On the basis of the paoers[3—7],this paper study the monotonicity problems for the positive semidefinite generalized inverses of the positive semidefinite self-conjugate matrices of quaternions in the Lowner partial ...On the basis of the paoers[3—7],this paper study the monotonicity problems for the positive semidefinite generalized inverses of the positive semidefinite self-conjugate matrices of quaternions in the Lowner partial order,give the explicit formulations of the monotonicity solution sets A{1;≥,T_1;≤B^(1)}and B{1;≥,T_2≥A^(1)}for the(1)-inverse,and two results of the monotonicity charac teriaztion for the(1,2)-inverse.展开更多
This article continues to study the research suggestions in depth made by M.Z.Nashed and G.F.Votruba in the journal"Bull.Amer.Math.Soc."in 1974.Concerned with the pricing of non-reachable"contingent cla...This article continues to study the research suggestions in depth made by M.Z.Nashed and G.F.Votruba in the journal"Bull.Amer.Math.Soc."in 1974.Concerned with the pricing of non-reachable"contingent claims"in an incomplete financial market,when constructing a specific bounded linear operator A:l_(1)^(n)→l_(2) from a non-reflexive Banach space l_(1)^(n) to a Hilbert space l_(2),the problem of non-reachable"contingent claims"pricing is reduced to researching the(single-valued)selection of the(set-valued)metric generalized inverse A■ of the operator A.In this paper,by using the Banach space structure theory and the generalized inverse method of operators,we obtain a bounded linear single-valued selection A^(σ)=A+of A■.展开更多
In this paper, we investigate a new perturbation theorem for the Moore-Penrose metric generalized inverses of a bounded linear operator in Banach space. The main tool in this paper is "the generalized Neumann lemma"...In this paper, we investigate a new perturbation theorem for the Moore-Penrose metric generalized inverses of a bounded linear operator in Banach space. The main tool in this paper is "the generalized Neumann lemma" which is quite different from the method in [12] where "the generalized Banach lemma" was used. By the method of the perturba- tion analysis of bounded linear operators, we obtain an explicit perturbation theorem and three inequalities about error estimates for the Moore-Penrose metric generalized inverse of bounded linear operator under the generalized Neumann lemma and the concept of stable perturbations in Banach spaces.展开更多
Let R be a ring, * be an involutory function of the set of all finite matrices over R. In this paper, necessary and sufficient conditions are given for a matrix to have a (1,3)-inverse, (1,4)-inverse, or Moore-P enros...Let R be a ring, * be an involutory function of the set of all finite matrices over R. In this paper, necessary and sufficient conditions are given for a matrix to have a (1,3)-inverse, (1,4)-inverse, or Moore-P enrose inverse, relative to *. Some results about generalized inverses of matrices over division rings are generalized and improved.展开更多
Two efficient recursive algorithms epsilon_algorithm and eta_algorithm are introduced to compute the generalized inverse function_valued Padé approximants. The approximants were used to accelerate the convergenc...Two efficient recursive algorithms epsilon_algorithm and eta_algorithm are introduced to compute the generalized inverse function_valued Padé approximants. The approximants were used to accelerate the convergence of the power series with function_valued coefficients and to estimate characteristic value of the integral equations. Famous Wynn identities of the Pad approximants is also established by means of the connection of two algorithms.展开更多
The perturbation problem of generalized inverse is studied. And some new stability characteristics of generalized inverses were presented. It was also proved that the stability characteristics of generalized inverses ...The perturbation problem of generalized inverse is studied. And some new stability characteristics of generalized inverses were presented. It was also proved that the stability characteristics of generalized inverses were independent of the choice of the generalized inverse. Based on this result, two sufficient and necessary conditions for the lower semi-continuity of generalized inverses as the set-valued mappings are given.展开更多
