In a karst tunnel, fissures or cracks that are filled with weathered materials are a type of potential water outlet as they are easily triggered and converted into groundwater outlets under the influence of high groun...In a karst tunnel, fissures or cracks that are filled with weathered materials are a type of potential water outlet as they are easily triggered and converted into groundwater outlets under the influence of high groundwater pressure. A terrible water inrush caused by potential water outlets can seriously hinder the project construction. Potential water outlets and water sources that surrounding the tunnel must be detected before water inflow can be treated. This paper provides a successful case of the detection and treatment of water inflow in a karst tunnel and proposes a potential water outlet detection(PWOD) method in which heavy rainfall(>50 mm/d) is considered a trigger for a potential water outlet. The Daba tunnel located in Hunan province, China, has been constructed in a karst stratum where the rock mass has been weathered intensely by the influence of two faults. Heavy rain triggered some potential water outlets, causing a serious water inrush. The PWOD method was applied in this project for the treatment of water inflow, and six potential water outlets in total were identified through three heavy rains. Meanwhile, a geophysical prospecting technique was also used to detect water sources. The connections between water outlets and water sources were identified with a 3-D graphic that included all of them. According to the distribution of water outlets and water sources, the detection area was divided into three sections and separately treated by curtain grouting.展开更多
Recent monitoring techniques employ multiple sources of information for the characterization of the phenomenon to be studied, being the coupling and adjustment of multi-source data one of the first challenges to consi...Recent monitoring techniques employ multiple sources of information for the characterization of the phenomenon to be studied, being the coupling and adjustment of multi-source data one of the first challenges to consider and solve. The authors propose a new framework of the multi-source and multi-temporal data-oriented fusion for the characterization of landslide events. The main objective is to generate 3D virtual models(in the form of dense point clouds) and feed them back with the characteristic of soil and subsoil information. The scheme consists of three main steps. The first one is on-site data collection(geological characterization, geophysical measurements, GPS measurements, and UAV/drone mapping). The second step is generation of a high-resolution 3D virtual model(~1-inch spatial resolution) from the frames acquired through the UAV using the structure of motion(SfM) processing;the developed virtual model is optimized with GPS measurements to minimize geolocation error and eliminate distortions. The last step is assembling of the acquired data in the field and densified point cloud considering the different nature of the data, re-escalating procedure and the information stacking layer.展开更多
基金supported by the National Key Research and Development Project (Grant No.2016YFC0801604)Natural Science Foundation of Shandong Province (Grant No.ZR2017MEE070)
文摘In a karst tunnel, fissures or cracks that are filled with weathered materials are a type of potential water outlet as they are easily triggered and converted into groundwater outlets under the influence of high groundwater pressure. A terrible water inrush caused by potential water outlets can seriously hinder the project construction. Potential water outlets and water sources that surrounding the tunnel must be detected before water inflow can be treated. This paper provides a successful case of the detection and treatment of water inflow in a karst tunnel and proposes a potential water outlet detection(PWOD) method in which heavy rainfall(>50 mm/d) is considered a trigger for a potential water outlet. The Daba tunnel located in Hunan province, China, has been constructed in a karst stratum where the rock mass has been weathered intensely by the influence of two faults. Heavy rain triggered some potential water outlets, causing a serious water inrush. The PWOD method was applied in this project for the treatment of water inflow, and six potential water outlets in total were identified through three heavy rains. Meanwhile, a geophysical prospecting technique was also used to detect water sources. The connections between water outlets and water sources were identified with a 3-D graphic that included all of them. According to the distribution of water outlets and water sources, the detection area was divided into three sections and separately treated by curtain grouting.
基金supported by the CONACYT Academic Fellowship(No.308896)
文摘Recent monitoring techniques employ multiple sources of information for the characterization of the phenomenon to be studied, being the coupling and adjustment of multi-source data one of the first challenges to consider and solve. The authors propose a new framework of the multi-source and multi-temporal data-oriented fusion for the characterization of landslide events. The main objective is to generate 3D virtual models(in the form of dense point clouds) and feed them back with the characteristic of soil and subsoil information. The scheme consists of three main steps. The first one is on-site data collection(geological characterization, geophysical measurements, GPS measurements, and UAV/drone mapping). The second step is generation of a high-resolution 3D virtual model(~1-inch spatial resolution) from the frames acquired through the UAV using the structure of motion(SfM) processing;the developed virtual model is optimized with GPS measurements to minimize geolocation error and eliminate distortions. The last step is assembling of the acquired data in the field and densified point cloud considering the different nature of the data, re-escalating procedure and the information stacking layer.