[Objective] The paper was to study the geometric modeling of rape(Brassica napus L.) during seedling stage.[Method] Based on the analysis and observation of morphological structure and growth process of rape during ...[Objective] The paper was to study the geometric modeling of rape(Brassica napus L.) during seedling stage.[Method] Based on the analysis and observation of morphological structure and growth process of rape during seedling stage,a characteristic parameters-based three-dimensional mathematical model of rape and its visible method was proposed.The individual control parameters were extracted according to the morphological structures of various organs of rape.Different sizes of leaf and petiole model were constructed by using cubic Bézier surface.The cylinder with different upper and lower bottom area was adopted as the main stem model.Finally,three-dimensional reconstruction of whole Rape plant during seedling stage was achieved through the operations of rotation,scaling and splicing.[Result] This method had certain controllability,which was also easy and convenient,and could quickly use to build the geometric model of rape during seedling stage.[Conclusion] The results provided reference for study on structural model of rape.展开更多
Traditional MEMS (microelectromechanical system) design methodology is not a structured method and has become an obstacle for MEMS creative design. In this paper, a novel method of mask synthesis and verification fo...Traditional MEMS (microelectromechanical system) design methodology is not a structured method and has become an obstacle for MEMS creative design. In this paper, a novel method of mask synthesis and verification for surface micro-machined MEMS is proposed, which is based on the geometric model of a MEMS device. The emphasis is focused on synthesizing the masks at the basis of the layer model generated from the geometric model of the MEMS device. The method is comprised of several steps: the correction of the layer model, the generation of initial masks and final masks including multi-layer etch masks, and mask simulation. Finally some test resuhs are given.展开更多
A geometric model for calculating the viscosity of multi-component melt fromrelated binary physicochemistry properties was derived based on Chou's thermodynamic geometricmodel. The model derived was employed to pr...A geometric model for calculating the viscosity of multi-component melt fromrelated binary physicochemistry properties was derived based on Chou's thermodynamic geometricmodel. The model derived was employed to predict the viscosity of Au-Ag-Cu alloys. The results showthat the calculated viscosity for Au-Ag-Cu alloys meet the experimental data very well. In addition,the viscosity of Bi-Sn-In systems was also predicted with this model.展开更多
This paper presents a new approach of designing the revolving cutter with constant pitch, and provides geometric models. The corresponding models in the non-numerically controlled manufacturing, such as designing the ...This paper presents a new approach of designing the revolving cutter with constant pitch, and provides geometric models. The corresponding models in the non-numerically controlled manufacturing, such as designing the helical groove, grinding wheel, relative feeding motion, and calculating the helical angle of the cutting edge, are introduced. The examples are given to testify that the design approach is simple and readily realized in machining the revolving cutter with constant pitch. The effective design and manufacture method provides general references for non-NC machining revolving cutter with constant pitch and reducing the equipments input.展开更多
A new geometric model of Multiaxial Warp-Knitted (MWK) performs, which is based on the experimental observations and analysis of basic stitch, is developed to relate the geometric parameters and process variables. The...A new geometric model of Multiaxial Warp-Knitted (MWK) performs, which is based on the experimental observations and analysis of basic stitch, is developed to relate the geometric parameters and process variables. The fiber volume fraction and fibre orientation of MWK reinforced composites are described in terms of structural and processing parameters in the model. And this model provides a basis for the prediction of mechanical behavior of the MWK reinforced composites.展开更多
A complex geometric modeling method of a helical face gear pair with arc-tooth generated by an arc-profile cutting(APC)disc is proposed,and its tooth contact characteristics are analyzed.Firstly,the spatial coordinate...A complex geometric modeling method of a helical face gear pair with arc-tooth generated by an arc-profile cutting(APC)disc is proposed,and its tooth contact characteristics are analyzed.Firstly,the spatial coordinate system of an APC face gear pair is established based on meshing theory.Combining the coordinate transformation matrix and the tooth profile of the cutter,the equations of the curve envelope of the APC face gear pair are obtained.Then the surface equations are solved to extract the point clouds data by programming in MATLAB,which contains the work surface and the fillet surface of the APC face gear pair.And the complex geometric model of the APC face gear pair is built by fitting its point clouds.At last,through the analysis of the tooth surface contact,the sensitivity of the APC face gear to the different types of mounting errors is obtained.The results show that the APC face gear pair is the most sensitive to mounting errors in the tooth thickness direction,and it should be strictly controlled in the actual application.展开更多