This paper deals with the Bayesian estimation of Shannon entropy for the generalized inverse exponential distribution.Assuming that the observed samples are taken from the upper record ranked set sampling(URRSS)and up...This paper deals with the Bayesian estimation of Shannon entropy for the generalized inverse exponential distribution.Assuming that the observed samples are taken from the upper record ranked set sampling(URRSS)and upper record values(URV)schemes.Formulas of Bayesian estimators are derived depending on a gamma prior distribution considering the squared error,linear exponential and precautionary loss functions,in addition,we obtain Bayesian credible intervals.The random-walk Metropolis-Hastings algorithm is handled to generate Markov chain Monte Carlo samples from the posterior distribution.Then,the behavior of the estimates is examined at various record values.The output of the study shows that the entropy Bayesian estimates under URRSS are more convenient than the other estimates under URV in the majority of the situations.Also,the entropy Bayesian estimates perform well as the number of records increases.The obtained results validate the usefulness and efficiency of the URV method.Real data is analyzed for more clarifying purposes which validate the theoretical results.展开更多
After choosing weight functions suitably, we define a Banach spaceH ω μ (L) and discuss the generalized inverse of singular integral operators on an open arc. Using the generalized inverse, we obtain the solutions f...After choosing weight functions suitably, we define a Banach spaceH ω μ (L) and discuss the generalized inverse of singular integral operators on an open arc. Using the generalized inverse, we obtain the solutions for the following singular integral equation展开更多
A new generalized inverse function-valued Padé approximation (GIFPA) was defined. Existence condition of GIFPA was given and its uniqueness theorem was proved. All possible degeneracy cases of GIFPA were discusse...A new generalized inverse function-valued Padé approximation (GIFPA) was defined. Existence condition of GIFPA was given and its uniqueness theorem was proved. All possible degeneracy cases of GIFPA were discussed and constructed. An example was given to illustrate its application.展开更多
A method that attempts to recover signal using generalized inverse theory is presented to obtain a good approximation of the signal in reconstruction space from its generalized samples. The proposed approaches differ ...A method that attempts to recover signal using generalized inverse theory is presented to obtain a good approximation of the signal in reconstruction space from its generalized samples. The proposed approaches differ with the assumptions on reconstruction space. If the reconstruction space satisfies one-to-one relationship between the samples and the reconstruction model, then we propose a method, which achieves consistent signal reconstruction. At the same time, when the number of samples is more than the number of reconstruction functions, the minimal-norm reconstruction signal can be obtained. Finally, it is demonstrated that the minimal-norm reconstruction can outperform consistent signal reconstruction in both theory and simulations for the problem.展开更多
In this paper,we prove that if X is an almost convex and 2-strictly convex space,linear operator T:X→Y is bounded,N(T)is an approximative compact Chebyshev subspace of X and R(T)is a 3-Chebyshev hyperplane,then there...In this paper,we prove that if X is an almost convex and 2-strictly convex space,linear operator T:X→Y is bounded,N(T)is an approximative compact Chebyshev subspace of X and R(T)is a 3-Chebyshev hyperplane,then there exists a homogeneous selection T^(σ)of T^(■)such that continuous points of T^(σ)and T^(■)are dense on Y.展开更多
In this paper, a three dimensional matrix valued rational interpolant (TGMRI) is first constructed by making use of the generalized inverse of matrices. The interpolants are of the Thiele type branched continued fra...In this paper, a three dimensional matrix valued rational interpolant (TGMRI) is first constructed by making use of the generalized inverse of matrices. The interpolants are of the Thiele type branched continued fraction form, with matrix numerator and scalar denominator. Some properties of TGMRI are given. An efficient recursive algorithm is proposed. The results in the paper can be extend to n variable.展开更多
Assume that a convergent matrix sequence{A<sub>n</sub>}:A<sub>n</sub>→A(n→∞), A<sub>n</sub>,A∈C<sup>3×3</sup>.We want to form a new matrix sequence {H<sub&...Assume that a convergent matrix sequence{A<sub>n</sub>}:A<sub>n</sub>→A(n→∞), A<sub>n</sub>,A∈C<sup>3×3</sup>.We want to form a new matrix sequence {H<sub>n</sub>}, derived from {A<sub>n</sub>}, which has also A aslimit and whose convergence is faster than the of {A<sub>n</sub>}. Three rational extrapolation meth-ods for accelerating the convergence of matrix sequences {A<sub>n</sub>} are presented in this paper.The underlying methods are based on the generalized inverse for matrices which is展开更多
