on MOS and MOS core–shell(C–S) heterostructures.The gas sensing performances of these heterostructures are carefully analyzed and discussed.Finally, the further developments required and the challenges faced by ALD for the synthesis of MOS gas sensing materials are discussed. 展开更多
关键词 atomic layer deposition metal oxides HETEROSTRUCTURES gas sensors
下载PDF
Layered double hydroxides as electrode materials for flexible energy storage devices 被引量:1
5
作者 Qifeng Lin Lili Wang 《Journal of Semiconductors》 EI CAS CSCD 2023年第4期30-45,共16页
To prevent and mitigate environmental degradation,high-performance and cost-effective electrochemical flexible energy storage systems need to be urgently developed.This demand has led to an increase in research on ele... To prevent and mitigate environmental degradation,high-performance and cost-effective electrochemical flexible energy storage systems need to be urgently developed.This demand has led to an increase in research on electrode materials for high-capacity flexible supercapacitors and secondary batteries,which have greatly aided the development of contemporary digital communications and electric vehicles.The use of layered double hydroxides(LDHs)as electrode materials has shown productive results over the last decade,owing to their easy production,versatile composition,low cost,and excellent physicochemical features.This review highlights the distinctive 2D sheet-like structures and electrochemical characteristics of LDH materials,as well as current developments in their fabrication strategies for expanding the application scope of LDHs as electrode materials for flexible supercapacitors and alkali metal(Li,Na,K)ion batteries. 展开更多
关键词 layered double hydroxide flexible energy storage devices structural designs electrochemical performances
下载PDF
“Extreme utilization” theory and practice in gas storages with complex geological conditions 被引量:1
6
作者 MA Xinhua ZHENG Dewen +1 位作者 DING Guosheng WANG Jieming 《Petroleum Exploration and Development》 SCIE 2023年第2期419-432,共14页
Based on more than 20-year operation of gas storages with complex geological conditions and a series of research findings, the pressure-bearing dynamics mechanism of geological body is revealed. With the discovery of ... Based on more than 20-year operation of gas storages with complex geological conditions and a series of research findings, the pressure-bearing dynamics mechanism of geological body is revealed. With the discovery of gas-water flowing law of multi-cycle relative permeability hysteresis and differential utilization in zones, the extreme utilization theory targeting at the maximum amount of stored gas, maximum injection-production capacity and maximum efficiency in space utilization is proposed to support the three-in-one evaluation method of the maximum pressure-bearing capacity of geological body, maximum well production capacity and maximum peak shaving capacity of storage space. This study realizes the full potential of gas storage(storage capacity) at maximum pressure, maximum formation-wellbore coordinate production, optimum well spacing density match with finite-time unsteady flow, and peaking shaving capacity at minimum pressure, achieving perfect balance between security and capacity. Operation in gas storages, such as Hutubi in Xinjiang, Xiangguosi in Xinan, and Shuang6 in Liaohe, proves that extreme utilization theory has promoted high quality development of gas storages in China. 展开更多
关键词 underground gas storage gas-storage geological body maximum pressure-bearing maximum well production capacity maximum peak shaving capacity extreme utilization theory multi-cycle relative permeability hysteresis
下载PDF
Nepheloid layer generation by gas eruption:unexpected experimental results
7
作者 Chaoqi ZHU Sanzhong LI +6 位作者 Jiangxin CHEN Dawei WANG Xiaoshuai SONG Zhenghui LI Bo CHEN Hongxian SHAN Yonggang JIA 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2023年第2期769-777,共9页
Knowledge of nepheloid layers is important to improve the understanding of physical,geological,and sedimentary processes from continental shelf to abyssal environments.We had not tried to study the nepheloid layers in... Knowledge of nepheloid layers is important to improve the understanding of physical,geological,and sedimentary processes from continental shelf to abyssal environments.We had not tried to study the nepheloid layers in a hydrate-associated tank until unexpected results occurred.Tank experimental results show that gas eruptions triggered intermediate nepheloid layers.Thus,we proposed a new mechanism of intermediate nepheloid layer generation by eruptions.The intermediate nepheloid layers were generated in uniform-density fluid,which indicated that stratified fluid is not a necessary condition for intermediate nepheloid layers.Sufficient space for advection and an oblique slope for detachment are the key ingredients for intermediate nepheloid layer generation by eruptions.Our experiments also offer a new experimental evidence for bottom nepheloid layer generation by earthquakes.Given the scale effects of laboratory experiment,it is important to determine whether submarine volcanic eruption or hydrate-associated venting causes intermediate nepheloid layer in the nature. 展开更多
