Gravity assistance is a critical factor influencing CO_(2)-Oil mixing and miscible flow during EOR and CO_(2)geological storage.Based on the Navier-Stokes equation,component mass conservation equation,and fluid proper...Gravity assistance is a critical factor influencing CO_(2)-Oil mixing and miscible flow during EOR and CO_(2)geological storage.Based on the Navier-Stokes equation,component mass conservation equation,and fluid property-composition relationship,a mathematical model for pore-scale CO_(2) injection in oilsaturated porous media was developed in this study.The model can reflect the effects of gravity assistance,component diffusion,fluid density variation,and velocity change on EOR and CO_(2) storage.For nonhomogeneous porous media,the gravity influence and large density difference help to minimize the velocity difference between the main flow path and the surrounding area,thus improving the oil recovery and CO_(2) storage.Large CO_(2) injection angles and oil-CO_(2) density differences can increase the oil recovery by 22.6% and 4.2%,respectively,and increase CO_(2) storage by 37.9% and 4.7%,respectively.Component diffusion facilitates the transportation of the oil components from the low-velocity region to the main flow path,thereby reducing the oil/CO_(2) concentration difference within the porous media.Component diffusion can increase oil recovery and CO_(2) storage by 5.7% and 6.9%,respectively.In addition,combined with the component diffusion,a low CO_(2) injection rate creates a more uniform spatial distribution of the oil/CO_(2) component,resulting in increases of 9.5% oil recovery and 15.7% CO_(2) storage,respectively.This study provides theoretical support for improving the geological CO_(2) storage and EOR processes.展开更多
Offshore carbon dioxide(CO_(2)) geological storage(OCGS) represents a significant strategy for addressing climate change by curtailing greenhouse gas emissions. Nonetheless, the risk of CO_(2) leakage poses a substant...Offshore carbon dioxide(CO_(2)) geological storage(OCGS) represents a significant strategy for addressing climate change by curtailing greenhouse gas emissions. Nonetheless, the risk of CO_(2) leakage poses a substantial concern associated with this technology. This study introduces an innovative approach for establishing OCGS leakage scenarios, involving four pivotal stages, namely, interactive matrix establishment, risk matrix evaluation, cause–effect analysis, and scenario development, which has been implemented in the Pearl River Estuary Basin in China. The initial phase encompassed the establishment of an interaction matrix for OCGS systems based on features, events, and processes. Subsequent risk matrix evaluation and cause–effect analysis identified key system components, specifically CO_(2) injection and faults/features. Building upon this analysis, two leakage risk scenarios were successfully developed, accompanied by the corresponding mitigation measures. In addition, this study introduces the application of scenario development to risk assessment, including scenario numerical simulation and quantitative assessment. Overall, this research positively contributes to the sustainable development and safe operation of OCGS projects and holds potential for further refinement and broader application to diverse geographical environments and project requirements. This comprehensive study provides valuable insights into the establishment of OCGS leakage scenarios and demonstrates their practical application to risk assessment, laying the foundation for promoting the sustainable development and safe operation of ocean CO_(2) geological storage projects while proposing possibilities for future improvements and broader applications to different contexts.展开更多
The well-developed coal electricity generation and coal chemical industries have led to huge carbon dioxide(CO_(2))emissions in the northeastern Ordos Basin.The geological storage of CO_(2) in saline aquifers is an ef...The well-developed coal electricity generation and coal chemical industries have led to huge carbon dioxide(CO_(2))emissions in the northeastern Ordos Basin.The geological storage of CO_(2) in saline aquifers is an effective backup way to achieve carbon neutrality.In this case,the potential of saline aquifers for CO_(2) storage serves as a critical basis for subsequent geological storage project.This study calculated the technical control capacities of CO_(2) of the saline aquifers in the fifth member of the Shiqianfeng Formation(the Qian-5 member)based on the statistical analysis of the logging and the drilling and core data from more than 200 wells in the northeastern Ordos Basin,as well as the sedimentary facies,formation lithology,and saline aquifer development patterns of the Qian-5 member.The results show that(1)the reservoirs of saline aquifers in the Qian-5 member,which comprise distributary channel sand bodies of deltaic plains,feature low porosities and permeabilities;(2)The study area hosts three NNE-directed saline aquifer zones,where saline aquifers generally have a single-layer thickness of 3‒8 m and a cumulative thickness of 8‒24 m;(3)The saline aquifers of the Qian-5 member have a total technical control capacity of CO_(2) of 119.25×10^(6) t.With the largest scale and the highest technical control capacity(accounting for 61%of the total technical control capacity),the Jinjie-Yulin saline aquifer zone is an important prospect area for the geological storage of CO_(2) in the saline aquifers of the Qian-5 member in the study area.展开更多
From 2010 to 2012, the China Geological Survey Center for Hydrogeology and Environmental Geology Survey (CHEGS) carried out the project "Potential evaluation and demonstration project of CO2 Geological Storage in C...From 2010 to 2012, the China Geological Survey Center for Hydrogeology and Environmental Geology Survey (CHEGS) carried out the project "Potential evaluation and demonstration project of CO2 Geological Storage in China". During this project, we developed an evaluation index system and technical methods for the potential and suitability of CO2 geological storage based on China's geological conditions, and evaluated the potential and suitability of the primary basins for COz geological storage, in order to draw a series of regional scale maps (at a scale of 1:5000000) and develop an atlas of the main sedimentary basins in China. By using these tools, we delineated many potential targets for CO2 storage. We also built techniques and methods for site selection and the exploration and assessment of CO2 geological storage in deep saline aquifers. Furthermore, through cooperation with the China Shenhua Coal to Liquid and Chemical Co., Ltd., we successfully constructed the first coal-based demonstration project for CO2 geological storage in deep saline aquifers in the Yijinhuoluo Banner of Ordos in the Inner Mongolia Autonomous Region, which brought about the basic preliminary theories, techniques, and methods of geological CO2 storage in deep saline aquifers under China's geological conditions.展开更多
This work established an evaluation index system based on a comprehensive analysis of those factors affecting the suitability of CO2 geological storage.This evaluation index system includes three evaluation index laye...This work established an evaluation index system based on a comprehensive analysis of those factors affecting the suitability of CO2 geological storage.This evaluation index system includes three evaluation index layers of geological safety,storage scale and social economy,nine evaluation index sub-layers,and 28 evaluation index factors,and adopts the analytic hierarchy process(AHP)and index overlay methods.Taking the Xining Basin in northwest China as an example,we conducted comprehensive analysis of geological conditions and performed quantitative evaluation based on this evaluation index system,which indicates that the Shuangshu depression of the Xining Basin is comparatively suitable for CO2 geological storage.It is suggested that this evaluation index system and the evaluation method proposed in this study are suitable for most continental sedimentary basins in China and should be widely applied.展开更多
This paper focuses on the progress in geomechanical modeling associated with carbon dioxide(CO2)geological storage.The detailed review of some geomechanical aspects,including numerical methods,stress analysis,ground d...This paper focuses on the progress in geomechanical modeling associated with carbon dioxide(CO2)geological storage.The detailed review of some geomechanical aspects,including numerical methods,stress analysis,ground deformation,fault reactivation,induced seismicity and crack propagation,is presented.It is indicated that although all the processes involved are not fully understood,integration of all available data,such as ground survey,geological conditions,microseismicity and ground level deformation,has led to many new insights into the rock mechanical response to CO2injection.The review also shows that in geomechanical modeling,continuum modeling methods are predominant compared with discontinuum methods.It is recommended to develop continuum-discontinuum numerical methods since they are more convenient for geomechanical modeling of CO2geological storage,especially for fracture propagation simulation.The Mohr-Coulomb criterion is widely used in prediction of rock mass mechanical behavior.It would be better to use a criterion considering the effect of the intermediate principal stress on rock mechanical behavior,especially for the stability analysis of deeply seated rock engineering.Some challenges related to geomechanical modeling of CO2geological storage are also discussed.展开更多
