Good access to traffic information provides enormous potential for automotive powertrain control.We propose a logical control approach for the gearshift strategy,aimed at improving the fuel efficiency of vehicles.The ...Good access to traffic information provides enormous potential for automotive powertrain control.We propose a logical control approach for the gearshift strategy,aimed at improving the fuel efficiency of vehicles.The driver power demand in a specific position usually exhibits stochastic features and can be statistically analyzed in accordance with historical driving data and instant traffic conditions;therefore,it offers opportunities for the design of a gearshift control scheme.Due to the discrete characteristics of a gearshift,the control design of the gearshift strategy can be formulated under a logic system framework.To this end,vehicle dynamics are discretized with several logic states,and then modeled as a logic system with the Markov process model.The fuel optimization problem is constructed as a receding-horizon optimal control problem under the logic system framework,and a dynamic programming algorithm with algebraic operations is applied to determine the optimal strategy online.Simulation results demonstrate that the proposed control design has better potential for fuel efficiency improvement than the conventional method.展开更多
并联式混合动力汽车(Parallel Hybrid Electric Vehicle,PHEV)档位决策作为能量管理策略的一部分,对整车动力性、经济性及排放性能有较大影响.混合动力汽车换档策略不仅要考虑发动机,还要考虑电机和电池系统的影响.基于电池电能的等效...并联式混合动力汽车(Parallel Hybrid Electric Vehicle,PHEV)档位决策作为能量管理策略的一部分,对整车动力性、经济性及排放性能有较大影响.混合动力汽车换档策略不仅要考虑发动机,还要考虑电机和电池系统的影响.基于电池电能的等效燃油概念,通过考虑电池充、放电过程中的能量损失,将充、放电生成或消耗的电能折算为等效燃油,由此得到不同档位时整车的综合燃油消耗,进而选取燃油消耗较小时的档位使整车经济性能指标达到最优.同时,该方法也通用于装备液力自动变速器(Automatic Transmission,AT)等有级式自动变速器的混合动力汽车换档策略制定.展开更多
基金Project supported by the National Natural Science Foundation of China(Nos.61803079,61703179,and 61890924)the Foundation of the Education Department of Jilin Province,China(No.JJKH20190189KJ)the Foundation of State Key Laboratory of Automotive Simulation and Control,China(No.20170102)。
文摘Good access to traffic information provides enormous potential for automotive powertrain control.We propose a logical control approach for the gearshift strategy,aimed at improving the fuel efficiency of vehicles.The driver power demand in a specific position usually exhibits stochastic features and can be statistically analyzed in accordance with historical driving data and instant traffic conditions;therefore,it offers opportunities for the design of a gearshift control scheme.Due to the discrete characteristics of a gearshift,the control design of the gearshift strategy can be formulated under a logic system framework.To this end,vehicle dynamics are discretized with several logic states,and then modeled as a logic system with the Markov process model.The fuel optimization problem is constructed as a receding-horizon optimal control problem under the logic system framework,and a dynamic programming algorithm with algebraic operations is applied to determine the optimal strategy online.Simulation results demonstrate that the proposed control design has better potential for fuel efficiency improvement than the conventional method.
文摘并联式混合动力汽车(Parallel Hybrid Electric Vehicle,PHEV)档位决策作为能量管理策略的一部分,对整车动力性、经济性及排放性能有较大影响.混合动力汽车换档策略不仅要考虑发动机,还要考虑电机和电池系统的影响.基于电池电能的等效燃油概念,通过考虑电池充、放电过程中的能量损失,将充、放电生成或消耗的电能折算为等效燃油,由此得到不同档位时整车的综合燃油消耗,进而选取燃油消耗较小时的档位使整车经济性能指标达到最优.同时,该方法也通用于装备液力自动变速器(Automatic Transmission,AT)等有级式自动变速器的混合动力汽车换档策略制定.