期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Late Holocene glacier variations indicated by theδ18O of ice core enclosed gaseous oxygen in the central Tibetan Plateau
1
作者 LI Jiu-le XU Bai-qing +2 位作者 WANG Ning-lian YAO Ping XU Xiang-ke 《Journal of Mountain Science》 SCIE CSCD 2023年第2期325-337,共13页
Theδ18O of ice core enclosed gaseous oxygen(δ18Obub)has been widely used for climate reconstruction in polar regions.Yet,less is known about its climatic implication in the mountainous glaciers as the lack of contin... Theδ18O of ice core enclosed gaseous oxygen(δ18Obub)has been widely used for climate reconstruction in polar regions.Yet,less is known about its climatic implication in the mountainous glaciers as the lack of continuous record.Here,we present a long-term,continuousδ18Obub record from the Tanggula glacier in the central Tibetan Plateau(TP).Based on comparisons of its variation with regional climate and glacier changes,we found that there was a good correlation between the variation of theδ18Obub in this alpine ice core and the accumulation and melting of this glacier.The more developed the firn layer on glacier surface,the more positive theδ18Obub.Conversely,the more intense the glacier melting,the more negative theδ18Obub.Combined with the chronology of ice core enclosed gases,the glacier variations since the late Holocene in the central TP were reconstructed.The result showed that there were four accumulation and three deficit periods of glaciers in this region.The strongest glacier accumulation period was 1610-300 B.C.,which corresponds to the Neoglaciation.The most significant melting period was the last 100 years,which corresponds to the recent global warming.The Medieval Warm Period was relatively significant in the central TP.However,during the Little Ice Age,there was no significant glacier accumulation in the central TP,and even short deficit events occurred.Comparisons of the late Holocene glacier variation in the central TP with glacier and climate variations in the TP and the Northern Hemisphere showed that it was closely related to the North Atlantic Oscillation. 展开更多
关键词 Ice core air bubble Stable isotope ratio Gaseous oxygen glacier variation Late Holocene Tibetan Plateau
下载PDF
Glacier variations and their response to climate change in an arid inland river basin of Northwest China 被引量:3
2
作者 ZHOU Zuhao HAN Ning +5 位作者 LIU Jiajia YAN Ziqi XU Chongyu CAI Jingya SHANGYizi ZHU Jiasong 《Journal of Arid Land》 SCIE CSCD 2020年第3期357-373,共17页
Glaciers are a critical freshwater resource of river recharge in arid areas around the world.In recent decades,glaciers have shown evidence of retreat due to climate change,and the accelerated ablation of glaciers and... Glaciers are a critical freshwater resource of river recharge in arid areas around the world.In recent decades,glaciers have shown evidence of retreat due to climate change,and the accelerated ablation of glaciers and associated impacts on water resources have received widespread attention.Glacier variations result from climate change,so they can serve as an indicator of climate change.Considering the climatic differences in different elevation ranges,it is worthwhile to explore whether different responses exist between glacier area and air temperature in each elevation zone.In this study,we selected a typical arid inland river basin(Sugan Lake Basin)in the western Qilian Mountains of Northwest China to analyze the glacier variations and their response to climate change.The glacier area data from 1989 to 2016 were delineated using Landsat Thematic Mapper(TM),Enhanced TM+(ETM+)and Operational Land Imager(OLI)images.We compared the relationships between glacier area and air temperature at seven meteorological stations in the glacier-covered areas and in the Sugan Lake Basin,and further analyzed the relationship between glacier area and mean air temperature of the glacier surfaces in July–August in the elevation range of 4700–5500 m a.s.l.by the linear regression method and correlation analysis.In addition,based on the linear regression relationship established between glacier area and air temperature in each elevation zone,we predicted glacier areas under future climate scenarios during the periods of 2046–2065 and 2081–2100.The results indicate that the glaciers experienced a remarkable shrinkage from 1989 to 2016 with a shrinkage rate of–1.61 km^2/a(–0.5%/a),and the rising temperature is the decisive factor dominating glacial retreat;there is a significant negative linear correlation between glacier area and mean air temperature of the glacier surfaces in July–August in each