Carbon Capture and Storage(CCS)is one of the effective means to deal with global warming,and saline aquifer storage is considered to be the most promising storage method.Junggar Basin,located in the northern part of X...Carbon Capture and Storage(CCS)is one of the effective means to deal with global warming,and saline aquifer storage is considered to be the most promising storage method.Junggar Basin,located in the northern part of Xinjiang and with a large distribution area of saline aquifer,is an effective carbon storage site.Based on well logging data and 2D seismic data,a 3D heterogeneous geological model of the Cretaceous Donggou Formation reservoir near D7 well was constructed,and dynamic simulations under two scenarios of single-well injection and multi-well injection were carried out to explore the storage potential and CO2 storage mechanism of deep saline aquifer with real geological conditions in this study.The results show that within 100 km^(2)of the saline aquifer of Donggou Formation in the vicinity of D7 well,the theoretical static CO_(2)storage is 71.967×106 tons(P50)①,and the maximum dynamic CO_(2)storage is 145.295×106 tons(Case2).The heterogeneity of saline aquifer has a great influence on the spatial distribution of CO_(2)in the reservoir.The multi-well injection scenario is conducive to the efficient utilization of reservoir space and safer for storage.Based on the results from theoretical static calculation and the dynamic simulation,the effective coefficient of CO_(2)storage in deep saline aquifer in the eastern part of Xinjiang is recommended to be 4.9%.This study can be applied to the engineering practice of CO_(2)sequestration in the deep saline aquifer in Xinjiang.展开更多
For the sake of mine water drainage and sustainable groundwater protection,the new approach of mine water deep geological storage(MWDGS)is highly necessary to save water resources in the semi-arid region of China.Howe...For the sake of mine water drainage and sustainable groundwater protection,the new approach of mine water deep geological storage(MWDGS)is highly necessary to save water resources in the semi-arid region of China.However,up to now,little academic research has been done on mine water geological storage.Given this situation,the hydrogeological feasibility of MWDGS was explored in Baotashan coarse sandstone(BCS)of Jurassic measure in Ordos Basin.The results show that the white-gray BCS with a fragile skeleton of quartz(41.4%),feldspar(21.1%),and clay minerals(16.4%)provides the potential variable-void for mine water;and its hydro-chemical type of BCS aquifer is CO_(3)-Na and Cl-Na.As the burial depth increases,the strong alkaline groundwater is in stagnant and poor recharge-runoff-discharge condition.The lab test shows that the pores whose diameter is over 10μm could be treated as the main storage of mine water;and the effective porosity varies from 1.36%to 3.46%.When mine water is injected,the strong hydrodynamics of mine water storage would change the permeability significantly and about 0.201%soluble solids would be dissolved.Partial clay minerals obstruct the pores and induce the saturated phase of high permeability to evolve into steady phase of lower permeability.Under the condition of nonhydraulic fracturing during continuous storage,the heterogeneous anisotropic medium obtained by Transition PRObability GeoStatistics(TPROGS)shows that the capacity of BCS aquifer is 0.455 to 1.226Mm^(3)for 1 km^(2)in the study area.The simulation shows that the groundwater mound in well-scale and mine-scale would be formed.The groundwater quality characteristics of“Three Zone”would occur around and gradually drop to approximate the original brine within 10 years.The hydrogeological feasibility reveals that this approach is useful for the well design and groundwater environment management during the mine water deep geological storage project in the Ordos basin.展开更多
Carbon dioxide(CO_(2))capture,utilization,and storage(CCUS)is an important pathway for China to achieve its“2060 carbon neutrality”strategy.Geological sequestration of CO_(2)in deep coals is one of the methods of CC...Carbon dioxide(CO_(2))capture,utilization,and storage(CCUS)is an important pathway for China to achieve its“2060 carbon neutrality”strategy.Geological sequestration of CO_(2)in deep coals is one of the methods of CCUS.Here,the No.3 anthracite in the Qinshui Basin was studied using the superposition of each CO_(2)geological storage category to construct models for theoretical CO_(2)geological storage capacity(TCGSC)assessment,and CO_(2)adsorption capacity variation with depth.CO_(2)geological storage potential of No.3 anthracite coal was assessed by integrating the adsorption capacity with the static storage and dissolution capacities.The results show that(1)CO_(2)adsorption capacities of XJ and SH coals initially increased with depth,peaked at 47.7 cm3/g and 41.5 cm3/g around 1000 m,and later decreased with depth.(2)four assessment areas and their geological model parameters were established based on CO_(2)phase variation and spatial distribution of coal thickness,(3)the abundance of CO_(2)geological storage capacity(ACGSC),which averages 40 cm3/g,shows an analogous circularity-sharp distribution,with the high abundance area influenced by depth and coal rank,and(4)the TCGSC and the effective CO_(2)geological storage capacity(ECGSC)are 9.72 Gt and 6.54 Gt;the gas subcritical area accounted for 76.41%of the total TCGSC.Although adsorption-related storage capacity accounted for more than 90%of total TCGSC,its proportion,however,decreased with depth.Future CO_(2)-ECBM project should focus on highrank coals in gas subcritical and gas-like supercritical areas.Such research will provide significant reference for assessment of CO_(2)geological storage capacity in deep coals.展开更多
The Ordos Basin is a large cratonic basin with stable deposition in Northwest China.Given its mostly stable subsidence background and the urgent need for saline water disposal and carbon dioxide storage in the coal mi...The Ordos Basin is a large cratonic basin with stable deposition in Northwest China.Given its mostly stable subsidence background and the urgent need for saline water disposal and carbon dioxide storage in the coal mining and coal chemical industries,the Ordos Basin has been chosen as a pilot demonstration site for carbon dioxide and saline water storage in China.However,few studies have been made to evaluate the sedimentary and sequence stratigraphy characteristics of this region,as well as their influence on carbon dioxide and saline water storage potential.To address this research gap,we conducted a sedimentary study of the Lower Triassic Liujiagou Formation in the northeastern Ordos Basin utilizing the stratigraphy theory,laboratory test analysis,and pilot project demonstration,to evaluate the area's viability for the deep geological storage of gas and liquid waste.We studied the tectonic setting,petrological features,and sedimentary characteristics of the favorable strata and predicted favorable areas based on sequence stratigraphy theory.The lithology predominantly consists of feldspathic graywacke,with a fine grain size and mostly fine-to-medium-grained sandstone.The distribution of thick-grained sandstone and fine-grained sediment was identified by dividing the sequence,and a favorable reservoir-cap assemblage configuration was formed.It's concluded that the Lower Triassic Liujiagou Formation exhibits suitable characteristics for the deep geological storage of carbon dioxide and saline water.This study demonstrates the importance of basic theory in guiding practical applications and provides a reference for the scientific selection of favorable areas for deep basin storage.展开更多
In this work,using fractured shale cores,isothermal adsorption experiments and core flooding tests were conducted to investigate the performance of injecting different gases to enhance shale gas recovery and CO_(2)geo...In this work,using fractured shale cores,isothermal adsorption experiments and core flooding tests were conducted to investigate the performance of injecting different gases to enhance shale gas recovery and CO_(2)geological storage efficiency under real reservoir conditions.The adsorption process of shale to different gases was in agreement with the extended-Langmuir model,and the adsorption capacity of CO_(2)was the largest,followed by CH_(4),and that of N_(2)was the smallest of the three pure gases.In addition,when the CO_(2)concentration in the mixed gas exceeded 50%,the adsorption capacity of the mixed gas was greater than that of CH4,and had a strong competitive adsorption effect.For the core flooding tests,pure gas injection showed that the breakthrough time of CO_(2)was longer than that of N_(2),and the CH_(4)recovery factor at the breakthrough time(Rch,)was also higher than that of N_(2).The RcH of CO_(2)gas injection was approximately 44.09%,while the RcH,of N_(2)was only 31.63%.For CO_(2)/N_(2)mixed gas injection,with the increase of CO_(2)concentration,the RcH,increased,and the RcH,for mixed gas CO_(2)/N_(2)=8:2 was close to that of pure CO_(2),about 40.24%.Moreover,the breakthrough time of N_(2)in mixed gas was not much different from that when pure N_(2)was injected,while the breakthrough time of CO_(2)was prolonged,which indicated that with the increase of N_(2)concentration in the mixed gas,the breakthrough time of CO_(2)could be extended.Furthermore,an abnormal surge of N_(2)concentration in the produced gas was observed after N_(2)breakthrough.In regards to CO_(2)storage efficiency(S_(Storage-CO_(2)),as the CO_(2)concentration increased,S storage-co_(2)also increased.The S storage-co_(2),of the pure CO_(2)gas injection was about 35.96%,while for mixed gas CO_(2)/N_(2)=8:2,S sorage-co,was about 32.28%.展开更多
CO_(2)geological storage and utilization(CGSU)is considered a far-reaching technique to meet the demand of increasing energy supply and decreasing CO_(2)emissions.For CGSUs related to shale gas reservoirs,experimental...CO_(2)geological storage and utilization(CGSU)is considered a far-reaching technique to meet the demand of increasing energy supply and decreasing CO_(2)emissions.For CGSUs related to shale gas reservoirs,experimental investigations have attracted variable methodologies,among which low-field NMR(LF-NMR)is a promising method and is playing an increasingly key role in reservoir characterization.Herein,the application of this nondestructive,sensitive,and quick LF-NMR technique in characterizing CGSU behavior in shale gas reservoirs is reviewed.First,the basic principle of LF-NMR for 1H-fluid detection is introduced,which is the theoretical foundation of the reviewed achievements in this paper.Then,the reviewed works are related to the LF-NMR-based measurements of CH_(4)adsorption capacity and the CO_(2)-CH_(4)interaction in shale,as well as the performance on CO_(2)sequestration and simultaneous enhanced gas recovery from shale.Basically,the reviewed achievements have exhibited a large potential for LF-NMR application in CGSUs related to shale gas reservoirs,although some limitations and deficiencies still need to be improved.Accordingly,some suggestions are proposed for a more responsible development of the LF-NMR technique.Hopefully,this review is helpful in promoting the expanding application of the LF-NMR technique in CGSU implementation in shale gas reservoirs.展开更多