Most of the available methods for the calculation of the three dimensional(3D)grain size dis- tribution functions(SDF)are based on the S model and lead a grave systematical error.The origin is the basic supposition of...Most of the available methods for the calculation of the three dimensional(3D)grain size dis- tribution functions(SDF)are based on the S model and lead a grave systematical error.The origin is the basic supposition of spherical grains in the S model,which does not correspond with the feature of real grains.A new model called A model is developed based on the hypothe- sis of polvhedral grains.The probability functions of the A model and the method to calculate the 3D SDFs using the A model are given in the present paper.The theoretical analyses and experimental tests have demonstrated that the A model reduces the systematical error radical- ly.It is nearly as simple as the so far used S model,but gives much better results in repro- ducing of 3D SDFs from the measured ID or 2D SDFs.展开更多
Geometric information is important for automatic programming of arc welding robot. Complete geometric models of robotic arc welding are established in this paper. In the geometric model of weld seam, an equation with ...Geometric information is important for automatic programming of arc welding robot. Complete geometric models of robotic arc welding are established in this paper. In the geometric model of weld seam, an equation with seam length as its parameter is introduced to represent any weld seam. The method to determine discrete programming points on a weld seam is presented. In the geometric model of weld workpiece, three class primitives and CSG tree are used to describe weld workpiece. Detailed data structure is presented. In pose transformation of torch, world frame, torch frame and active frame are defined, and transformation between frames is presented. Based on these geometric models, an automatic programming software package for robotic arc welding, RAWCAD, is developed. Experiments show that the geometric models are practical and reliable.展开更多
Hybrid models derived from rotational solids like cylinders, cones and spheres were implemented on CATIA software. Firstly, make the isosceles triangular prism, cuboid, cylinder, cone, sphere, and the prism with tange...Hybrid models derived from rotational solids like cylinders, cones and spheres were implemented on CATIA software. Firstly, make the isosceles triangular prism, cuboid, cylinder, cone, sphere, and the prism with tangent conic and curved triangle ends, the cuboid with tangent cylindrical and curved rectangle ends, the cylinder with tangent spherical and curved circular ends as the basic Boolean deference units to the primary cylinders, cones and spheres on symmetrical and some critical geometric conditions, forming a series of variant solid models. Secondly, make the deference units above as the basic union units to the main cylinders, cones, and spheres accordingly, forming another set of solid models. Thirdly, make the tangent ends of union units into oblique conic, cylindrical, or with revolved triangular pyramid, quarterly cylinder and annulus ends on sketch based features to the main cylinders, cones, and spheres repeatedly, thus forming still another set of solid models. It is expected that these derivative models be beneficial both in the structure design, hybrid modeling, and finite element analysis of engineering components and in comprehensive training of spatial configuration of engineering graphics.展开更多
Let A=kQ/I be a finite-dimensional basic algebra over an algebraically closed field k,which is a gentle algebra with the marked ribbon surface(SA,MA,ΓA).It is known that SAcan be divided into some elementary polygons...Let A=kQ/I be a finite-dimensional basic algebra over an algebraically closed field k,which is a gentle algebra with the marked ribbon surface(SA,MA,ΓA).It is known that SAcan be divided into some elementary polygons{Δi|1≤i≤d}byΓA,which has exactly one side in the boundary of SA.Let■(Δi)be the number of sides ofΔibelonging toΓAif the unmarked boundary component of SAis not a side ofΔi;otherwise,■(Δi)=∞,and let f-Δbe the set of all the non-co-elementary polygons and FA(resp.f-FA)be the set of all the forbidden threads(resp.of finite length).Then we have(1)the global dimension of A is max1≤i≤d■(Δi)-1=maxΠ∈FAl(Π),where l(Π)is the length ofΠ;(2)the left and right self-injective dimensions of A are 0,if Q is either a point or an oriented cycle with full relations.masΔi∈f-Δ{1,■(Δi)-1}=max n∈f-F_(A)l(П),otherwise,As a consequence,we get that the finiteness of the global dimension of gentle algebras is invariant under AvellaGeiss(AG)-equivalence.In addition,we get that the number of indecomposable non-projective Gorenstein projective modules over gentle algebras is also invariant under AG-equivalence.展开更多
Due to the novel applications of flexible pipes conveying fluid in the field of soft robotics and biomedicine,the investigations on the mechanical responses of the pipes have attracted considerable attention.The fluid...Due to the novel applications of flexible pipes conveying fluid in the field of soft robotics and biomedicine,the investigations on the mechanical responses of the pipes have attracted considerable attention.The fluid-structure interaction(FSI)between the pipe with a curved shape and the time-varying internal fluid flow brings a great challenge to the revelation of the dynamical behaviors of flexible pipes,especially when the pipe is highly flexible and usually undergoes large deformations.In this work,the geometrically exact model(GEM)for a curved cantilevered pipe conveying pulsating fluid is developed based on the extended Hamilton's principle.The stability of the curved pipe with three different subtended angles is examined with the consideration of steady fluid flow.Specific attention is concentrated on the large-deformation resonance of circular pipes conveying pulsating fluid,which is often encountered in practical engineering.By constructing bifurcation diagrams,oscillating shapes,phase portraits,time traces,and Poincarémaps,the dynamic responses of the curved pipe under various system parameters are revealed.The mean flow velocity of the pulsating fluid is chosen to be either subcritical or supercritical.The numerical results show that the curved pipe conveying pulsating fluid can exhibit rich dynamical behaviors,including periodic and quasi-periodic motions.It is also found that the preferred instability type of a cantilevered curved pipe conveying steady fluid is mainly in the flutter of the second mode.For a moderate value of the mass ratio,however,a third-mode flutter may occur,which is quite different from that of a straight pipe system.展开更多
