Relationship between K2O-Al2O3-SiO2 system dental glass ceramics and Al2O3 ceramics was investigated. 4 groups of glass ceramic with the same components but different thickness(0.8, 1.2, 1.6, and 2.0 mm) were sinter...Relationship between K2O-Al2O3-SiO2 system dental glass ceramics and Al2O3 ceramics was investigated. 4 groups of glass ceramic with the same components but different thickness(0.8, 1.2, 1.6, and 2.0 mm) were sintered on Al2O3 base ceramics according to the same thermal treatment system of leucite micro-crystallization reported in previous literatures. The products of each group were analyzed by polarizing microscope, X-ray diffractometer, and an INSTRON material testing machine. Under the thermal treatment system, leucite crystals were formed in samples of each group, and dispersed evenly. Meanwhile, the compressive strengths of group 3 and group 4 were higher than those of group 1 and group 2. Samples of group 3 showed better mechanical properties than others. The conclusions are drawn that Leucite crystals can be controlled in K2O-Al2O3-SiO2 system glass ceramic-Al2O3 ceramic composite material, and the thickness of glass ceramic has a notable influence on the compressive strength of this ceramic composite material.展开更多
基金Funded by the Project for Tackling Key Problems in Science and Technology of Wuhan(No.201262523841)
文摘Relationship between K2O-Al2O3-SiO2 system dental glass ceramics and Al2O3 ceramics was investigated. 4 groups of glass ceramic with the same components but different thickness(0.8, 1.2, 1.6, and 2.0 mm) were sintered on Al2O3 base ceramics according to the same thermal treatment system of leucite micro-crystallization reported in previous literatures. The products of each group were analyzed by polarizing microscope, X-ray diffractometer, and an INSTRON material testing machine. Under the thermal treatment system, leucite crystals were formed in samples of each group, and dispersed evenly. Meanwhile, the compressive strengths of group 3 and group 4 were higher than those of group 1 and group 2. Samples of group 3 showed better mechanical properties than others. The conclusions are drawn that Leucite crystals can be controlled in K2O-Al2O3-SiO2 system glass ceramic-Al2O3 ceramic composite material, and the thickness of glass ceramic has a notable influence on the compressive strength of this ceramic composite material.