In atomic,molecular,and nuclear physics,the method of complex coordinate rotation is a widely used theoretical tool for studying resonant states.Here,we propose a novel implementation of this method based on the gradi...In atomic,molecular,and nuclear physics,the method of complex coordinate rotation is a widely used theoretical tool for studying resonant states.Here,we propose a novel implementation of this method based on the gradient optimization(CCR-GO).The main strength of the CCR-GO method is that it does not require manual adjustment of optimization parameters in the wave function;instead,a mathematically well-defined optimization path can be followed.Our method is proven to be very efficient in searching resonant positions and widths over a variety of few-body atomic systems,and can significantly improve the accuracy of the results.As a special case,the CCR-GO method is equally capable of dealing with bound-state problems with high accuracy,which is traditionally achieved through the usual extreme conditions of energy itself.展开更多
In recent years,deep learning has been the mainstream technology for fingerprint liveness detection(FLD)tasks because of its remarkable performance.However,recent studies have shown that these deep fake fingerprint de...In recent years,deep learning has been the mainstream technology for fingerprint liveness detection(FLD)tasks because of its remarkable performance.However,recent studies have shown that these deep fake fingerprint detection(DFFD)models are not resistant to attacks by adversarial examples,which are generated by the introduction of subtle perturbations in the fingerprint image,allowing the model to make fake judgments.Most of the existing adversarial example generation methods are based on gradient optimization,which is easy to fall into local optimal,resulting in poor transferability of adversarial attacks.In addition,the perturbation added to the blank area of the fingerprint image is easily perceived by the human eye,leading to poor visual quality.In response to the above challenges,this paper proposes a novel adversarial attack method based on local adaptive gradient variance for DFFD.The ridge texture area within the fingerprint image has been identified and designated as the region for perturbation generation.Subsequently,the images are fed into the targeted white-box model,and the gradient direction is optimized to compute gradient variance.Additionally,an adaptive parameter search method is proposed using stochastic gradient ascent to explore the parameter values during adversarial example generation,aiming to maximize adversarial attack performance.Experimental results on two publicly available fingerprint datasets show that ourmethod achieves higher attack transferability and robustness than existing methods,and the perturbation is harder to perceive.展开更多
Failure detection is an essential task in industrial systems for preventing costly downtime and ensuring the seamlessoperation of the system. Current industrial processes are getting smarter with the emergence of Indu...Failure detection is an essential task in industrial systems for preventing costly downtime and ensuring the seamlessoperation of the system. Current industrial processes are getting smarter with the emergence of Industry 4.0.Specifically, various modernized industrial processes have been equipped with quite a few sensors to collectprocess-based data to find faults arising or prevailing in processes along with monitoring the status of processes.Fault diagnosis of rotating machines serves a main role in the engineering field and industrial production. Dueto the disadvantages of existing fault, diagnosis approaches, which greatly depend on professional experienceand human knowledge, intellectual fault diagnosis based on deep learning (DL) has attracted the researcher’sinterest. DL reaches the desired fault classification and automatic feature learning. Therefore, this article designs a Gradient Optimizer Algorithm with Hybrid Deep Learning-based Failure Detection and Classification (GOAHDLFDC)in the industrial environment. The presented GOAHDL-FDC technique initially applies continuous wavelettransform (CWT) for preprocessing the actual vibrational signals of the rotating machinery. Next, the residualnetwork (ResNet18) model was exploited for the extraction of features from the vibration signals which are thenfed into theHDLmodel for automated fault detection. Finally, theGOA-based hyperparameter tuning is performedtoadjust the parameter valuesof theHDLmodel accurately.The experimental result analysis of the GOAHDL-FD Calgorithm takes place using a series of simulations and the experimentation outcomes highlight the better resultsof the GOAHDL-FDC technique under different aspects.展开更多
The intelligent optimization of a multi-objective evolutionary algorithm is combined with a gradient algorithm. The hybrid multi-objective gradient algorithm is framed by the real number. Test functions are used to an...The intelligent optimization of a multi-objective evolutionary algorithm is combined with a gradient algorithm. The hybrid multi-objective gradient algorithm is framed by the real number. Test functions are used to analyze the efficiency of the algorithm. In the simulation case of the water phantom, the algorithm is applied to an inverse planning process of intensity modulated radiation treatment (IMRT). The objective functions of planning target volume (PTV) and normal tissue (NT) are based on the average dose distribution. The obtained intensity profile shows that the hybrid multi-objective gradient algorithm saves the computational time and has good accuracy, thus meeting the requirements of practical applications.展开更多
The basic principle of optimal method called “moving overlapping resolution mapping Method” to select the optimal binary mobile phase composition of multi-step linear gradient liquid chromatography is discussed with...The basic principle of optimal method called “moving overlapping resolution mapping Method” to select the optimal binary mobile phase composition of multi-step linear gradient liquid chromatography is discussed with simultaneously considering effects of position of solute inside the column and mobile phase composition on peak resolution and retention value, then a BASIC program based on this principle is developed in IBM-PC computer. The validities of both principle of optimization and BASIC program are confirmed by separation of samples Containing bile acids and PAHs in RP-HPLC.展开更多
We examine a simple averaging formula for the gradieni of linear finite elemelitsin Rd whose interpolation order in the Lq-norm is O(h2) for d < 2q and nonuniformtriangulations. For elliptic problems in R2 we deriv...We examine a simple averaging formula for the gradieni of linear finite elemelitsin Rd whose interpolation order in the Lq-norm is O(h2) for d < 2q and nonuniformtriangulations. For elliptic problems in R2 we derive an interior superconvergencefor the averaged gradient over quasiuniform triangulations. Local error estimatesup to a regular part of the boundary and the effect of numerical integration arealso investigated.展开更多