关键词 intermediate nepheloid layer gas eruption bottom nepheloid layer gas hydrate tank experiment seafloor instability
下载PDF
Effects of CH_(4)/CO_(2) multi-component gas on components and properties of tight oil during CO_(2) utilization and storage: Physical experiment and composition numerical simulation
8
作者 Zhi-Hao Jia Ren-Yi Cao +5 位作者 Bin-Yu Wang Lin-Song Cheng Jin-Chong Zhou Bao-Biao Pu Fu-Guo Yin Ming Ma 《Petroleum Science》 SCIE EI CAS CSCD 2023年第6期3478-3487,共10页
An essential technology of carbon capture, utilization and storage-enhanced oil recovery (CCUS-EOR) for tight oil reservoirs is CO_(2) huff-puff followed by associated produced gas reinjection. In this paper, the effe... An essential technology of carbon capture, utilization and storage-enhanced oil recovery (CCUS-EOR) for tight oil reservoirs is CO_(2) huff-puff followed by associated produced gas reinjection. In this paper, the effects of multi-component gas on the properties and components of tight oil are studied. First, the core displacement experiments using the CH_(4)/CO_(2) multi-component gas are conducted to determine the oil displacement efficiency under different CO_(2) and CH_(4) ratios. Then, a viscometer and a liquid density balance are used to investigate the change characteristics of oil viscosity and density after multi-component gas displacement with different CO_(2) and CH_(4) ratios. In addition, a laboratory scale numerical model is established to validate the experimental results. Finally, a composition model of multi-stage fractured horizontal well in tight oil reservoir considering nano-confinement effects is established to investigate the effects of multi-component gas on the components of produced dead oil and formation crude oil. The experimental results show that the oil displacement efficiency of multi-component gas displacement is greater than that of single-component gas displacement. The CH_(4) decreases the viscosity and density of light oil, while CO_(2) decreases the viscosity but increases the density. And the numerical simulation results show that CO_(2) extracts more heavy components from the liquid phase into the vapor phase, while CH_(4) extracts more light components from the liquid phase into the vapor phase during cyclic gas injection. The multi-component gas can extract both the light components and the heavy components from oil, and the balanced production of each component can be achieved by using multi-component gas huff-puff. 展开更多
关键词 Multi-component gas Properties and components Core displacement experiment Nano-confinement numerical simulation CO_(2)utilization and storage
下载PDF
The Joule–Thomson effect of (CO_(2)+H_(2)) binary system relevant to gas switching reforming with carbon capture and storage(CCS)
9
作者 Zhongyao Zhang Ming Gao +4 位作者 Xiaopeng Chen Xiaojie Wei Jiezhen Liang Chenghong Wu Linlin Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第2期215-231,共17页
The Joule-Thomson effect is one of the important thermodynamic properties in the system relevant to gas switching reforming with carbon capture and storage(CCS). In this work, a set of apparatus was set up to determin... The Joule-Thomson effect is one of the important thermodynamic properties in the system relevant to gas switching reforming with carbon capture and storage(CCS). In this work, a set of apparatus was set up to determine the Joule-Thomson effect of binary mixtures(CO_(2)+ H_(2)). The accuracy of the apparatus was verified by comparing with the experimental data of carbon dioxide. The Joule-Thomson coefficients(μ_(JT)) for(CO_(2)+ H_(2)) binary mixtures with mole fractions of carbon dioxide(x_(CO_(2))= 0.1, 0.26, 0.5,0.86, 0.94) along six isotherms at various pressures were measured. Five equations of state EOSs(PR,SRK, PR, BWR and GERG-2008 equation) were used to calculate the μ_(JT)for both pure systems and binary systems, among which the GERG-2008 predicted best with a wide range of pressure and temperature.Moreover, the Joule-Thomson inversion curves(JTIC) were calculated with five equations of state. A comparison was made between experimental data and predicted data for the inversion curve of CO_(2). The investigated EOSs show a similar prediction of the low-temperature branch of the JTIC for both pure and binary systems, except for the BWRS equation of state. Among all the equations, SRK has the most similar result to GERG-2008 for predicting JTIC. 展开更多