This study characterized the AA-01 depleted hydrocarbon reservoir in the KOKA field, Niger Delta, using a multidimensional approach. This investigation involved data validation analysis, evaluation of site suitability...This study characterized the AA-01 depleted hydrocarbon reservoir in the KOKA field, Niger Delta, using a multidimensional approach. This investigation involved data validation analysis, evaluation of site suitability for CO_(2) storage, and compositional simulation of hydrocarbon components. The primary objective was to determine the initial components and behavior of the hydrocarbon system required to optimize the injection of CO_(2) and accompanying impurities, establishing a robust basis for subsequent sequestration efforts in the six wells in the depleted KOKA AA-01 reservoir. The process, simulated using industry software such as ECLIPSE, PVTi, SCAL, and Petrel, included a compositional fluid analysis to confirm the pressure volume temperature(PVT) hydrocarbon phases and components. This involved performing a material balance on the quality of the measured data and matching the initial reservoir pressure with the supplied data source. The compositional PVT analysis adopted the Peng–Robinson equation of state to model fluid flow in porous media and estimate the necessary number of phases and components to describe the system accurately. Results from this investigation indicate that the KOKA AA-01 reservoir is suitable for CO_(2)sequestration. This conclusion is based on the reservoir's good quality, evidenced by an average porosity of 0.21 and permeability of 1 111.0 mD, a measured lithological depth of 9 300 ft, and characteristic reservoir – seal properties correlated from well logs. The study confirmed that volumetric behavior predictions are directly linked to compositional behavior predictions, which are essential during reservoir initialization and data quality checks. Additionally, it highlighted that a safe design for CO_(2) storage relies on accurately representing multiphase behaviour across wide-ranging pressure–temperature–composition conditions.展开更多
Important first phases in the process of implementing CO2 subsurface and ocean storage projects include selecting of best possible location(s) for CO2 storage, and site selection evaluation. Sites must fulfill a numbe...Important first phases in the process of implementing CO2 subsurface and ocean storage projects include selecting of best possible location(s) for CO2 storage, and site selection evaluation. Sites must fulfill a number of criteria that boil down to the following basics: they must be able to accept the desired volume of CO2 at the rate at which it is supplied from the CO2 source(s);they must as well be safe and reliable;and must comply with regulatory and other societal requirements. They also must have at least public acceptance and be based on sound financial analysis. Site geology;hydrogeological, pressure, and geothermal regimes;land features;location, climate, access, etc. can all be refined from these basic criteria. In addition to aiding in site selection, site characterization is essential for other purposes, such as foreseeing the fate and impacts of the injected CO2, and informing subsequent phases of site development, including design, permitting, operation, monitoring, and eventual abandonment. According to data from the IEA, in 2022, emissions from Africa and Asias emerging markets and developing economies, excluding Chinas, increased by 4.2%, which is equivalent to 206 million tonnes of CO2 and were higher than those from developed economies. Coal-fired power generation was responsible for more than half of the rise in emissions that were recorded in the region. The difficulty of achieving sustainable socio-economic progress in the developing countries is entwined with the work of reducing CO2 emissions, which is a demanding project for the economy. Organisations from developing countries, such as Bangladesh, Cameroon, India, and Nigeria, have formed partnerships with organisations in other countries for lessons learned and investment within the climate change arena. The basaltic rocks, coal seams, depleted oil and gas reservoirs, soils, deep saline aquifers, and sedimentary basins that developing countries (Bangladesh, Cameroon, India, and Nigeria etc.) possess all contribute to the individual countrys significant geological sequestration potential. There are limited or no carbon capture and storage or clean development mechanism projects running in these countries at this time. The site selection and characterization procedure are not complete without an estimate of the storage capacity of a storage location. Estimating storage capacity relies on volumetric estimates because a site must accept the planned volume of CO2 during the active injection period. As more and more applications make use of site characterization, so too does the body of written material on the topic. As the science of CO2 storage develops, regulatory requirements are implemented, field experience grows, and the economics of CO2 capture and storage improve, so too will site selection and characterisation change.展开更多
We present a framework that couples a high-fidelity compositional reservoir simulator with Bayesian optimization(BO)for injection well scheduling optimization in geological carbon sequestration.This work represents on...We present a framework that couples a high-fidelity compositional reservoir simulator with Bayesian optimization(BO)for injection well scheduling optimization in geological carbon sequestration.This work represents one of the first at tempts to apply BO and high-fidelity physics models to geological carbon storage.The implicit parallel accurate reservoir simulator(IPARS)is utilized to accurately capture the underlying physical processes during CO_(2)sequestration.IPARS provides a framework for several flow and mechanics models and thus supports both stand-alone and coupled simulations.In this work,we use the compositional flow module to simulate the geological carbon storage process.The compositional flow model,which includes a hysteretic three-phase relative permeability model,accounts for three major CO_(2)trapping mechanisms:structural trapping,residual gas trapping,and solubility trapping.Furthermore,IPARS is coupled to the International Business Machines(IBM)Corporation Bayesian Optimization Accelerator(BOA)for parallel optimizations of CO_(2)injection strategies during field-scale CO_(2)sequestration.BO builds a probabilistic surrogate for the objective function using a Bayesian machine learning algorithm-the Gaussian process regression,and then uses an acquisition function that leverages the uncertainty in the surrogate to decide where to sample.The IBM BOA addresses the three weaknesses of standard BO that limits its scalability in that IBM BOA supports parallel(batch)executions,scales better for high-dimensional problems,and is more robust to initializations.We demonstrate these merits by applying the algorithm in the optimization of the CO_(2)injection schedule in the Cranfield site in Mississippi,USA,using field data.The optimized injection schedule achieves 16%more gas storage volume and 56%less water/surfactant usage compared with the baseline.The performance of BO is compared with that of a genetic algorithm(GA)and a covariance matrix adaptation(CMA)-evolution strategy(ES).The results demonstrate the superior performance of BO,in that it achieves a competitive objective function value with over 60%fewer forward model evaluations.展开更多
"Carbon peaking and carbon neutrality"is an essential national strategy,and the geological storage and utilization of CO_(2)is a hot issue today.However,due to the scarcity of pure CO_(2)gas sources in China..."Carbon peaking and carbon neutrality"is an essential national strategy,and the geological storage and utilization of CO_(2)is a hot issue today.However,due to the scarcity of pure CO_(2)gas sources in China and the high cost of CO_(2)capture,CO_(2)-rich industrial waste gas(CO_(2)-rich IWG)is gradually emerging into the public's gaze.CO_(2)has good adsorption properties on shale surfaces,but acidic gases can react with shale,so the mechanism of the CO_(2)-rich IWG-water-shale reaction and the change in reservoir properties will determine the stability of geological storage.Therefore,based on the mineral composition of the Longmaxi Formation shale,this study constructs a thermodynamic equilibrium model of water-rock reactions and simulates the regularity of reactions between CO_(2)-rich IWG and shale minerals.The results indicate that CO_(2)consumed 12%after reaction,and impurity gases in the CO_(2)-rich IWG can be dissolved entirely,thus demonstrating the feasibility of treating IWG through water-rock reactions.Since IWG inhibits the dissolution of CO_(2),the optimal composition of CO_(2)-rich IWG is 95%CO_(2)and 5%IWG when CO_(2)geological storage is the main goal.In contrast,when the main goal is the geological storage of total CO_(2)-rich IWG or impurity gas,the optimal CO_(2)-rich IWG composition is 50%CO_(2)and 50%IWG.In the CO_(2)-rich IWG-water-shale reaction,temperature has less influence on the water-rock reaction,while pressure is the most important parameter.SO2 has the greatest impact on water-rock reaction in gas.For minerals,clay minerals such as illite and montmorillonite had a significant effect on water-rock reaction.The overall reaction is dominated by precipitation and the volume of the rock skeleton has increased by 0.74 cm3,resulting in a decrease in shale porosity,which enhances the stability of CO_(2)geological storage to some extent.During the reaction between CO_(2)-rich IWG-water-shale at simulated temperatures and pressures,precipitation is the main reaction,and shale porosity decreases.However,as the reservoir water content increases,the reaction will first dissolve and then precipitate before dissolving again.When the water content is less than 0.0005 kg or greater than 0.4 kg,it will lead to an increase in reservoir porosity,which ultimately reduces the long-term geological storage stability of CO_(2)-rich IWG.展开更多