Topographic/bathymetric conditions of the continental shelf can significantly influence the long-term growth of river deltas.In particular,these conditions constrain the accommodation space for sedimentation in the de...Topographic/bathymetric conditions of the continental shelf can significantly influence the long-term growth of river deltas.In particular,these conditions constrain the accommodation space for sedimentation in the deltaic areas.In this study,we use a conceptual geometric model to evaluate the role played by this factor,on the basis of the principle of mass conservation.The Ganges-Brahmaputra,Mekong and Nile deltas are examined as three typical examples,in terms of their different original seabed morphologies.The control variate method is applied to eliminate the effect of the difference in model input variables.The results show that,assuming a constant sediment load,the delta growth rate will decrease with time;a higher value of the original seabed slope leads to a lower shoreline progradation rate for the subaerial delta and a higher growth rate for the subaqueous delta.Thus,the original seabed morphology represented by slope is a critical factor affecting the evolution of Holocene large-river deltas.These results explain the interrelationships between sediment load,deltaic plain area,and the original seabed slopes for the 27 large-river deltas worldwide,located in the middle/low latitudes,with different tectonic backgrounds.In the future,the conceptual geometric model may be combined with sediment dynamic modeling to identify more details of the evolution of these deltas.展开更多
To aid the magnetic anomaly detection(MAD)of underground ferromagnetic pipelines,this paper proposes a geometric modeling method based on the magnetic dipole reconstruction method(MDRM).First,the numerical modeling of...To aid the magnetic anomaly detection(MAD)of underground ferromagnetic pipelines,this paper proposes a geometric modeling method based on the magnetic dipole reconstruction method(MDRM).First,the numerical modeling of basic pipe components such as straight sections,bends and elbows,and tee joints are discussed and the relevant mathematical formulations for these components are derived.Next,after analyzing the function of MDRM and various element division strategies,the sectional division and blocked division methods are introduced and applied to the appropriate pipeline components to determine the volume and center coordinates of each element,establishing the general models for the three typical pipeline components considered.The resulting volume and center coordinates of each component are the fundamental parameters for determining the MAD forwarding of underground ferromagnetic pipelines using the MDRM.Finally,based on the combination and transformation of the basic pipeline components considered,the visualized geometric models of typical pipeline layouts including parallel pipelines,pipelines with elbows,and a pipeline with a tee joint are constructed.The results demonstrate the feasibility of the proposed method of geometric modeling for the MDRM,which can be further applied to the finite element modeling of these and other components when analyzing MAD data.Furthermore,the models with output parameters proposed in this paper establish a foundation for the inversion of MAD.展开更多
This paper suggests four data structures, one based on the other, for a geometric modeller suitable for computer vision. The structures are the key to advance from two-dimensional to three-dimensional automatic pictur...This paper suggests four data structures, one based on the other, for a geometric modeller suitable for computer vision. The structures are the key to advance from two-dimensional to three-dimensional automatic picture processing. Three application areas are indicated: one in semisynthetic design of materials, another in measurements of large three-dimensional industrial constructions, and the third one in robotics. There are comments on the software development needed.展开更多
We present an improved geometric model of faulted detachment folding with pure shear that is characterized by core thickening and a ramp-discordant backlimb. The model includes a two-stage evolution: 1) detachment f...We present an improved geometric model of faulted detachment folding with pure shear that is characterized by core thickening and a ramp-discordant backlimb. The model includes a two-stage evolution: 1) detachment folding involving pure shear with fixed hinges, and 2) faulted detachment folding, in which the core of anticline thrusts above a break-through fault in forelimb by limb rotation. The growth strata patterns of the model are also discussed with respect to factors such as limb rotation, tectonic uplift rate, and sedimentation rate. A thrust-related fold, called a TBE thrust fold, in the Tarim Basin in NW China, is analyzed as an example of the theoretical model. The result indicates that the TBE thrust fold has undergone a two-stage evolution with shortening of a few hundred meters. Both the theoretical model and the actual example indicate that the shortening in the detachment folding stage takes up a large proportion of the total shortening. The structural restoration of the TBE thrust fold also provides new evidence that the formation of a series of thin-skinned structures in the SE Tarim Basin initiated in the Late Ordovician. The model may be applicable to low-amplitude faulted detachment folds.展开更多