Peal[2] shows that a sufficient and necessary condition on the existence of theMoore-Penrose inverse over any fields.Zhuang [3] generalize the result to any divisionrings.In this section we give another sufficient and...Peal[2] shows that a sufficient and necessary condition on the existence of theMoore-Penrose inverse over any fields.Zhuang [3] generalize the result to any divisionrings.In this section we give another sufficient and necessary condition on the existence ofthe Moore-Penrose inverse over any division rings.Our result can be regarded as an im-provement of Theorem lin[1].As a medium result,we also show a characterization ofthe{1,2}-inverse.展开更多
In this paper we first consider the existence and the general form of solution to the following generalized inverse eigenvalue problem(GIEP): given a set of n-dimension complex vectors {x j}m j=1 and a set of co...In this paper we first consider the existence and the general form of solution to the following generalized inverse eigenvalue problem(GIEP): given a set of n-dimension complex vectors {x j}m j=1 and a set of complex numbers {λ j}m j=1, find two n×n centrohermitian matrices A,B such that {x j}m j=1 and {λ j}m j=1 are the generalized eigenvectors and generalized eigenvalues of Ax=λBx, respectively. We then discuss the optimal approximation problem for the GIEP. More concretely, given two arbitrary matrices, , ∈C n×n, we find two matrices A and B such that the matrix (A*,B*) is closest to (,) in the Frobenius norm, where the matrix (A*,B*) is the solution to the GIEP. We show that the expression of the solution of the optimal approximation is unique and derive the expression for it.展开更多
A bound state solution is a quantum state solution of a particle subjected to a potential such that the particle's energy is less than the potential at both negative and positive infinity. The particle's energy may ...A bound state solution is a quantum state solution of a particle subjected to a potential such that the particle's energy is less than the potential at both negative and positive infinity. The particle's energy may also be negative as the potential approaches zero at infinity. It is characterized by the discretized eigenvalues and eigenfunctions, which contain all the necessary information regarding the quantum systems under consideration. The bound state problems need to be extended using a more precise method and approximation scheme. This study focuses on the non-relativistic bound state solutions to the generalized inverse quadratic Yukawa potential. The expression for the non-relativistic energy eigenvalues and radial eigenfunctions are derived using proper quantization rule and formula method, respectively. The results reveal that both the ground and first excited energy eigenvalues depend largely on the angular momentum numbers, screening parameters, reduced mass, and the potential depth. The energy eigenvalues, angular momentum numbers, screening parameters, reduced mass, and the potential depth or potential coupling strength determine the nature of bound state of quantum particles. The explored model is also suitable for explaining both the bound and continuum states of quantum systems.展开更多
Solving large scale system of Simultaneous Linear Equations (SLE) has been (and continue to be) a major challenging problem for many real-world engineering and science applications. Solving SLE with singular coefficie...Solving large scale system of Simultaneous Linear Equations (SLE) has been (and continue to be) a major challenging problem for many real-world engineering and science applications. Solving SLE with singular coefficient matrices arises from various engineering and sciences applications [1]-[6]. In this paper, efficient numerical procedures for finding the generalized (or pseudo) inverse of a general (square/rectangle, symmetrical/unsymmetrical, non-singular/singular) matrix and solving systems of Simultaneous Linear Equations (SLE) are formulated and explained. The developed procedures and its associated computer software (under MATLAB [7] computer environment) have been based on “special Cholesky factorization schemes” (for a singular matrix). Test matrices from different fields of applications have been chosen, tested and compared with other existing algorithms. The results of the numerical tests have indicated that the developed procedures are far more efficient than the existing algorithms.展开更多