elevation zone from 1989 to 2016.The variations in glaciers are far less sensitive to changes in precipitation than to changes in air temperature.Due to the influence of climate and topographic conditions,the distribution of glacier area and the rate of glacier ablation first increased and then decreased in different elevation zones.The trend in glacier shrinkage will continue because air temperature will continue to increase in the future,and the result of glacier retreat in each elevation zone will be slightly slower than that in the entire study area.Quantitative glacier research can more accurately reflect the response of glacier variations to climate change,and the regression relationship can be used to predict the areas of glaciers under future climate scenarios.These conclusions can offer effective references for assessing glacier variations and their response to climate change in arid inland river basins in Northwest China as well as other similar regions in the world. 展开更多
关键词 glacier variations climate change glacier area remote sensing regression relationship elevation zone Qilian Mountains
下载PDF
Applicability of an ultra-long-range terrestrial laser scanner to monitor the mass balance of Muz Taw Glacier,Sawir Mountains,China
3
作者 FeiTeng Wang ChunHai Xu +2 位作者 ZhongQin Li Muhammad Naveed Anjum Lin Wang 《Research in Cold and Arid Regions》 CSCD 2018年第1期47-54,共8页
Glacier mass balance is a key component of glacier monitoring programs. Information on the mass balance of Sawir Mountains is poor due to a dearth of in-situ measurements. This paper introduces the applicability of an... Glacier mass balance is a key component of glacier monitoring programs. Information on the mass balance of Sawir Mountains is poor due to a dearth of in-situ measurements. This paper introduces the applicability of an ultra-long-range terrestrial laser scanner(TLS) to monitor the mass balance of Muz Taw Glacier, Sawir Mountains, China. The Riegl VZ?-6000 TLS is exceptionally well-suited for measuring snowy and icy terrain. Here, we use TLS to create repeated high spatiotemporal resolution DEMs, focusing on the annual mass balance(June 2, 2015 to July 25, 2016). According to TLS-derived high spatial resolution point clouds, the front variation(glacier retreat) of Muz Taw Glacier was 9.3 m. The mean geodetic elevation change was 4.55 m at the ablation area. By comparing with glaciological measurements, the glaciological elevation change of individual stakes and the TLS-derived geodetic elevation change of corresponding points matched closely, and the calculated balance was-3.864±0.378 m w.e.. This data indicates that TLS provides accurate results and is therefore suitable to monitor mass balance evolution of Muz Taw Glacier. 展开更多
关键词 glacier front variation geodetic mass balance Riegl VZ?-6000 terrestrial laser scanner Muz Taw glacier Sawir Mountains
下载PDF
Glacier Changes at Svartisen,Northern Norway,during the Last 125 Years:Influence of Climate and Other Factors
4
作者 Wilfred H Theakstone 《Journal of Earth Science》 SCIE CAS CSCD 2010年第2期123-136,共14页
The two ice caps of Svartisen, at the latitude of the Arctic Circle in Norway, supply 60 glaciers, ranging in size from 〉50 to 〈1 km^2. Until the last two decades of the 19th century, the glaciers remained close to ... The two ice caps of Svartisen, at the latitude of the Arctic Circle in Norway, supply 60 glaciers, ranging in size from 〉50 to 〈1 km^2. Until the last two decades of the 19th century, the glaciers remained close to their maximum recent (Little Ice Age) size. In response to the prevailing 20th century climate, they have become smaller, but the changes have varied between glaciers. Climatic factors have not been the sole control of the variations. The response times of small, steep glaciers are shorter than those of the longer, more gently sloping outlet glaciers. Topographic factors may moderate the response of individual glaciers to climate. The 20th century mass balance of several of the larger glaciers was dominated by calving into marginal lakes. The mass balance of Engabreen, the largest outlet of the western ice cap, has been measured every year since 1970 and the cumulative balance to 2008 was a gain of 22.7 m water equivalent. Although the pattern of annual variations probably applies to the other glaciers of Svartisen, it does not indicate their actual changes (gain or loss). Thus, the Engabreen record is of little utility in water resource planning for the whole area. 展开更多
关键词 Svartisen climatic change glacier variation CALVING mass balance.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部