The geological storage of carbon dioxide(CO_(2)) is a crucial technology for mitigating climate change. Offshore deep saline aquifers have elicited increased attention due to their remarkable potential for storing CO_...The geological storage of carbon dioxide(CO_(2)) is a crucial technology for mitigating climate change. Offshore deep saline aquifers have elicited increased attention due to their remarkable potential for storing CO_(2). During long-term storage, CO_(2) migration in a deep saline aquifer needs special attention to prevent it from reaching risk points and leading to security issues. In this paper, a mechanism model is established according to the geological characteristics of saline aquifers in an offshore sedimentary basin in China. The CO_(2) migration over 100 years is simulated considering geological changes such as permeability, dip angle, thickness, and salinity. The effects of injection conditions on the CO_(2) migration range are also investigated. Results reveal that the migration range of CO_(2) in the injection period exceeds 70%, even if the postinjection period's duration is five times longer than that of the injection period. As the values of the above geological parameters increase, the migration range of CO_(2) increases, and permeability has a particularly substantial influence. Moreover, the influences of injection rate and well type are considerable. At high injection rates, CO_(2) has a greater likelihood of displacing brine in a piston-like scheme. CO_(2) injected by long horizontal wells migrates farther compared with that injected by vertical wells. In general, the plane migration range is within 3 000 m, although variations in the reservoir and injection parameters of the studied offshore saline aquifers are considered. This paper can offer references for the site selection and injection well deployment of CO_(2) saline aquifer storage. According to the studied offshore aquifers, a distance of at least 3 000 m from potential leakage points, such as spill points, active faults, and old abandoned wells, must be maintained.展开更多
Injecting carbon dioxide(CO_(2))into coal seams may unlock substantial carbon sequestration potential.Since the coal acts like a carbon filter,it can preferentially absorb significant amounts of CO_(2).To explore this...Injecting carbon dioxide(CO_(2))into coal seams may unlock substantial carbon sequestration potential.Since the coal acts like a carbon filter,it can preferentially absorb significant amounts of CO_(2).To explore this further,desorption of the adsorbed gas due to pressure drop is investigated in this paper,to achieve an improved understanding of the long-term fate of injected CO_(2) during post-injection period.This paper presents a dual porosity model coupling gas flow,adsorption and geomechanics for studying coupled processes and effectiveness of CO_(2) sequestration in coals.A new adsorption?desorption model derived based on thermodynamics is incorporated,particularly,the desorption hysteresis is considered.The reliability of the proposed adsorption-desorption isotherm is examined via validation tests.It is indicated that occurrence of desorption hysteresis is attributed to the adsorption-induced pore deformation.After injection ceases,the injected gas continues to propagate further from the injection well,while the pressure in the vicinity of the injection well experiences a significant drop.Although the adsorbed gas near the well also decreases,this decrease is less compared to that in pressure because of desorption hysteresis.The unceasing spread of CO_(2) and drops of pressure and adsorbed gas depend on the degree of desorption hysteresis and heterogeneity of coals,which should be considered when designing CO_(2) sequestration into coal seams.展开更多
Carbon dioxide(CO2) capture and storage(CCS) is considered widely as one of promising options for CO2emissions reduction,especially for those countries with coal-dominant energy mix like China.Injecting and storing a ...Carbon dioxide(CO2) capture and storage(CCS) is considered widely as one of promising options for CO2emissions reduction,especially for those countries with coal-dominant energy mix like China.Injecting and storing a huge volume of CO2in deep formations are likely to cause a series of geomechanical issues,including ground surface uplift,damage of caprock integrity,and fault reactivation.The Shenhua CCS demonstration project in Ordos Basin,China,is the first and the largest full-chain saline aquifer storage project of CO2in Asia.The injection started in 2010 and ended in 2015.during which totally 0.3 million tonnes(Mt) CO2was injected.The project is unique in which CO2was injected into 18 sandstone formations simultaneously and the overlying coal seams will be mined after the injection stopped in 2015.Hence,intense geomechanical studies and monitoring works have been conducted in recent years,including possible damage resulting from the temperature difference between injected CO2and formations,injection induced stress and deformation change,potential failure mode and safety factor,interaction between coal mining and CO2geological storage,determination of injection pressure limit,and surface monitoring by the interferometric synthetic aperture radar(InSAR) technology.In this paper,we first described the background and its geological conditions of the Shenhua CCS demonstration project.Then,we gave an introduction to the coupled thermo-hydro-mechano-chemical(THMC) processes in CO2geological storage,and mapped the key geomechanical issues into the THMC processes accordingly.Next,we proposed a generalized geomechanical research flowchart for CO2geological storage projects.After that,we addressed and discussed some typical geomechanical issues,including design of injection pressure limit.CO2injection induced near-field damage,and interaction between CO2geological storage and coal mining,in the Shenhua CCS demonstration project.Finally,we concluded some insights to this CCS project.展开更多
CO_(2)emission mitigation is one of the most critical research frontiers.As a promising option of carbon capture,utilization and storage(CCUS),CO_(2)storage with enhanced gas recovery(CSEGR)can reduce CO_(2)emission b...CO_(2)emission mitigation is one of the most critical research frontiers.As a promising option of carbon capture,utilization and storage(CCUS),CO_(2)storage with enhanced gas recovery(CSEGR)can reduce CO_(2)emission by sequestrating it into gas reservoirs and simultaneously enhance natural gas production.Over the past decades,the displacement behaviour of CO_(2)—natural gas has been extensively studied and demonstrated to play a key role on both CO_(2)geologic storage and gas recovery performance.This work thoroughly and critically reviews the experimental and numerical simulation studies of CO_(2)displacing natural gas,along with both CSEGR research and demonstration projects at various scales.The physical property difference between CO_(2)and natural gas,especially density and viscosity,lays the foundation of CSEGR.Previous experiments on displacement behaviour and dispersion characteristics of CO_(2)/natural gas revealed the fundamental mixing characteristics in porous media,which is one key factor of gas recovery efficiency and warrants further study.Preliminary numerical simulations demonstrated that it is technically and economically feasible to apply CSEGR in depleted gas reservoirs.However,CO_(2)preferential flow pathways are easy to form(due to reservoir heterogeneity)and thus adversely compromise CSEGR performance.This preferential flow can be slowed down by connate or injected water.Additionally,the optimization of CO_(2)injection strategies is essential for improving gas recovery and CO_(2)storage,which needs further study.The successful K12—B pilot project provides insightful field-scale knowledge and experience,which paves a good foundation for commercial application.More experiments,simulations,research and demonstration projects are needed to facilitate the maturation of the CSEGR technology.展开更多
基金The project supported by National Natural Science Foundation of China(No.51991364,51974347)the Major Scientific and Technological Projects of CNPC under Grant ZD2019-184-002。
文摘Gravity assistance is a critical factor influencing CO_(2)-Oil mixing and miscible flow during EOR and CO_(2)geological storage.Based on the Navier-Stokes equation,component mass conservation equation,and fluid property-composition relationship,a mathematical model for pore-scale CO_(2) injection in oilsaturated porous media was developed in this study.The model can reflect the effects of gravity assistance,component diffusion,fluid density variation,and velocity change on EOR and CO_(2) storage.For nonhomogeneous porous media,the gravity influence and large density difference help to minimize the velocity difference between the main flow path and the surrounding area,thus improving the oil recovery and CO_(2) storage.Large CO_(2) injection angles and oil-CO_(2) density differences can increase the oil recovery by 22.6% and 4.2%,respectively,and increase CO_(2) storage by 37.9% and 4.7%,respectively.Component diffusion facilitates the transportation of the oil components from the low-velocity region to the main flow path,thereby reducing the oil/CO_(2) concentration difference within the porous media.Component diffusion can increase oil recovery and CO_(2) storage by 5.7% and 6.9%,respectively.In addition,combined with the component diffusion,a low CO_(2) injection rate creates a more uniform spatial distribution of the oil/CO_(2) component,resulting in increases of 9.5% oil recovery and 15.7% CO_(2) storage,respectively.This study provides theoretical support for improving the geological CO_(2) storage and EOR processes.