The Moore-Penrose metric generalized inverse T+ of linear operator T in Banach space is systematically investigated in this paper. Unlike the case in Hilbert space, even T is a linear operator in Banach Space, the Moo...The Moore-Penrose metric generalized inverse T+ of linear operator T in Banach space is systematically investigated in this paper. Unlike the case in Hilbert space, even T is a linear operator in Banach Space, the Moore-Penrose metric generalized inverse T+ is usually homogeneous and nonlinear in general. By means of the methods of geometry of Banach Space, the necessary and sufficient conditions for existence, continuitv, linearity and minimum property of the Moore-Penrose metric generalized inverse T+ will be given, and some properties of T+ will be investigated in this paper.展开更多
In this paper, continuous homogeneous selections for the set-valued metric generalized inverses T^ of linear operators T in Banach spaces are investigated by means of the methods of geometry of Banach spaces. Necessar...In this paper, continuous homogeneous selections for the set-valued metric generalized inverses T^ of linear operators T in Banach spaces are investigated by means of the methods of geometry of Banach spaces. Necessary and sufficient conditions for bounded linear operators T to have continuous homogeneous selections for the set-valued metric generalized inverses T~ are given. The results are an answer to the problem posed by Nashed and Votruba.展开更多
文摘On the basis of the paoers[3—7],this paper study the monotonicity problems for the positive semidefinite generalized inverses of the positive semidefinite self-conjugate matrices of quaternions in the Lowner partial order,give the explicit formulations of the monotonicity solution sets A{1;≥,T_1;≤B^(1)}and B{1;≥,T_2≥A^(1)}for the(1)-inverse,and two results of the monotonicity charac teriaztion for the(1,2)-inverse.
基金supported by the National Science Foundation (12001142)Harbin Normal University doctoral initiation Fund (XKB201812)supported by the Science Foundation Grant of Heilongjiang Province (LH2019A017)
文摘This article continues to study the research suggestions in depth made by M.Z.Nashed and G.F.Votruba in the journal"Bull.Amer.Math.Soc."in 1974.Concerned with the pricing of non-reachable"contingent claims"in an incomplete financial market,when constructing a specific bounded linear operator A:l_(1)^(n)→l_(2) from a non-reflexive Banach space l_(1)^(n) to a Hilbert space l_(2),the problem of non-reachable"contingent claims"pricing is reduced to researching the(single-valued)selection of the(set-valued)metric generalized inverse A■ of the operator A.In this paper,by using the Banach space structure theory and the generalized inverse method of operators,we obtain a bounded linear single-valued selection A^(σ)=A+of A■.
基金Supported by the Nature Science Foundation of China(11471091 and 11401143)
文摘In this paper, we investigate a new perturbation theorem for the Moore-Penrose metric generalized inverses of a bounded linear operator in Banach space. The main tool in this paper is "the generalized Neumann lemma" which is quite different from the method in [12] where "the generalized Banach lemma" was used. By the method of the perturba- tion analysis of bounded linear operators, we obtain an explicit perturbation theorem and three inequalities about error estimates for the Moore-Penrose metric generalized inverse of bounded linear operator under the generalized Neumann lemma and the concept of stable perturbations in Banach spaces.
文摘Let R be a ring, * be an involutory function of the set of all finite matrices over R. In this paper, necessary and sufficient conditions are given for a matrix to have a (1,3)-inverse, (1,4)-inverse, or Moore-P enrose inverse, relative to *. Some results about generalized inverses of matrices over division rings are generalized and improved.
文摘Two efficient recursive algorithms epsilon_algorithm and eta_algorithm are introduced to compute the generalized inverse function_valued Padé approximants. The approximants were used to accelerate the convergence of the power series with function_valued coefficients and to estimate characteristic value of the integral equations. Famous Wynn identities of the Pad approximants is also established by means of the connection of two algorithms.
基金Project supported by the National Natural Science Foundation of China (Nos. 10571150 and 10271053)
文摘The perturbation problem of generalized inverse is studied. And some new stability characteristics of generalized inverses were presented. It was also proved that the stability characteristics of generalized inverses were independent of the choice of the generalized inverse. Based on this result, two sufficient and necessary conditions for the lower semi-continuity of generalized inverses as the set-valued mappings are given.