The Kuqa fold-and-thrust belt exhibits apparent structural variation in the western and eastern zone.Two salt layer act as effective decollements and influence the varied deformation.In this study,detailed seismic int...The Kuqa fold-and-thrust belt exhibits apparent structural variation in the western and eastern zone.Two salt layer act as effective decollements and influence the varied deformation.In this study,detailed seismic interpretations and analog modeling are presented to construct the suprasalt and subsalt structures in the transfer zone of the middle Kuqa and investigate the influence of the two salt layers.The results reveal that the relationship of the two salt layers changes from separated to connected,and then overlapped toward the foreland in the transfer zone.Different structural models are formed in the suprasalt and subsalt units due to the interaction of the two salt layers.The imbricate thrust faults form two broom-like fault systems in the subsalt units.The suprasalt units develop detached folds terminating toward the east in the region near the orogenic belt.Whereas,two offset anticlines with different trends develop at the frontal edge of the lower salt layer and the trailing edge of the upper salt layer,respectively.According to exploration results in this region,the relationship between suprasalt and subsalt structures has an influence on hydrocarbon accumulation.We believe that the connected deformation contains high-risk plays while the decoupled deformation contains well-preserved plays.展开更多
The current researches on the tooth surface mathematical equations and the theory of gearing mainly pay attention to the ordinary type worm gear set(e.g., ZN, ZA, or ZK). The research of forming mechanism and three-...The current researches on the tooth surface mathematical equations and the theory of gearing mainly pay attention to the ordinary type worm gear set(e.g., ZN, ZA, or ZK). The research of forming mechanism and three-dimensional modeling method for the double pitch worm gear set is not enough. So there are some difficulties in mathematical model deducing and geometry modeling of double pitch ZN-type worm gear set based on generation mechanism. In order to establish the mathematical model and the precise geometric model of double pitch ZN-type worm gear set, the structural characteristics and generation mechanism of the double pitch ZN-type worm gear set are investigated. Mathematical model of the ZN-type worm gear set is derived based on its generation mechanism and the theory of gearing. According to the mathematical model of the worm gear set which has been developed, a geometry modeling method of the double pitch ZN-type worm and worm gear is presented. Furthermore, a geometrical precision calculate method is proposed to evaluate the geometrical quality of the double pitch worm gear set. As a result, the maximum error is less than 6′10–4 mm in magnitude, thus the model of the double pitch ZN-type worm gear set is available to meet the requirements of finite element analysis and engineering application. The derived mathematical model and the proposed geometrical modeling method are helpful to guiding the design, manufacture and contact analysis of the worm gear set.展开更多
A novel approach to compute the high frequency radar cross-section (RCS) of complex targets is described in this paper.From the three views or the sectional views of the target, target is geometrically modeled by non-...A novel approach to compute the high frequency radar cross-section (RCS) of complex targets is described in this paper.From the three views or the sectional views of the target, target is geometrically modeled by non-uniform rational B-spline (NURBS) parametric surfaces using the software CNFEOV developed by oneself which constructs NURBS representation of complex target from engineering orthographic views. RCS is obtained through PO, PTD, MEC and IBC techniques. When calculating RCS of the target, it is necessary to get the unit normal vector to surface illumi- nated by radar and the value Z which is the distance from the point on the surface to radar. ln this novel approach, the unit normal vector to the surface can be obtained either by the Phong rendering model, in which the color components (RGB) of every pixel on the image are equal to the coordinate components of the normal, or by the NURBS expressions. The value Z can be achieved by software or hardware Z-buffer. The effects of the size of image on the RCS of target are discussed and the correct method is recommended. The RCS of the perfect conducting sphere, cylinder and dihedral as well as the coated cylinder, as some examples, are computed. The accuracy of the method is verified by comparing the numerical results with those obtained by using other methods.展开更多
The geometric phase has become a fundamental concept in many fields of physics since it was revealed. Recently, the study of the geometric phase has attracted considerable attention in the context of quantum phase tra...The geometric phase has become a fundamental concept in many fields of physics since it was revealed. Recently, the study of the geometric phase has attracted considerable attention in the context of quantum phase transition, where the ground state properties of the system experience a dramatic change induced by a variation of an external parameter. In this work, we experimentally measure the ground-state geometric phase of the three-spin XY model by utilizing the nuclear magnetic resonance technique. The experimental results indicate that the geometric phase could be used as a fingerprint of the ground-state quantum phase transition of many-body systems.展开更多