关键词 Carbon dioxide Hydrogen Joule–Thomson coefficient Joule–Thomson inversion curve gas switching reforming(GSR) Carbon capture and storage(CCS)
下载PDF
Mineralogy,microstructures and geomechanics of rock salt for underground gas storage
10
作者 Veerle Vandeginste Yukun Ji +1 位作者 Frank Buysschaert George Anoyatis 《Deep Underground Science and Engineering》 2023年第2期129-147,共19页
Rock salt has excellent properties for its use as underground leak‐proof containers for the storage of renewable energy.Salt solution mining has long been used for salt mining,and can now be employed in the construct... Rock salt has excellent properties for its use as underground leak‐proof containers for the storage of renewable energy.Salt solution mining has long been used for salt mining,and can now be employed in the construction of underground salt caverns for the storage of hydrogen gas.This paper presents a wide range of methods to study the mineralogy,geochemistry,microstructure and geomechanical characteristics of rock salt,which are important in the engineering of safe underground storage rock salt caverns.The mineralogical composition of rock salt varies and is linked to its depositional environment and diagenetic alterations.The microstructure in rock salt is related to cataclastic deformation,diffusive mass transfer and intracrystalline plastic deformation,which can then be associated with the macrostructural geomechanical behavior.Compared to other types of rock,rock salt exhibits creep at lower temperatures.This behavior can be divided into three phases based on the changes in strain with time.However,at very low effective confining pressure and high deviatoric stress,rock salt can exhibit dilatant behavior,where brittle deformation could compromise the safety of underground gas storage in rock salt caverns.The proposed review presents the impact of purity,geochemistry and water content of rock salt on its geomechanical behavior,and thus,on the safety of the caverns. 展开更多
关键词 CREEP hydrogen IMPURITIES rock salt salt solution mining underground gas storage
下载PDF
Stress corrosion cracking behavior of buried oil and gas pipeline steel under the coexistence of magnetic field and sulfate-reducing bacteria
11
作者 Jian-Yu He Fei Xie +3 位作者 Dan Wang Guang-Xin Liu Ming Wu Yue Qin 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1320-1332,共13页
Magnetic field and microorganisms are important factors influencing the stress corrosion cracking(SCC)of buried oil and gas pipelines. Once SCC occurs in buried pipelines, it will cause serious hazards to the soil env... Magnetic field and microorganisms are important factors influencing the stress corrosion cracking(SCC)of buried oil and gas pipelines. Once SCC occurs in buried pipelines, it will cause serious hazards to the soil environment. The SCC behavior of X80 pipeline steel under the magnetic field and sulfate-reducing bacteria(SRB) environment was investigated by immersion tests, electrochemical tests, and slow strain rate tensile(SSRT) tests. The results showed that the corrosion and SCC sensitivity of X80 steel decreased with increasing the magnetic field strength in the sterile environment. The SCC sensitivity was higher in the biotic environment inoculated with SRB, but it also decreased with increasing magnetic field strength, which was due to the magnetic field reduces microbial activity and promotes the formation of dense film layer. This work provided theoretical guidance on the prevention of SCC in pipeline steel under magnetic field and SRB coexistence. 展开更多
关键词 Magnetic field Sulfate-reducing bacteria Film layer Stress corrosion cracking Oil and gas pipelines
下载PDF
Effects of acid-rock reaction on physical properties during CO_(2)-rich industrial waste gas(CO_(2)-rich IWG)injection in shale reservoirs
12
作者 Yi-Fan Wang Jing Wang +2 位作者 Hui-Qing Liu Xiao-Cong Lv Ze-Min Ji 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期272-285,共14页