基金A.R.A.Alanzi would like to thank the Deanship of Scientific Research at Majmaah University for financial support and encouragement.
文摘This paper deals with the Bayesian estimation of Shannon entropy for the generalized inverse exponential distribution.Assuming that the observed samples are taken from the upper record ranked set sampling(URRSS)and upper record values(URV)schemes.Formulas of Bayesian estimators are derived depending on a gamma prior distribution considering the squared error,linear exponential and precautionary loss functions,in addition,we obtain Bayesian credible intervals.The random-walk Metropolis-Hastings algorithm is handled to generate Markov chain Monte Carlo samples from the posterior distribution.Then,the behavior of the estimates is examined at various record values.The output of the study shows that the entropy Bayesian estimates under URRSS are more convenient than the other estimates under URV in the majority of the situations.Also,the entropy Bayesian estimates perform well as the number of records increases.The obtained results validate the usefulness and efficiency of the URV method.Real data is analyzed for more clarifying purposes which validate the theoretical results.
基金Supported by the National Natural Science Foundation of China( No.2 0 1980 6 33)
文摘After choosing weight functions suitably, we define a Banach spaceH ω μ (L) and discuss the generalized inverse of singular integral operators on an open arc. Using the generalized inverse, we obtain the solutions for the following singular integral equation
文摘A new generalized inverse function-valued Padé approximation (GIFPA) was defined. Existence condition of GIFPA was given and its uniqueness theorem was proved. All possible degeneracy cases of GIFPA were discussed and constructed. An example was given to illustrate its application.
文摘A method that attempts to recover signal using generalized inverse theory is presented to obtain a good approximation of the signal in reconstruction space from its generalized samples. The proposed approaches differ with the assumptions on reconstruction space. If the reconstruction space satisfies one-to-one relationship between the samples and the reconstruction model, then we propose a method, which achieves consistent signal reconstruction. At the same time, when the number of samples is more than the number of reconstruction functions, the minimal-norm reconstruction signal can be obtained. Finally, it is demonstrated that the minimal-norm reconstruction can outperform consistent signal reconstruction in both theory and simulations for the problem.
基金supported by the“China Natural Science Fund under grant 11871181”the“China Natural Science Fund under grant 11561053”。
文摘In this paper,we prove that if X is an almost convex and 2-strictly convex space,linear operator T:X→Y is bounded,N(T)is an approximative compact Chebyshev subspace of X and R(T)is a 3-Chebyshev hyperplane,then there exists a homogeneous selection T^(σ)of T^(■)such that continuous points of T^(σ)and T^(■)are dense on Y.
文摘In this paper, a three dimensional matrix valued rational interpolant (TGMRI) is first constructed by making use of the generalized inverse of matrices. The interpolants are of the Thiele type branched continued fraction form, with matrix numerator and scalar denominator. Some properties of TGMRI are given. An efficient recursive algorithm is proposed. The results in the paper can be extend to n variable.
基金The works is supported by the National Natural Science Foundation of China(19871054)
文摘Assume that a convergent matrix sequence{A<sub>n</sub>}:A<sub>n</sub>→A(n→∞), A<sub>n</sub>,A∈C<sup>3×3</sup>.We want to form a new matrix sequence {H<sub>n</sub>}, derived from {A<sub>n</sub>}, which has also A aslimit and whose convergence is faster than the of {A<sub>n</sub>}. Three rational extrapolation meth-ods for accelerating the convergence of matrix sequences {A<sub>n</sub>} are presented in this paper.The underlying methods are based on the generalized inverse for matrices which is
基金This work is Supported by NSF of Heilongjiang Province
文摘Peal[2] shows that a sufficient and necessary condition on the existence of theMoore-Penrose inverse over any fields.Zhuang [3] generalize the result to any divisionrings.In this section we give another sufficient and necessary condition on the existence ofthe Moore-Penrose inverse over any division rings.Our result can be regarded as an im-provement of Theorem lin[1].As a medium result,we also show a characterization ofthe{1,2}-inverse.