The existing geometrical solution models for predicting ternary thermodynamic properties from relevant binary ones have been analysed,and a general representation was proposed in an integral form on the bases of these...The existing geometrical solution models for predicting ternary thermodynamic properties from relevant binary ones have been analysed,and a general representation was proposed in an integral form on the bases of these models.展开更多
基金Supported by Natural Science Foundation of Beijing City (4081001)National Agriculture Science and Technology Transformation FundProject (2009GB2A000001)~~
文摘[Objective] The paper was to study the geometric modeling of rape(Brassica napus L.) during seedling stage.[Method] Based on the analysis and observation of morphological structure and growth process of rape during seedling stage,a characteristic parameters-based three-dimensional mathematical model of rape and its visible method was proposed.The individual control parameters were extracted according to the morphological structures of various organs of rape.Different sizes of leaf and petiole model were constructed by using cubic Bézier surface.The cylinder with different upper and lower bottom area was adopted as the main stem model.Finally,three-dimensional reconstruction of whole Rape plant during seedling stage was achieved through the operations of rotation,scaling and splicing.[Result] This method had certain controllability,which was also easy and convenient,and could quickly use to build the geometric model of rape during seedling stage.[Conclusion] The results provided reference for study on structural model of rape.
基金Project supported by the National Natural Science Foundation of China (Nos. 60273057 and 60403049) and the National Basic Re-search Program (973) of China (No. 2002CB312106)
文摘Traditional MEMS (microelectromechanical system) design methodology is not a structured method and has become an obstacle for MEMS creative design. In this paper, a novel method of mask synthesis and verification for surface micro-machined MEMS is proposed, which is based on the geometric model of a MEMS device. The emphasis is focused on synthesizing the masks at the basis of the layer model generated from the geometric model of the MEMS device. The method is comprised of several steps: the correction of the layer model, the generation of initial masks and final masks including multi-layer etch masks, and mask simulation. Finally some test resuhs are given.
基金This work is financially supported by the National Natural Science Foundation of China (Nos. 59674028 and 20101006).
文摘A geometric model for calculating the viscosity of multi-component melt fromrelated binary physicochemistry properties was derived based on Chou's thermodynamic geometricmodel. The model derived was employed to predict the viscosity of Au-Ag-Cu alloys. The results showthat the calculated viscosity for Au-Ag-Cu alloys meet the experimental data very well. In addition,the viscosity of Bi-Sn-In systems was also predicted with this model.
文摘This paper presents a new approach of designing the revolving cutter with constant pitch, and provides geometric models. The corresponding models in the non-numerically controlled manufacturing, such as designing the helical groove, grinding wheel, relative feeding motion, and calculating the helical angle of the cutting edge, are introduced. The examples are given to testify that the design approach is simple and readily realized in machining the revolving cutter with constant pitch. The effective design and manufacture method provides general references for non-NC machining revolving cutter with constant pitch and reducing the equipments input.
文摘A new geometric model of Multiaxial Warp-Knitted (MWK) performs, which is based on the experimental observations and analysis of basic stitch, is developed to relate the geometric parameters and process variables. The fiber volume fraction and fibre orientation of MWK reinforced composites are described in terms of structural and processing parameters in the model. And this model provides a basis for the prediction of mechanical behavior of the MWK reinforced composites.
基金Project(51805368)supported by the National Natural Science Foundation of ChinaProject(2018QNRC001)supported by the Young Elite Scientists Sponsorship Program,China+1 种基金Project(DMETKF2021017)supported by the Fund of State Key Laboratory of Digital Manufacturing Equipment and Technology,Huazhong University of Science and Technology,ChinaProject(HTL-0-21G07)supported by the National key Laboratory of Science and Technology on Heicopter Transmission,China。
文摘A complex geometric modeling method of a helical face gear pair with arc-tooth generated by an arc-profile cutting(APC)disc is proposed,and its tooth contact characteristics are analyzed.Firstly,the spatial coordinate system of an APC face gear pair is established based on meshing theory.Combining the coordinate transformation matrix and the tooth profile of the cutter,the equations of the curve envelope of the APC face gear pair are obtained.Then the surface equations are solved to extract the point clouds data by programming in MATLAB,which contains the work surface and the fillet surface of the APC face gear pair.And the complex geometric model of the APC face gear pair is built by fitting its point clouds.At last,through the analysis of the tooth surface contact,the sensitivity of the APC face gear to the different types of mounting errors is obtained.The results show that the APC face gear pair is the most sensitive to mounting errors in the tooth thickness direction,and it should be strictly controlled in the actual application.