"Carbon peaking and carbon neutrality"is an essential national strategy,and the geological storage and utilization of CO_(2)is a hot issue today.However,due to the scarcity of pure CO_(2)gas sources in China... "Carbon peaking and carbon neutrality"is an essential national strategy,and the geological storage and utilization of CO_(2)is a hot issue today.However,due to the scarcity of pure CO_(2)gas sources in China and the high cost of CO_(2)capture,CO_(2)-rich industrial waste gas(CO_(2)-rich IWG)is gradually emerging into the public's gaze.CO_(2)has good adsorption properties on shale surfaces,but acidic gases can react with shale,so the mechanism of the CO_(2)-rich IWG-water-shale reaction and the change in reservoir properties will determine the stability of geological storage.Therefore,based on the mineral composition of the Longmaxi Formation shale,this study constructs a thermodynamic equilibrium model of water-rock reactions and simulates the regularity of reactions between CO_(2)-rich IWG and shale minerals.The results indicate that CO_(2)consumed 12%after reaction,and impurity gases in the CO_(2)-rich IWG can be dissolved entirely,thus demonstrating the feasibility of treating IWG through water-rock reactions.Since IWG inhibits the dissolution of CO_(2),the optimal composition of CO_(2)-rich IWG is 95%CO_(2)and 5%IWG when CO_(2)geological storage is the main goal.In contrast,when the main goal is the geological storage of total CO_(2)-rich IWG or impurity gas,the optimal CO_(2)-rich IWG composition is 50%CO_(2)and 50%IWG.In the CO_(2)-rich IWG-water-shale reaction,temperature has less influence on the water-rock reaction,while pressure is the most important parameter.SO2 has the greatest impact on water-rock reaction in gas.For minerals,clay minerals such as illite and montmorillonite had a significant effect on water-rock reaction.The overall reaction is dominated by precipitation and the volume of the rock skeleton has increased by 0.74 cm3,resulting in a decrease in shale porosity,which enhances the stability of CO_(2)geological storage to some extent.During the reaction between CO_(2)-rich IWG-water-shale at simulated temperatures and pressures,precipitation is the main reaction,and shale porosity decreases.However,as the reservoir water content increases,the reaction will first dissolve and then precipitate before dissolving again.When the water content is less than 0.0005 kg or greater than 0.4 kg,it will lead to an increase in reservoir porosity,which ultimately reduces the long-term geological storage stability of CO_(2)-rich IWG. 展开更多
关键词 CO_(2)-rich industrial waste gas Geological storage Acid-rock reaction SHALE Geochemical modelling
下载PDF
RECENT ADVANCES IN HYDRATE-BASED TECHNOLOGIES FOR NATURAL GAS STORAGE——A REVIEW 被引量:28
13
作者 Yasuhiko H.Mori 《化工学报》 EI CAS CSCD 北大核心 2003年第z1期1-17,共17页
Interest in the possibility of storing and transporting natural gas in the form of clathrate hydrates has been increasing in recent years, particularly in some gas-importing and exporting countries.The technologies ne... Interest in the possibility of storing and transporting natural gas in the form of clathrate hydrates has been increasing in recent years, particularly in some gas-importing and exporting countries.The technologies necessary for realizing this possibility may be classified into those relevant to the four serial processes (a) the formation of a hydrate, (b) the processing (dewatering, pelletizing, etc. ) of the formed hydrate, (c) the storage and transportation of the processed hydrate, and (d) the regasification (dissociation) of the hydrate. The technological development of any of these processes is still at an early stage. For hydrate formation, for example, various rival operations have been proposed. However,many of them have never been subjected to actual tests for practical use. More efforts are required for examining the different hydrate-formation technologies and for rating them by comparison. The general design of the processing of the formed hydrate inevitably depends on both the hydrate-formation process and the storage/transportation process, hence it has a wide variability. The major uncertainty in the storage-process design lies in the as-yet unclarified utility of the "self-preservation" effect of the naturalgas hydrates. The process design as well as the relevant cost evaluation should strongly depend on whether the hydrates are well preserved at atmospheric pressure in large-scale storage facilities. The regasification process has been studied less extensively than the former processes. The state of the art of the technological development in each of the serial processes is reviewed, placing emphasis on the hydrate formation process. 展开更多
关键词 into rate or AS of that RECENT ADVANCES IN HYDRATE-BASED TECHNOLOGIES FOR NATURAL gas storage A REVIEW been
下载PDF
Interannual variability of mixed layer depth and heat storage of upper layer in the tropical Pacific Ocean 被引量:5
14
作者 LINYihua YOUXiaobao GUANYuping 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2004年第1期31-39,共9页