文摘Offshore carbon dioxide(CO_(2)) geological storage(OCGS) represents a significant strategy for addressing climate change by curtailing greenhouse gas emissions. Nonetheless, the risk of CO_(2) leakage poses a substantial concern associated with this technology. This study introduces an innovative approach for establishing OCGS leakage scenarios, involving four pivotal stages, namely, interactive matrix establishment, risk matrix evaluation, cause–effect analysis, and scenario development, which has been implemented in the Pearl River Estuary Basin in China. The initial phase encompassed the establishment of an interaction matrix for OCGS systems based on features, events, and processes. Subsequent risk matrix evaluation and cause–effect analysis identified key system components, specifically CO_(2) injection and faults/features. Building upon this analysis, two leakage risk scenarios were successfully developed, accompanied by the corresponding mitigation measures. In addition, this study introduces the application of scenario development to risk assessment, including scenario numerical simulation and quantitative assessment. Overall, this research positively contributes to the sustainable development and safe operation of OCGS projects and holds potential for further refinement and broader application to diverse geographical environments and project requirements. This comprehensive study provides valuable insights into the establishment of OCGS leakage scenarios and demonstrates their practical application to risk assessment, laying the foundation for promoting the sustainable development and safe operation of ocean CO_(2) geological storage projects while proposing possibilities for future improvements and broader applications to different contexts.
基金funded by the Top 10 key scientific and technological projects of CHN Energy in 2021 entitled Research and Demonstration of Technology for Carbon Dioxide Capture and Energy Recycling Utilization(GJNYKJ[2021]No.128,No.:GJNY-21-51)the Carbon Neutrality College(Yulin)Northwest University project entitled Design and research of large-scale CCUS cluster construction in Yulin area,Shaanxi Province(YL2022-38-01).
文摘The well-developed coal electricity generation and coal chemical industries have led to huge carbon dioxide(CO_(2))emissions in the northeastern Ordos Basin.The geological storage of CO_(2) in saline aquifers is an effective backup way to achieve carbon neutrality.In this case,the potential of saline aquifers for CO_(2) storage serves as a critical basis for subsequent geological storage project.This study calculated the technical control capacities of CO_(2) of the saline aquifers in the fifth member of the Shiqianfeng Formation(the Qian-5 member)based on the statistical analysis of the logging and the drilling and core data from more than 200 wells in the northeastern Ordos Basin,as well as the sedimentary facies,formation lithology,and saline aquifer development patterns of the Qian-5 member.The results show that(1)the reservoirs of saline aquifers in the Qian-5 member,which comprise distributary channel sand bodies of deltaic plains,feature low porosities and permeabilities;(2)The study area hosts three NNE-directed saline aquifer zones,where saline aquifers generally have a single-layer thickness of 3‒8 m and a cumulative thickness of 8‒24 m;(3)The saline aquifers of the Qian-5 member have a total technical control capacity of CO_(2) of 119.25×10^(6) t.With the largest scale and the highest technical control capacity(accounting for 61%of the total technical control capacity),the Jinjie-Yulin saline aquifer zone is an important prospect area for the geological storage of CO_(2) in the saline aquifers of the Qian-5 member in the study area.
文摘From 2010 to 2012, the China Geological Survey Center for Hydrogeology and Environmental Geology Survey (CHEGS) carried out the project "Potential evaluation and demonstration project of CO2 Geological Storage in China". During this project, we developed an evaluation index system and technical methods for the potential and suitability of CO2 geological storage based on China's geological conditions, and evaluated the potential and suitability of the primary basins for COz geological storage, in order to draw a series of regional scale maps (at a scale of 1:5000000) and develop an atlas of the main sedimentary basins in China. By using these tools, we delineated many potential targets for CO2 storage. We also built techniques and methods for site selection and the exploration and assessment of CO2 geological storage in deep saline aquifers. Furthermore, through cooperation with the China Shenhua Coal to Liquid and Chemical Co., Ltd., we successfully constructed the first coal-based demonstration project for CO2 geological storage in deep saline aquifers in the Yijinhuoluo Banner of Ordos in the Inner Mongolia Autonomous Region, which brought about the basic preliminary theories, techniques, and methods of geological CO2 storage in deep saline aquifers under China's geological conditions.
基金supported by the Land and Resources Survey Program from China Geological Survey(grant No. DD2016024012120113006600)+1 种基金Land and Resources Public Welfare Scientific Research Project(grant No. 201211063)National Natural Science Foundation of China(grant No.41502259)
文摘This work established an evaluation index system based on a comprehensive analysis of those factors affecting the suitability of CO2 geological storage.This evaluation index system includes three evaluation index layers of geological safety,storage scale and social economy,nine evaluation index sub-layers,and 28 evaluation index factors,and adopts the analytic hierarchy process(AHP)and index overlay methods.Taking the Xining Basin in northwest China as an example,we conducted comprehensive analysis of geological conditions and performed quantitative evaluation based on this evaluation index system,which indicates that the Shuangshu depression of the Xining Basin is comparatively suitable for CO2 geological storage.It is suggested that this evaluation index system and the evaluation method proposed in this study are suitable for most continental sedimentary basins in China and should be widely applied.
基金finically supported by the National Natural Science Foundation of China(Grant Nos.41272349 and 51322906)Key Research Program of Frontier Sciences,Chinese Academy of Sciences(Grant No.QYZDB-SSW-DQC029)
文摘This paper focuses on the progress in geomechanical modeling associated with carbon dioxide(CO2)geological storage.The detailed review of some geomechanical aspects,including numerical methods,stress analysis,ground deformation,fault reactivation,induced seismicity and crack propagation,is presented.It is indicated that although all the processes involved are not fully understood,integration of all available data,such as ground survey,geological conditions,microseismicity and ground level deformation,has led to many new insights into the rock mechanical response to CO2injection.The review also shows that in geomechanical modeling,continuum modeling methods are predominant compared with discontinuum methods.It is recommended to develop continuum-discontinuum numerical methods since they are more convenient for geomechanical modeling of CO2geological storage,especially for fracture propagation simulation.The Mohr-Coulomb criterion is widely used in prediction of rock mass mechanical behavior.It would be better to use a criterion considering the effect of the intermediate principal stress on rock mechanical behavior,especially for the stability analysis of deeply seated rock engineering.Some challenges related to geomechanical modeling of CO2geological storage are also discussed.
基金This work was supported by the National Natural Science Foundation of China(NSFC,Grant No.41702284,41602272)National key R&D program of China(Grant No.2019YFE0100100)+2 种基金the Na-tural Science Foundation of Hubei Province,China(Grant No.2019CFB451)and the Open Fund of Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources(Grant No.2020zy003)This work was also par-tially supported by the China Australia Geological Storage of CO_(2)project(CAGS),and the China Geo-logical Survey project(Grant No.DD20160307).