文摘Most of the available methods for the calculation of the three dimensional(3D)grain size dis- tribution functions(SDF)are based on the S model and lead a grave systematical error.The origin is the basic supposition of spherical grains in the S model,which does not correspond with the feature of real grains.A new model called A model is developed based on the hypothe- sis of polvhedral grains.The probability functions of the A model and the method to calculate the 3D SDFs using the A model are given in the present paper.The theoretical analyses and experimental tests have demonstrated that the A model reduces the systematical error radical- ly.It is nearly as simple as the so far used S model,but gives much better results in repro- ducing of 3D SDFs from the measured ID or 2D SDFs.
基金This paperis supported by National Nature Science Foundation! (No.5963 51 60 )Advanced University Doctoral Subject Foundatio
文摘Geometric information is important for automatic programming of arc welding robot. Complete geometric models of robotic arc welding are established in this paper. In the geometric model of weld seam, an equation with seam length as its parameter is introduced to represent any weld seam. The method to determine discrete programming points on a weld seam is presented. In the geometric model of weld workpiece, three class primitives and CSG tree are used to describe weld workpiece. Detailed data structure is presented. In pose transformation of torch, world frame, torch frame and active frame are defined, and transformation between frames is presented. Based on these geometric models, an automatic programming software package for robotic arc welding, RAWCAD, is developed. Experiments show that the geometric models are practical and reliable.
文摘Hybrid models derived from rotational solids like cylinders, cones and spheres were implemented on CATIA software. Firstly, make the isosceles triangular prism, cuboid, cylinder, cone, sphere, and the prism with tangent conic and curved triangle ends, the cuboid with tangent cylindrical and curved rectangle ends, the cylinder with tangent spherical and curved circular ends as the basic Boolean deference units to the primary cylinders, cones and spheres on symmetrical and some critical geometric conditions, forming a series of variant solid models. Secondly, make the deference units above as the basic union units to the main cylinders, cones, and spheres accordingly, forming another set of solid models. Thirdly, make the tangent ends of union units into oblique conic, cylindrical, or with revolved triangular pyramid, quarterly cylinder and annulus ends on sketch based features to the main cylinders, cones, and spheres repeatedly, thus forming still another set of solid models. It is expected that these derivative models be beneficial both in the structure design, hybrid modeling, and finite element analysis of engineering components and in comprehensive training of spatial configuration of engineering graphics.
基金supported by National Natural Science Foundation of China(Grant Nos.11971225 and 12171207)。
文摘Let A=kQ/I be a finite-dimensional basic algebra over an algebraically closed field k,which is a gentle algebra with the marked ribbon surface(SA,MA,ΓA).It is known that SAcan be divided into some elementary polygons{Δi|1≤i≤d}byΓA,which has exactly one side in the boundary of SA.Let■(Δi)be the number of sides ofΔibelonging toΓAif the unmarked boundary component of SAis not a side ofΔi;otherwise,■(Δi)=∞,and let f-Δbe the set of all the non-co-elementary polygons and FA(resp.f-FA)be the set of all the forbidden threads(resp.of finite length).Then we have(1)the global dimension of A is max1≤i≤d■(Δi)-1=maxΠ∈FAl(Π),where l(Π)is the length ofΠ;(2)the left and right self-injective dimensions of A are 0,if Q is either a point or an oriented cycle with full relations.masΔi∈f-Δ{1,■(Δi)-1}=max n∈f-F_(A)l(П),otherwise,As a consequence,we get that the finiteness of the global dimension of gentle algebras is invariant under AvellaGeiss(AG)-equivalence.In addition,we get that the number of indecomposable non-projective Gorenstein projective modules over gentle algebras is also invariant under AG-equivalence.
基金Project supported by the National Natural Science Foundation of China (Nos.12072119,12325201,and 52205594)the China National Postdoctoral Program for Innovative Talents (No.BX20220118)。
文摘Due to the novel applications of flexible pipes conveying fluid in the field of soft robotics and biomedicine,the investigations on the mechanical responses of the pipes have attracted considerable attention.The fluid-structure interaction(FSI)between the pipe with a curved shape and the time-varying internal fluid flow brings a great challenge to the revelation of the dynamical behaviors of flexible pipes,especially when the pipe is highly flexible and usually undergoes large deformations.In this work,the geometrically exact model(GEM)for a curved cantilevered pipe conveying pulsating fluid is developed based on the extended Hamilton's principle.The stability of the curved pipe with three different subtended angles is examined with the consideration of steady fluid flow.Specific attention is concentrated on the large-deformation resonance of circular pipes conveying pulsating fluid,which is often encountered in practical engineering.By constructing bifurcation diagrams,oscillating shapes,phase portraits,time traces,and Poincarémaps,the dynamic responses of the curved pipe under various system parameters are revealed.The mean flow velocity of the pulsating fluid is chosen to be either subcritical or supercritical.The numerical results show that the curved pipe conveying pulsating fluid can exhibit rich dynamical behaviors,including periodic and quasi-periodic motions.It is also found that the preferred instability type of a cantilevered curved pipe conveying steady fluid is mainly in the flutter of the second mode.For a moderate value of the mass ratio,however,a third-mode flutter may occur,which is quite different from that of a straight pipe system.