By using the upper layer data(downloaded from the web of the Scripps Institution of Oceanography),the interannual variability of the heat storage of upper layer(from surface to 400 m depth) and the mixed layer depth i... By using the upper layer data(downloaded from the web of the Scripps Institution of Oceanography),the interannual variability of the heat storage of upper layer(from surface to 400 m depth) and the mixed layer depth in the tropical Pacific Ocean are investigated. The abnormal signal of the warm event comes from the central and west Pacific Ocean, whereas it is regarded that the abnormal signal of the warm event comes from the east Pacific Ocean in the popular viewpoint. From the viewpoint on the evolution of the interannual variability of the mixed layer depth and the heat storage of the whole upper layer, the difference between the two types of El Nino is so small that it can be neglected. During these two El Nino/La Nina events(1972/1973 and 1997/1998), other than the case of the heat storage or for the mixed layer depth, the abnormal signal propagates from the central and west Pacific Ocean to the east usually by the path along the equator whereas the abnormal signal propagates from the east to the west by the path northern to the equator. For the interannual variability, the evolution of the mixed layer depth corresponds to that of the heat storage in the upper layer very well. This is quite different from the evolution of seasonality. 展开更多
关键词 interannual variability heat storage mixed layer depth tropical Pacific Ocean
下载PDF
Applications of metal–organic frameworks for green energy and environment: New advances in adsorptive gas separation, storage and removal 被引量:19
15
作者 Bin Wang Lin-Hua Xie +3 位作者 Xiaoqing Wang Xiao-Min Liu Jinping Li Jian-Rong Li 《Green Energy & Environment》 SCIE 2018年第3期191-228,共38页
The separation of gas molecules with similar physicochemical properties is of high importance but practically entails a substantial energy penalty in chemical industry. Meanwhile, clean energy gases such as H_2 and CH... The separation of gas molecules with similar physicochemical properties is of high importance but practically entails a substantial energy penalty in chemical industry. Meanwhile, clean energy gases such as H_2 and CH_4 are considered as promising candidates for the replacement of traditional fossil fuels. However, the technologies for the storage of these gases are still immature. In addition, the release of anthropogenic toxic gases into the atmosphere is a worldwide threat of growing concern. Both in academia and industry, considerable research efforts have been devoted to developing advanced porous materials for the effective and energy-efficient separation, storage, or capture of the related gases. In contrast to conventional inorganic porous materials such as zeolites and activated carbons, metal–organic frameworks(MOFs) are considered as a type of promising materials for gas separation and storage. In this contribution, we review the recent research advance of MOFs in some relevant applications, including CO_2 capture, O_2 purification, separation of light hydrocarbons, separation of noble gases, storage of gases(CH_4,H_2, and C_2 H_2) for energy, and removal of some gaseous air pollutants(NH_3, NO_2, and SO_2). Finally, an outlook regarding the challenges of the future research of MOFs in these directions is given. 展开更多
关键词 Metal–organic frameworks gas separation and storage Light hydrocarbon Harmful gas Air purification
下载PDF
Experimental study of water curtain performance for gas storage in an underground cavern 被引量:14
16
作者 Zhongkui Li Kezhong Wang +1 位作者 Anmin Wang Hui Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE 2009年第1期89-96,共8页
An artificial water curtain system is composed of a network of underground galleries and horizontal boreholes drilled from these galleries.Pre-grouting measures are introduced to keep the bedrock saturated all the tim... An artificial water curtain system is composed of a network of underground galleries and horizontal boreholes drilled from these galleries.Pre-grouting measures are introduced to keep the bedrock saturated all the time.This system is deployed over an artificial or natural underground cavern used for the storage of gas(or some other fluids) to prevent the gas from escaping through leakage paths in the rock mass.An experimental physical modeling system has been constructed to evaluate the performance of artificial water curtain systems under various conditions.These conditions include different spacings of caverns and cavern radii located below the natural groundwater level.The principles of the experiment,devices,design of the physical model,calculation of gas leakage,and