文摘Carbon Capture and Storage(CCS)is one of the effective means to deal with global warming,and saline aquifer storage is considered to be the most promising storage method.Junggar Basin,located in the northern part of Xinjiang and with a large distribution area of saline aquifer,is an effective carbon storage site.Based on well logging data and 2D seismic data,a 3D heterogeneous geological model of the Cretaceous Donggou Formation reservoir near D7 well was constructed,and dynamic simulations under two scenarios of single-well injection and multi-well injection were carried out to explore the storage potential and CO2 storage mechanism of deep saline aquifer with real geological conditions in this study.The results show that within 100 km^(2)of the saline aquifer of Donggou Formation in the vicinity of D7 well,the theoretical static CO_(2)storage is 71.967×106 tons(P50)①,and the maximum dynamic CO_(2)storage is 145.295×106 tons(Case2).The heterogeneity of saline aquifer has a great influence on the spatial distribution of CO_(2)in the reservoir.The multi-well injection scenario is conducive to the efficient utilization of reservoir space and safer for storage.Based on the results from theoretical static calculation and the dynamic simulation,the effective coefficient of CO_(2)storage in deep saline aquifer in the eastern part of Xinjiang is recommended to be 4.9%.This study can be applied to the engineering practice of CO_(2)sequestration in the deep saline aquifer in Xinjiang.
基金Fundamental Research Funds for the Universities,Grant/Award Numbers:2020ZDPY0201,2022QN1061National Key Research and Development Project of China,Grant/Award Number:2019YFC1805400+1 种基金National Science Foundation of Jiangsu Province,Grant/Award Number:BK20210524National Natural Science Foundation,Grant/Award Number:42202268。
文摘For the sake of mine water drainage and sustainable groundwater protection,the new approach of mine water deep geological storage(MWDGS)is highly necessary to save water resources in the semi-arid region of China.However,up to now,little academic research has been done on mine water geological storage.Given this situation,the hydrogeological feasibility of MWDGS was explored in Baotashan coarse sandstone(BCS)of Jurassic measure in Ordos Basin.The results show that the white-gray BCS with a fragile skeleton of quartz(41.4%),feldspar(21.1%),and clay minerals(16.4%)provides the potential variable-void for mine water;and its hydro-chemical type of BCS aquifer is CO_(3)-Na and Cl-Na.As the burial depth increases,the strong alkaline groundwater is in stagnant and poor recharge-runoff-discharge condition.The lab test shows that the pores whose diameter is over 10μm could be treated as the main storage of mine water;and the effective porosity varies from 1.36%to 3.46%.When mine water is injected,the strong hydrodynamics of mine water storage would change the permeability significantly and about 0.201%soluble solids would be dissolved.Partial clay minerals obstruct the pores and induce the saturated phase of high permeability to evolve into steady phase of lower permeability.Under the condition of nonhydraulic fracturing during continuous storage,the heterogeneous anisotropic medium obtained by Transition PRObability GeoStatistics(TPROGS)shows that the capacity of BCS aquifer is 0.455 to 1.226Mm^(3)for 1 km^(2)in the study area.The simulation shows that the groundwater mound in well-scale and mine-scale would be formed.The groundwater quality characteristics of“Three Zone”would occur around and gradually drop to approximate the original brine within 10 years.The hydrogeological feasibility reveals that this approach is useful for the well design and groundwater environment management during the mine water deep geological storage project in the Ordos basin.
基金The authors would like to acknowledge the financial support provided by National Natural Science Foundation of China(Nos.42102207,42141012 and 41727801)Major Project supported by Jiangsu Key Laboratory of Coal-based Greenhouse Gas Control and Utilization,China University of Mining and Technology(2020ZDZZ01C)+1 种基金the Peng Cheng Shang Xue Education Fund of CUMT Education Development Foundation(PCSX202203)A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institution(PAPD).
文摘Carbon dioxide(CO_(2))capture,utilization,and storage(CCUS)is an important pathway for China to achieve its“2060 carbon neutrality”strategy.Geological sequestration of CO_(2)in deep coals is one of the methods of CCUS.Here,the No.3 anthracite in the Qinshui Basin was studied using the superposition of each CO_(2)geological storage category to construct models for theoretical CO_(2)geological storage capacity(TCGSC)assessment,and CO_(2)adsorption capacity variation with depth.CO_(2)geological storage potential of No.3 anthracite coal was assessed by integrating the adsorption capacity with the static storage and dissolution capacities.The results show that(1)CO_(2)adsorption capacities of XJ and SH coals initially increased with depth,peaked at 47.7 cm3/g and 41.5 cm3/g around 1000 m,and later decreased with depth.(2)four assessment areas and their geological model parameters were established based on CO_(2)phase variation and spatial distribution of coal thickness,(3)the abundance of CO_(2)geological storage capacity(ACGSC),which averages 40 cm3/g,shows an analogous circularity-sharp distribution,with the high abundance area influenced by depth and coal rank,and(4)the TCGSC and the effective CO_(2)geological storage capacity(ECGSC)are 9.72 Gt and 6.54 Gt;the gas subcritical area accounted for 76.41%of the total TCGSC.Although adsorption-related storage capacity accounted for more than 90%of total TCGSC,its proportion,however,decreased with depth.Future CO_(2)-ECBM project should focus on highrank coals in gas subcritical and gas-like supercritical areas.Such research will provide significant reference for assessment of CO_(2)geological storage capacity in deep coals.
基金funded by the Science and Technology Innovation Project of China National Administration of Coal Geology(ZMKJ-2021-ZX02)the National Key Research and Development Program of China(2023YFC3012104)Key Development Program of Shaanxi Province(2024SF-YBXM-603).
文摘The Ordos Basin is a large cratonic basin with stable deposition in Northwest China.Given its mostly stable subsidence background and the urgent need for saline water disposal and carbon dioxide storage in the coal mining and coal chemical industries,the Ordos Basin has been chosen as a pilot demonstration site for carbon dioxide and saline water storage in China.However,few studies have been made to evaluate the sedimentary and sequence stratigraphy characteristics of this region,as well as their influence on carbon dioxide and saline water storage potential.To address this research gap,we conducted a sedimentary study of the Lower Triassic Liujiagou Formation in the northeastern Ordos Basin utilizing the stratigraphy theory,laboratory test analysis,and pilot project demonstration,to evaluate the area's viability for the deep geological storage of gas and liquid waste.We studied the tectonic setting,petrological features,and sedimentary characteristics of the favorable strata and predicted favorable areas based on sequence stratigraphy theory.The lithology predominantly consists of feldspathic graywacke,with a fine grain size and mostly fine-to-medium-grained sandstone.The distribution of thick-grained sandstone and fine-grained sediment was identified by dividing the sequence,and a favorable reservoir-cap assemblage configuration was formed.It's concluded that the Lower Triassic Liujiagou Formation exhibits suitable characteristics for the deep geological storage of carbon dioxide and saline water.This study demonstrates the importance of basic theory in guiding practical applications and provides a reference for the scientific selection of favorable areas for deep basin storage.
基金the China National Petroleum Corporation South-west Oil and Gas Field Branch Shale Gas Research Institute(Grant No.JS-2020-42)for providing research funding.
文摘In this work,using fractured shale cores,isothermal adsorption experiments and core flooding tests were conducted to investigate the performance of injecting different gases to enhance shale gas recovery and CO_(2)geological storage efficiency under real reservoir conditions.The adsorption process of shale to different gases was in agreement with the extended-Langmuir model,and the adsorption capacity of CO_(2)was the largest,followed by CH_(4),and that of N_(2)was the smallest of the three pure gases.In addition,when the CO_(2)concentration in the mixed gas exceeded 50%,the adsorption capacity of the mixed gas was greater than that of CH4,and had a strong competitive adsorption effect.For the core flooding tests,pure gas injection showed that the breakthrough time of CO_(2)was longer than that of N_(2),and the CH_(4)recovery factor at the breakthrough time(Rch,)was also higher than that of N_(2).The RcH of CO_(2)gas injection was approximately 44.09%,while the RcH,of N_(2)was only 31.63%.For CO_(2)/N_(2)mixed gas injection,with the increase of CO_(2)concentration,the RcH,increased,and the RcH,for mixed gas CO_(2)/N_(2)=8:2 was close to that of pure CO_(2),about 40.24%.Moreover,the breakthrough time of N_(2)in mixed gas was not much different from that when pure N_(2)was injected,while the breakthrough time of CO_(2)was prolonged,which indicated that with the increase of N_(2)concentration in the mixed gas,the breakthrough time of CO_(2)could be extended.Furthermore,an abnormal surge of N_(2)concentration in the produced gas was observed after N_(2)breakthrough.In regards to CO_(2)storage efficiency(S_(Storage-CO_(2)),as the CO_(2)concentration increased,S storage-co_(2)also increased.The S storage-co_(2),of the pure CO_(2)gas injection was about 35.96%,while for mixed gas CO_(2)/N_(2)=8:2,S sorage-co,was about 32.28%.