基金supported by the National Natural Science Foundation of China(Grant Nos.41625021,41906021,and 41676079)the Program for Scientific Research Start-up Funds of Guangdong Ocean University。
文摘Topographic/bathymetric conditions of the continental shelf can significantly influence the long-term growth of river deltas.In particular,these conditions constrain the accommodation space for sedimentation in the deltaic areas.In this study,we use a conceptual geometric model to evaluate the role played by this factor,on the basis of the principle of mass conservation.The Ganges-Brahmaputra,Mekong and Nile deltas are examined as three typical examples,in terms of their different original seabed morphologies.The control variate method is applied to eliminate the effect of the difference in model input variables.The results show that,assuming a constant sediment load,the delta growth rate will decrease with time;a higher value of the original seabed slope leads to a lower shoreline progradation rate for the subaerial delta and a higher growth rate for the subaqueous delta.Thus,the original seabed morphology represented by slope is a critical factor affecting the evolution of Holocene large-river deltas.These results explain the interrelationships between sediment load,deltaic plain area,and the original seabed slopes for the 27 large-river deltas worldwide,located in the middle/low latitudes,with different tectonic backgrounds.In the future,the conceptual geometric model may be combined with sediment dynamic modeling to identify more details of the evolution of these deltas.
基金This work is supported by the National Natural Science Foundation of China[No.41374151]the Sichuan Province Applied Basic Research Project of China[No.2017JY0162]the Young Scholars Development Fund of SWPU[No.201599010079].
文摘To aid the magnetic anomaly detection(MAD)of underground ferromagnetic pipelines,this paper proposes a geometric modeling method based on the magnetic dipole reconstruction method(MDRM).First,the numerical modeling of basic pipe components such as straight sections,bends and elbows,and tee joints are discussed and the relevant mathematical formulations for these components are derived.Next,after analyzing the function of MDRM and various element division strategies,the sectional division and blocked division methods are introduced and applied to the appropriate pipeline components to determine the volume and center coordinates of each element,establishing the general models for the three typical pipeline components considered.The resulting volume and center coordinates of each component are the fundamental parameters for determining the MAD forwarding of underground ferromagnetic pipelines using the MDRM.Finally,based on the combination and transformation of the basic pipeline components considered,the visualized geometric models of typical pipeline layouts including parallel pipelines,pipelines with elbows,and a pipeline with a tee joint are constructed.The results demonstrate the feasibility of the proposed method of geometric modeling for the MDRM,which can be further applied to the finite element modeling of these and other components when analyzing MAD data.Furthermore,the models with output parameters proposed in this paper establish a foundation for the inversion of MAD.
文摘This paper suggests four data structures, one based on the other, for a geometric modeller suitable for computer vision. The structures are the key to advance from two-dimensional to three-dimensional automatic picture processing. Three application areas are indicated: one in semisynthetic design of materials, another in measurements of large three-dimensional industrial constructions, and the third one in robotics. There are comments on the software development needed.
文摘We present an improved geometric model of faulted detachment folding with pure shear that is characterized by core thickening and a ramp-discordant backlimb. The model includes a two-stage evolution: 1) detachment folding involving pure shear with fixed hinges, and 2) faulted detachment folding, in which the core of anticline thrusts above a break-through fault in forelimb by limb rotation. The growth strata patterns of the model are also discussed with respect to factors such as limb rotation, tectonic uplift rate, and sedimentation rate. A thrust-related fold, called a TBE thrust fold, in the Tarim Basin in NW China, is analyzed as an example of the theoretical model. The result indicates that the TBE thrust fold has undergone a two-stage evolution with shortening of a few hundred meters. Both the theoretical model and the actual example indicate that the shortening in the detachment folding stage takes up a large proportion of the total shortening. The structural restoration of the TBE thrust fold also provides new evidence that the formation of a series of thin-skinned structures in the SE Tarim Basin initiated in the Late Ordovician. The model may be applicable to low-amplitude faulted detachment folds.