evaluation of the critical gas pressure are presented in this paper.Experimental result shows that gas leakage is strongly affected by the spacing of water curtain boreholes,the critical gas pressure,and the number and proximity of storage caverns.The hydraulic connection between boreholes is observed to vary with depth or location,which suggests that the distribution of water-conducting joint sets along the boreholes is also variable.When designing the drainage system for a cavern,drainage holes should be orientated to maximize the frequency at which they encounter major joint sets and permeable intervals studying in order to maintain the seal on the cavern through water pressure.Our experimental results provide a significant contribution to the theoretical controls on water curtains,and they can be used to guide the design and construction of practical storage caverns. 展开更多
关键词 artificial water curtain model test storage cavern gas pressure
下载PDF
Determination of the maximum allowable gas pressure for an underground gas storage salt cavern——A case study of Jintan,China 被引量:5
17
作者 Tongtao Wang Jianjun Li +3 位作者 Gang Jing Qingqing Zhang Chunhe Yang J.J.K.Daemen 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2019年第2期251-262,共12页
Increasing the allowable gas pressure of underground gas storage(UGS) is one of the most effective methods to increase its working gas capacity. In this context, hydraulic fracturing tests are implemented on the targe... Increasing the allowable gas pressure of underground gas storage(UGS) is one of the most effective methods to increase its working gas capacity. In this context, hydraulic fracturing tests are implemented on the target formation for the UGS construction of Jintan salt caverns, China, in order to obtain the minimum principal in situ stress and the fracture breakdown pressure. Based on the test results, the maximum allowable gas pressure of the Jintan UGS salt cavern is calibrated. To determine the maximum allowable gas pressure, KING-1 and KING-2 caverns are used as examples. A three-dimensional(3D)geomechanical model is established based on the sonar data of the two caverns with respect to the features of the target formation. New criteria for evaluating gas penetration failure and gas seepage are proposed. Results show that the maximum allowable gas pressure of the Jintan UGS salt cavern can be increased from 17 MPa to 18 MPa(i.e. a gradient of about 18 k Pa/m at the casing shoe depth). Based on numerical results, a field test with increasing maximum gas pressure to 18 MPa has been carried out in KING-1 cavern. Microseismic monitoring has been conducted during the test to evaluate the safety of the rock mass around the cavern. Field monitoring data show that KING-1 cavern is safe globally when the maximum gas pressure is increased from 17 MPa to 18 MPa. This shows that the geomechanical model and criteria proposed in this context for evaluating the maximum allowable gas pressure are reliable. 展开更多
关键词 Underground gas storage(UGS)salt CAVERN In SITU stress testing MAXIMUM gas pressure gas penetration failure Microseismic monitoring
下载PDF
CO_(2)storage with enhanced gas recovery(CSEGR):A review of experimental and numerical studies 被引量:7
18
作者 Shu-Yang Liu Bo Ren +5 位作者 Hang-Yu Li Yong-Zhi Yang Zhi-Qiang Wang Bin Wang Jian-Chun Xu Ramesh Agarwal 《Petroleum Science》 SCIE CAS CSCD 2022年第2期594-607,共14页
CO_(2)emission mitigation is one of the most critical research frontiers.As a promising option of carbon capture,utilization and storage(CCUS),CO_(2)storage with enhanced gas recovery(CSEGR)can reduce CO_(2)emission b... CO_(2)emission mitigation is one of the most critical research frontiers.As a promising option of carbon capture,utilization and storage(CCUS),CO_(2)storage with enhanced gas recovery(CSEGR)can reduce CO_(2)emission by sequestrating it into gas reservoirs and simultaneously enhance natural gas production.Over the past decades,the displacement behaviour of CO_(2)—natural gas has been extensively studied and demonstrated to play a key role on both CO_(2)geologic storage and gas recovery performance.This work thoroughly and critically reviews the experimental and numerical simulation studies of CO_(2)displacing natural gas,along with both CSEGR research and demonstration projects at various scales.The physical property difference between CO_(2)and natural gas,especially density and viscosity,lays the foundation of CSEGR.Previous experiments on displacement behaviour and dispersion characteristics of CO_(2)/natural gas revealed the fundamental mixing characteristics in porous media,which is one key factor of gas recovery efficiency and warrants further study.Preliminary