基金the Science and Technology Department of Sichuan Province(Nos.2021YFH0048 and 2021YFH0118)the Fundamental Research Funds for the Central Universities(No.20826041E4199)+3 种基金the National Natural Science Foundation of China(Grant No.20740099)the Natural Science Foundation of Chongqing,China(No.CSTB2022NSCQ-BHX0721)the Chongqing Natural Science Foundation for Distinguished Young Scientists(No.cstc2021jcyj-jqX0007)the Key Laboratory of Shale Gas Exploration,Ministry of Natural Resources(No.KLSGE-202103).
文摘CO_(2)geological storage and utilization(CGSU)is considered a far-reaching technique to meet the demand of increasing energy supply and decreasing CO_(2)emissions.For CGSUs related to shale gas reservoirs,experimental investigations have attracted variable methodologies,among which low-field NMR(LF-NMR)is a promising method and is playing an increasingly key role in reservoir characterization.Herein,the application of this nondestructive,sensitive,and quick LF-NMR technique in characterizing CGSU behavior in shale gas reservoirs is reviewed.First,the basic principle of LF-NMR for 1H-fluid detection is introduced,which is the theoretical foundation of the reviewed achievements in this paper.Then,the reviewed works are related to the LF-NMR-based measurements of CH_(4)adsorption capacity and the CO_(2)-CH_(4)interaction in shale,as well as the performance on CO_(2)sequestration and simultaneous enhanced gas recovery from shale.Basically,the reviewed achievements have exhibited a large potential for LF-NMR application in CGSUs related to shale gas reservoirs,although some limitations and deficiencies still need to be improved.Accordingly,some suggestions are proposed for a more responsible development of the LF-NMR technique.Hopefully,this review is helpful in promoting the expanding application of the LF-NMR technique in CGSU implementation in shale gas reservoirs.
文摘This study characterized the AA-01 depleted hydrocarbon reservoir in the KOKA field, Niger Delta, using a multidimensional approach. This investigation involved data validation analysis, evaluation of site suitability for CO_(2) storage, and compositional simulation of hydrocarbon components. The primary objective was to determine the initial components and behavior of the hydrocarbon system required to optimize the injection of CO_(2) and accompanying impurities, establishing a robust basis for subsequent sequestration efforts in the six wells in the depleted KOKA AA-01 reservoir. The process, simulated using industry software such as ECLIPSE, PVTi, SCAL, and Petrel, included a compositional fluid analysis to confirm the pressure volume temperature(PVT) hydrocarbon phases and components. This involved performing a material balance on the quality of the measured data and matching the initial reservoir pressure with the supplied data source. The compositional PVT analysis adopted the Peng–Robinson equation of state to model fluid flow in porous media and estimate the necessary number of phases and components to describe the system accurately. Results from this investigation indicate that the KOKA AA-01 reservoir is suitable for CO_(2)sequestration. This conclusion is based on the reservoir's good quality, evidenced by an average porosity of 0.21 and permeability of 1 111.0 mD, a measured lithological depth of 9 300 ft, and characteristic reservoir – seal properties correlated from well logs. The study confirmed that volumetric behavior predictions are directly linked to compositional behavior predictions, which are essential during reservoir initialization and data quality checks. Additionally, it highlighted that a safe design for CO_(2) storage relies on accurately representing multiphase behaviour across wide-ranging pressure–temperature–composition conditions.
文摘Important first phases in the process of implementing CO2 subsurface and ocean storage projects include selecting of best possible location(s) for CO2 storage, and site selection evaluation. Sites must fulfill a number of criteria that boil down to the following basics: they must be able to accept the desired volume of CO2 at the rate at which it is supplied from the CO2 source(s);they must as well be safe and reliable;and must comply with regulatory and other societal requirements. They also must have at least public acceptance and be based on sound financial analysis. Site geology;hydrogeological, pressure, and geothermal regimes;land features;location, climate, access, etc. can all be refined from these basic criteria. In addition to aiding in site selection, site characterization is essential for other purposes, such as foreseeing the fate and impacts of the injected CO2, and informing subsequent phases of site development, including design, permitting, operation, monitoring, and eventual abandonment. According to data from the IEA, in 2022, emissions from Africa and Asias emerging markets and developing economies, excluding Chinas, increased by 4.2%, which is equivalent to 206 million tonnes of CO2 and were higher than those from developed economies. Coal-fired power generation was responsible for more than half of the rise in emissions that were recorded in the region. The difficulty of achieving sustainable socio-economic progress in the developing countries is entwined with the work of reducing CO2 emissions, which is a demanding project for the economy. Organisations from developing countries, such as Bangladesh, Cameroon, India, and Nigeria, have formed partnerships with organisations in other countries for lessons learned and investment within the climate change arena. The basaltic rocks, coal seams, depleted oil and gas reservoirs, soils, deep saline aquifers, and sedimentary basins that developing countries (Bangladesh, Cameroon, India, and Nigeria etc.) possess all contribute to the individual countrys significant geological sequestration potential. There are limited or no carbon capture and storage or clean development mechanism projects running in these countries at this time. The site selection and characterization procedure are not complete without an estimate of the storage capacity of a storage location. Estimating storage capacity relies on volumetric estimates because a site must accept the planned volume of CO2 during the active injection period. As more and more applications make use of site characterization, so too does the body of written material on the topic. As the science of CO2 storage develops, regulatory requirements are implemented, field experience grows, and the economics of CO2 capture and storage improve, so too will site selection and characterisation change.
基金supported under the Center for Subsurface Modeling Affiliates Program,United States of America and the National Science Foundation,United States of America(1911320,Collaborative Research:High-Fidelity Modeling of Poromechanics with Strong Discontinuities)。
文摘We present a framework that couples a high-fidelity compositional reservoir simulator with Bayesian optimization(BO)for injection well scheduling optimization in geological carbon sequestration.This work represents one of the first at tempts to apply BO and high-fidelity physics models to geological carbon storage.The implicit parallel accurate reservoir simulator(IPARS)is utilized to accurately capture the underlying physical processes during CO_(2)sequestration.IPARS provides a framework for several flow and mechanics models and thus supports both stand-alone and coupled simulations.In this work,we use the compositional flow module to simulate the geological carbon storage process.The compositional flow model,which includes a hysteretic three-phase relative permeability model,accounts for three major CO_(2)trapping mechanisms:structural trapping,residual gas trapping,and solubility trapping.Furthermore,IPARS is coupled to the International Business Machines(IBM)Corporation Bayesian Optimization Accelerator(BOA)for parallel optimizations of CO_(2)injection strategies during field-scale CO_(2)sequestration.BO builds a probabilistic surrogate for the objective function using a Bayesian machine learning algorithm-the Gaussian process regression,and then uses an acquisition function that leverages the uncertainty in the surrogate to decide where to sample.The IBM BOA addresses the three weaknesses of standard BO that limits its scalability in that IBM BOA supports parallel(batch)executions,scales better for high-dimensional problems,and is more robust to initializations.We demonstrate these merits by applying the algorithm in the optimization of the CO_(2)injection schedule in the Cranfield site in Mississippi,USA,using field data.The optimized injection schedule achieves 16%more gas storage volume and 56%less water/surfactant usage compared with the baseline.The performance of BO is compared with that of a genetic algorithm(GA)and a covariance matrix adaptation(CMA)-evolution strategy(ES).The results demonstrate the superior performance of BO,in that it achieves a competitive objective function value with over 60%fewer forward model evaluations.
基金The work was supported by the National Natural Science Foundation of China(No.52074316)PetroChina Company Limited(No.2019E-2608).