基金supported by the National Natural Science Foundation of China(Grant Nos.41572187,41972219,41927802 and 42072320)the China Postdoctoral Science Foundation(Grant No.2020M671432)。
文摘The Kuqa fold-and-thrust belt exhibits apparent structural variation in the western and eastern zone.Two salt layer act as effective decollements and influence the varied deformation.In this study,detailed seismic interpretations and analog modeling are presented to construct the suprasalt and subsalt structures in the transfer zone of the middle Kuqa and investigate the influence of the two salt layers.The results reveal that the relationship of the two salt layers changes from separated to connected,and then overlapped toward the foreland in the transfer zone.Different structural models are formed in the suprasalt and subsalt units due to the interaction of the two salt layers.The imbricate thrust faults form two broom-like fault systems in the subsalt units.The suprasalt units develop detached folds terminating toward the east in the region near the orogenic belt.Whereas,two offset anticlines with different trends develop at the frontal edge of the lower salt layer and the trailing edge of the upper salt layer,respectively.According to exploration results in this region,the relationship between suprasalt and subsalt structures has an influence on hydrocarbon accumulation.We believe that the connected deformation contains high-risk plays while the decoupled deformation contains well-preserved plays.
基金Supported by Major National Basic Research Program of China(973Program,Grant No.2011CB013400-05)PhD Programs Foundation of Ministry of Education of China(Grant No.20110191110005)
文摘The current researches on the tooth surface mathematical equations and the theory of gearing mainly pay attention to the ordinary type worm gear set(e.g., ZN, ZA, or ZK). The research of forming mechanism and three-dimensional modeling method for the double pitch worm gear set is not enough. So there are some difficulties in mathematical model deducing and geometry modeling of double pitch ZN-type worm gear set based on generation mechanism. In order to establish the mathematical model and the precise geometric model of double pitch ZN-type worm gear set, the structural characteristics and generation mechanism of the double pitch ZN-type worm gear set are investigated. Mathematical model of the ZN-type worm gear set is derived based on its generation mechanism and the theory of gearing. According to the mathematical model of the worm gear set which has been developed, a geometry modeling method of the double pitch ZN-type worm and worm gear is presented. Furthermore, a geometrical precision calculate method is proposed to evaluate the geometrical quality of the double pitch worm gear set. As a result, the maximum error is less than 6′10–4 mm in magnitude, thus the model of the double pitch ZN-type worm gear set is available to meet the requirements of finite element analysis and engineering application. The derived mathematical model and the proposed geometrical modeling method are helpful to guiding the design, manufacture and contact analysis of the worm gear set.
文摘A novel approach to compute the high frequency radar cross-section (RCS) of complex targets is described in this paper.From the three views or the sectional views of the target, target is geometrically modeled by non-uniform rational B-spline (NURBS) parametric surfaces using the software CNFEOV developed by oneself which constructs NURBS representation of complex target from engineering orthographic views. RCS is obtained through PO, PTD, MEC and IBC techniques. When calculating RCS of the target, it is necessary to get the unit normal vector to surface illumi- nated by radar and the value Z which is the distance from the point on the surface to radar. ln this novel approach, the unit normal vector to the surface can be obtained either by the Phong rendering model, in which the color components (RGB) of every pixel on the image are equal to the coordinate components of the normal, or by the NURBS expressions. The value Z can be achieved by software or hardware Z-buffer. The effects of the size of image on the RCS of target are discussed and the correct method is recommended. The RCS of the perfect conducting sphere, cylinder and dihedral as well as the coated cylinder, as some examples, are computed. The accuracy of the method is verified by comparing the numerical results with those obtained by using other methods.
基金Supported by the National Key Basic Research Program under Grant Nos 2013CB921800 and 2014CB848700the National Science Fund for Distinguished Young Scholars under Grant No 11425523+4 种基金the National Natural Science Foundation of China under Grant Nos 11375167,11227901,91021005 and 11575173the Strategic Priority Research Program(B)of the Chinese Academy of Sciences under Grant No XDB01030400the Research Fund for the Doctoral Program of Higher Education of China under Grant No 20113402110044the China Postdoctoral Science Foundationthe Fundamental Research Funds for the Central Universities
文摘The geometric phase has become a fundamental concept in many fields of physics since it was revealed. Recently, the study of the geometric phase has attracted considerable attention in the context of quantum phase transition, where the ground state properties of the system experience a dramatic change induced by a variation of an external parameter. In this work, we experimentally measure the ground-state geometric phase of the three-spin XY model by utilizing the nuclear magnetic resonance technique. The experimental results indicate that the geometric phase could be used as a fingerprint of the ground-state quantum phase transition of many-body systems.
文摘The existing geometrical solution models for predicting ternary thermodynamic properties from relevant binary ones have been analysed,and a general representation was proposed in an integral form on the bases of these models.