numerical simulations demonstrated that it is technically and economically feasible to apply CSEGR in depleted gas reservoirs.However,CO_(2)preferential flow pathways are easy to form(due to reservoir heterogeneity)and thus adversely compromise CSEGR performance.This preferential flow can be slowed down by connate or injected water.Additionally,the optimization of CO_(2)injection strategies is essential for improving gas recovery and CO_(2)storage,which needs further study.The successful K12—B pilot project provides insightful field-scale knowledge and experience,which paves a good foundation for commercial application.More experiments,simulations,research and demonstration projects are needed to facilitate the maturation of the CSEGR technology. 展开更多
关键词 Carbon capture Utilization and storage(CCUS) Enhanced gas recovery CO_(2)geologic storage Miscible displacement DISPERSION
下载PDF
Effects of Chlorine Dioxide Gas on Postharvest Physiology and Storage Quality of Green Bell Pepper (Capsicum frutescens L.var.Longrum) 被引量:37
19
作者 DU Jin-hua FU Mao-run LI Miao-miao XIA Wei 《Agricultural Sciences in China》 CAS CSCD 2007年第2期214-219,共6页
The effects of treatment of chlorine dioxide (C1Oz) gas on postharvest physiology and preservation quality of green bell peppers were studied. Green bell peppers were collected in bags and treated with 0, 5, 10, 20,... The effects of treatment of chlorine dioxide (C1Oz) gas on postharvest physiology and preservation quality of green bell peppers were studied. Green bell peppers were collected in bags and treated with 0, 5, 10, 20, and 50 mg L^-1 ClO2 gas at 10±0.5℃ for over 40 d, and the changes in postharvest physiology and preservation quality of the peppers were evaluated during the storage. The inhibition of rot of the peppers was observed for all the tested ClO2 gas treatments. The rot rates of the treated samples were 50% lesser than those of the control after day 40 of storage. The highest inhibitory effect was obtained after 50 mg L^-1 ClO2 gas treatment, where the peppers did not decay until day 30 and showed only one-fourth of the rot rate of the control at day 40 of storage. The respiratory activity of the peppers was significantly (P〈0.05) inhibited by 20 and 50 mg L^-1 ClO2 treatments, whereas no significant effects on respiratory activity were observed with 5 and 10 mg L^-1 ClO2 treatments (P〉0.05). Except for 50 mg L^-1 ClO2, malondialdenyde (MDA) contents in the peppers treated with 5, 10, or 20 mg L^-1 ClO2 were not significantly (P〉0.05) different from those in the control. Degradation of chlorophyll in the peppers was delayed by 5 mg L-1ClO2, but promoted by 10, 20, or 50 mg L^-1 ClO2. The vitamin C content, titratable acidity, and total soluble solids of the peppers treated by all the tested ClO2 gas did not significantly change during the storage. The results suggested that ClO2 gas treatment effectively delayed the postharvest physiological transformation of green peppers, inhibited decay and respiration, maintained some nutritional and sensory quality, and retarded MDA accumulation. 展开更多
关键词 green bell pepper (Capsicum frutescens L. var. Longrum) chlorine dioxide gas post-harvest physiology storage quality
下载PDF
Investigation on Gas Storage in Methane Hydrate 被引量:4
20
作者 ZhigaoSun RongshengMa +2 位作者 ShuanshiFan KaihuaGuo RuzhuWang 《Journal of Natural Gas Chemistry》 CAS CSCD 2004年第2期107-112,共6页
The effect of additives (anionic surfactant sodium dodecyl sulfate (SDS), nonionic surfactant alkyl polysaccharide glycoside (APG), and liquid hydrocarbon cyclopentane (CP)) on hydrate induction time and formation rat... The effect of additives (anionic surfactant sodium dodecyl sulfate (SDS), nonionic surfactant alkyl polysaccharide glycoside (APG), and liquid hydrocarbon cyclopentane (CP)) on hydrate induction time and formation rate, and storage capacity was studied in this work. Micelle surfactant solutions were found to reduce hydrate induction time, increase methane hydrate formation rate and improve methane storage capacity in hydrates. In the presence of surfactant, hydrate could form quickly in a quiescent system and the energy costs of hydrate formation were reduced. The critical micelle concentrations of SDS and APG water solutions were found to be 300×10-6 and 500×10-6 for methane hydrate formation system respectively. The effect of anionic surfactant (SDS) on methane storage in hydrates is more pronounced compared to a nonionic surfactant (APG). CP also reduced hydrate induction time and improved hydrate formation rate, but could not improve methane storage in hydrates. 展开更多
关键词 methane hydrate SURFACTANT CYCLOPENTANE gas storage
下载PDF
上一页 1 2 41 下一页 到第
使用帮助 返回顶部