文摘"Carbon peaking and carbon neutrality"is an essential national strategy,and the geological storage and utilization of CO_(2)is a hot issue today.However,due to the scarcity of pure CO_(2)gas sources in China and the high cost of CO_(2)capture,CO_(2)-rich industrial waste gas(CO_(2)-rich IWG)is gradually emerging into the public's gaze.CO_(2)has good adsorption properties on shale surfaces,but acidic gases can react with shale,so the mechanism of the CO_(2)-rich IWG-water-shale reaction and the change in reservoir properties will determine the stability of geological storage.Therefore,based on the mineral composition of the Longmaxi Formation shale,this study constructs a thermodynamic equilibrium model of water-rock reactions and simulates the regularity of reactions between CO_(2)-rich IWG and shale minerals.The results indicate that CO_(2)consumed 12%after reaction,and impurity gases in the CO_(2)-rich IWG can be dissolved entirely,thus demonstrating the feasibility of treating IWG through water-rock reactions.Since IWG inhibits the dissolution of CO_(2),the optimal composition of CO_(2)-rich IWG is 95%CO_(2)and 5%IWG when CO_(2)geological storage is the main goal.In contrast,when the main goal is the geological storage of total CO_(2)-rich IWG or impurity gas,the optimal CO_(2)-rich IWG composition is 50%CO_(2)and 50%IWG.In the CO_(2)-rich IWG-water-shale reaction,temperature has less influence on the water-rock reaction,while pressure is the most important parameter.SO2 has the greatest impact on water-rock reaction in gas.For minerals,clay minerals such as illite and montmorillonite had a significant effect on water-rock reaction.The overall reaction is dominated by precipitation and the volume of the rock skeleton has increased by 0.74 cm3,resulting in a decrease in shale porosity,which enhances the stability of CO_(2)geological storage to some extent.During the reaction between CO_(2)-rich IWG-water-shale at simulated temperatures and pressures,precipitation is the main reaction,and shale porosity decreases.However,as the reservoir water content increases,the reaction will first dissolve and then precipitate before dissolving again.When the water content is less than 0.0005 kg or greater than 0.4 kg,it will lead to an increase in reservoir porosity,which ultimately reduces the long-term geological storage stability of CO_(2)-rich IWG.
基金Supported by the Science and Technology Research Project of China Petroleum&Chemical Corporation (No. P22175)。
文摘The geological storage of carbon dioxide(CO_(2)) is a crucial technology for mitigating climate change. Offshore deep saline aquifers have elicited increased attention due to their remarkable potential for storing CO_(2). During long-term storage, CO_(2) migration in a deep saline aquifer needs special attention to prevent it from reaching risk points and leading to security issues. In this paper, a mechanism model is established according to the geological characteristics of saline aquifers in an offshore sedimentary basin in China. The CO_(2) migration over 100 years is simulated considering geological changes such as permeability, dip angle, thickness, and salinity. The effects of injection conditions on the CO_(2) migration range are also investigated. Results reveal that the migration range of CO_(2) in the injection period exceeds 70%, even if the postinjection period's duration is five times longer than that of the injection period. As the values of the above geological parameters increase, the migration range of CO_(2) increases, and permeability has a particularly substantial influence. Moreover, the influences of injection rate and well type are considerable. At high injection rates, CO_(2) has a greater likelihood of displacing brine in a piston-like scheme. CO_(2) injected by long horizontal wells migrates farther compared with that injected by vertical wells. In general, the plane migration range is within 3 000 m, although variations in the reservoir and injection parameters of the studied offshore saline aquifers are considered. This paper can offer references for the site selection and injection well deployment of CO_(2) saline aquifer storage. According to the studied offshore aquifers, a distance of at least 3 000 m from potential leakage points, such as spill points, active faults, and old abandoned wells, must be maintained.
基金The research was conducted as part of the“Establishing a Research Observatory to Unlock European Coal Seams for CO_(2) Storage(ROCCS)”project(Grant No.899336)The work of the second author is also sponsored by Shanghai Pujiang Program(Grant No.23PJ1412600)。
文摘Injecting carbon dioxide(CO_(2))into coal seams may unlock substantial carbon sequestration potential.Since the coal acts like a carbon filter,it can preferentially absorb significant amounts of CO_(2).To explore this further,desorption of the adsorbed gas due to pressure drop is investigated in this paper,to achieve an improved understanding of the long-term fate of injected CO_(2) during post-injection period.This paper presents a dual porosity model coupling gas flow,adsorption and geomechanics for studying coupled processes and effectiveness of CO_(2) sequestration in coals.A new adsorption?desorption model derived based on thermodynamics is incorporated,particularly,the desorption hysteresis is considered.The reliability of the proposed adsorption-desorption isotherm is examined via validation tests.It is indicated that occurrence of desorption hysteresis is attributed to the adsorption-induced pore deformation.After injection ceases,the injected gas continues to propagate further from the injection well,while the pressure in the vicinity of the injection well experiences a significant drop.Although the adsorbed gas near the well also decreases,this decrease is less compared to that in pressure because of desorption hysteresis.The unceasing spread of CO_(2) and drops of pressure and adsorbed gas depend on the degree of desorption hysteresis and heterogeneity of coals,which should be considered when designing CO_(2) sequestration into coal seams.
基金the National Natural Science Foundation of China(Grant No.41274111)the Shenhua Group(Grant No.CSCLC-03-JS-2014-08)the National Department Public Benefit Research Foundation of MLR,China(Grant No.201211063-4-1)
文摘Carbon dioxide(CO2) capture and storage(CCS) is considered widely as one of promising options for CO2emissions reduction,especially for those countries with coal-dominant energy mix like China.Injecting and storing a huge volume of CO2in deep formations are likely to cause a series of geomechanical issues,including ground surface uplift,damage of caprock integrity,and fault reactivation.The Shenhua CCS demonstration project in Ordos Basin,China,is the first and the largest full-chain saline aquifer storage project of CO2in Asia.The injection started in 2010 and ended in 2015.during which totally 0.3 million tonnes(Mt) CO2was injected.The project is unique in which CO2was injected into 18 sandstone formations simultaneously and the overlying coal seams will be mined after the injection stopped in 2015.Hence,intense geomechanical studies and monitoring works have been conducted in recent years,including possible damage resulting from the temperature difference between injected CO2and formations,injection induced stress and deformation change,potential failure mode and safety factor,interaction between coal mining and CO2geological storage,determination of injection pressure limit,and surface monitoring by the interferometric synthetic aperture radar(InSAR) technology.In this paper,we first described the background and its geological conditions of the Shenhua CCS demonstration project.Then,we gave an introduction to the coupled thermo-hydro-mechano-chemical(THMC) processes in CO2geological storage,and mapped the key geomechanical issues into the THMC processes accordingly.Next,we proposed a generalized geomechanical research flowchart for CO2geological storage projects.After that,we addressed and discussed some typical geomechanical issues,including design of injection pressure limit.CO2injection induced near-field damage,and interaction between CO2geological storage and coal mining,in the Shenhua CCS demonstration project.Finally,we concluded some insights to this CCS project.
基金financially supported by the National Natural Science Foundation of China(51906256 and 52074337)Fundamental Research Funds for the Central Universities(21CX06033A)
文摘CO_(2)emission mitigation is one of the most critical research frontiers.As a promising option of carbon capture,utilization and storage(CCUS),CO_(2)storage with enhanced gas recovery(CSEGR)can reduce CO_(2)emission by sequestrating it into gas reservoirs and simultaneously enhance natural gas production.Over the past decades,the displacement behaviour of CO_(2)—natural gas has been extensively studied and demonstrated to play a key role on both CO_(2)geologic storage and gas recovery performance.This work thoroughly and critically reviews the experimental and numerical simulation studies of CO_(2)displacing natural gas,along with both CSEGR research and demonstration projects at various scales.The physical property difference between CO_(2)and natural gas,especially density and viscosity,lays the foundation of CSEGR.Previous experiments on displacement behaviour and dispersion characteristics of CO_(2)/natural gas revealed the fundamental mixing characteristics in porous media,which is one key factor of gas recovery efficiency and warrants further study.Preliminary numerical simulations demonstrated that it is technically and economically feasible to apply CSEGR in depleted gas reservoirs.However,CO_(2)preferential flow pathways are easy to form(due to reservoir heterogeneity)and thus adversely compromise CSEGR performance.This preferential flow can be slowed down by connate or injected water.Additionally,the optimization of CO_(2)injection strategies is essential for improving gas recovery and CO_(2)storage,which needs further study.The successful K12—B pilot project provides insightful field-scale knowledge and experience,which paves a good foundation for commercial application.More experiments,simulations,research and demonstration projects are needed to facilitate the maturation of the CSEGR technology.