文摘In this paper we first consider the existence and the general form of solution to the following generalized inverse eigenvalue problem(GIEP): given a set of n-dimension complex vectors {x j}m j=1 and a set of complex numbers {λ j}m j=1, find two n×n centrohermitian matrices A,B such that {x j}m j=1 and {λ j}m j=1 are the generalized eigenvectors and generalized eigenvalues of Ax=λBx, respectively. We then discuss the optimal approximation problem for the GIEP. More concretely, given two arbitrary matrices, , ∈C n×n, we find two matrices A and B such that the matrix (A*,B*) is closest to (,) in the Frobenius norm, where the matrix (A*,B*) is the solution to the GIEP. We show that the expression of the solution of the optimal approximation is unique and derive the expression for it.
文摘A bound state solution is a quantum state solution of a particle subjected to a potential such that the particle's energy is less than the potential at both negative and positive infinity. The particle's energy may also be negative as the potential approaches zero at infinity. It is characterized by the discretized eigenvalues and eigenfunctions, which contain all the necessary information regarding the quantum systems under consideration. The bound state problems need to be extended using a more precise method and approximation scheme. This study focuses on the non-relativistic bound state solutions to the generalized inverse quadratic Yukawa potential. The expression for the non-relativistic energy eigenvalues and radial eigenfunctions are derived using proper quantization rule and formula method, respectively. The results reveal that both the ground and first excited energy eigenvalues depend largely on the angular momentum numbers, screening parameters, reduced mass, and the potential depth. The energy eigenvalues, angular momentum numbers, screening parameters, reduced mass, and the potential depth or potential coupling strength determine the nature of bound state of quantum particles. The explored model is also suitable for explaining both the bound and continuum states of quantum systems.
文摘Solving large scale system of Simultaneous Linear Equations (SLE) has been (and continue to be) a major challenging problem for many real-world engineering and science applications. Solving SLE with singular coefficient matrices arises from various engineering and sciences applications [1]-[6]. In this paper, efficient numerical procedures for finding the generalized (or pseudo) inverse of a general (square/rectangle, symmetrical/unsymmetrical, non-singular/singular) matrix and solving systems of Simultaneous Linear Equations (SLE) are formulated and explained. The developed procedures and its associated computer software (under MATLAB [7] computer environment) have been based on “special Cholesky factorization schemes” (for a singular matrix). Test matrices from different fields of applications have been chosen, tested and compared with other existing algorithms. The results of the numerical tests have indicated that the developed procedures are far more efficient than the existing algorithms.
基金the National Natural Science Foundation of China(No.19971023)the Heilongjiang Provincial Natural Science Foundation of China.
文摘The Moore-Penrose metric generalized inverse T+ of linear operator T in Banach space is systematically investigated in this paper. Unlike the case in Hilbert space, even T is a linear operator in Banach Space, the Moore-Penrose metric generalized inverse T+ is usually homogeneous and nonlinear in general. By means of the methods of geometry of Banach Space, the necessary and sufficient conditions for existence, continuitv, linearity and minimum property of the Moore-Penrose metric generalized inverse T+ will be given, and some properties of T+ will be investigated in this paper.
基金supported by National Science Foundation of China (Grant No.11071051)Youth Science Foundation of Heilongjiang Province of China (Grant No.QC2009C73)+1 种基金the second author is supported by the State Committee for Scientific Research of Poland (Grant No.N N201 362236)the third author is supported by National Science Foundation of China (Grant No.11071051)
文摘In this paper, continuous homogeneous selections for the set-valued metric generalized inverses T^ of linear operators T in Banach spaces are investigated by means of the methods of geometry of Banach spaces. Necessary and sufficient conditions for bounded linear operators T to have continuous homogeneous selections for the set-valued metric generalized inverses T~ are given. The results are an answer to the problem posed by Nashed and Votruba.