Learning and self-adaptation ability is highly required to be integrated in path planning algorithm for underwater robot during navigation through an unspecified underwater environment. High frequency oscillations dur...Learning and self-adaptation ability is highly required to be integrated in path planning algorithm for underwater robot during navigation through an unspecified underwater environment. High frequency oscillations during underwater motion are responsible for nonlinearities in dynamic behavior of underwater robot as well as uncertainties in hydrodynamic coefficients. Reactive behaviors of underwater robot are designed considering the position and orientation of both target and nearest obstacle from robot s current position. Human like reasoning power and approximation based learning skill of neural based adaptive fuzzy inference system(ANFIS)has been found to be effective for underwater multivariable motion control. More than one ANFIS models are used here for achieving goal and obstacle avoidance while avoiding local minima situation in both horizontal and vertical plane of three dimensional workspace.An error gradient approach based on input-output training patterns for learning purpose has been promoted to spawn trajectory of underwater robot optimizing path length as well as time taken. The simulation and experimental results endorse sturdiness and viability of the proposed method in comparison with other navigational methodologies to negotiate with hectic conditions during motion of underwater mobile robot.展开更多
China is one of the countries in the world carrying a heavy burden of tuberculosis.Due to the unbalanced economic development,the number of people working in other parts of country is huge,and the mobility of personne...China is one of the countries in the world carrying a heavy burden of tuberculosis.Due to the unbalanced economic development,the number of people working in other parts of country is huge,and the mobility of personnel has exacerbated the increase in tuberculosis cases.Most patients affected by this are in their middle and young ages.It is having a great impact among the family and society.Therefore,research on how to control this disease is absolutely necessary.The population is divided into two categories such as local population and the immigrant population.A pulmonary tuberculosis dynamic model with population heterogeneity is established.We calculate the basic reproductive number and the controlled reproductive number,and discuss the two types of population under the constraints given by the amount of vaccine and the optimal immunization ratio obtained is(0.118,0.107),which can reduce the effective reproduction number from 5.85 to 0.227.It is understood that immunizing the local population will control the spread of the epidemic to a large extent,and we simulate the final scale of infection after immunization under the optimal immunization ratio.It can take a minimum of at least 10 years to reduce the spread of this disease,but to eliminate it forever,it needs at least a minimum of 100 years.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.91636216,11974382,and 11474316)the Chinese Academy of Sciences Strategic Priority Research Program(Grant No.XDB21020200)+1 种基金by the YIPA Programthe support of NSERC,SHARCnet,ACEnet of Canada。
文摘In atomic,molecular,and nuclear physics,the method of complex coordinate rotation is a widely used theoretical tool for studying resonant states.Here,we propose a novel implementation of this method based on the gradient optimization(CCR-GO).The main strength of the CCR-GO method is that it does not require manual adjustment of optimization parameters in the wave function;instead,a mathematically well-defined optimization path can be followed.Our method is proven to be very efficient in searching resonant positions and widths over a variety of few-body atomic systems,and can significantly improve the accuracy of the results.As a special case,the CCR-GO method is equally capable of dealing with bound-state problems with high accuracy,which is traditionally achieved through the usual extreme conditions of energy itself.
基金supported by the National Natural Science Foundation of China under Grant(62102189,62122032,61972205)the National Social Sciences Foundation of China under Grant 2022-SKJJ-C-082+2 种基金the Natural Science Foundation of Jiangsu Province under Grant BK20200807NUDT Scientific Research Program under Grant(JS21-4,ZK21-43)Guangdong Natural Science Funds for Distinguished Young Scholar under Grant 2023B1515020041.
文摘In recent years,deep learning has been the mainstream technology for fingerprint liveness detection(FLD)tasks because of its remarkable performance.However,recent studies have shown that these deep fake fingerprint detection(DFFD)models are not resistant to attacks by adversarial examples,which are generated by the introduction of subtle perturbations in the fingerprint image,allowing the model to make fake judgments.Most of the existing adversarial example generation methods are based on gradient optimization,which is easy to fall into local optimal,resulting in poor transferability of adversarial attacks.In addition,the perturbation added to the blank area of the fingerprint image is easily perceived by the human eye,leading to poor visual quality.In response to the above challenges,this paper proposes a novel adversarial attack method based on local adaptive gradient variance for DFFD.The ridge texture area within the fingerprint image has been identified and designated as the region for perturbation generation.Subsequently,the images are fed into the targeted white-box model,and the gradient direction is optimized to compute gradient variance.Additionally,an adaptive parameter search method is proposed using stochastic gradient ascent to explore the parameter values during adversarial example generation,aiming to maximize adversarial attack performance.Experimental results on two publicly available fingerprint datasets show that ourmethod achieves higher attack transferability and robustness than existing methods,and the perturbation is harder to perceive.
基金The Deanship of Scientific Research(DSR)at King Abdulaziz University(KAU),Jeddah,Saudi Arabia has funded this project under Grant No.(G:651-135-1443).
文摘Failure detection is an essential task in industrial systems for preventing costly downtime and ensuring the seamlessoperation of the system. Current industrial processes are getting smarter with the emergence of Industry 4.0.Specifically, various modernized industrial processes have been equipped with quite a few sensors to collectprocess-based data to find faults arising or prevailing in processes along with monitoring the status of processes.Fault diagnosis of rotating machines serves a main role in the engineering field and industrial production. Dueto the disadvantages of existing fault, diagnosis approaches, which greatly depend on professional experienceand human knowledge, intellectual fault diagnosis based on deep learning (DL) has attracted the researcher’sinterest. DL reaches the desired fault classification and automatic feature learning. Therefore, this article designs a Gradient Optimizer Algorithm with Hybrid Deep Learning-based Failure Detection and Classification (GOAHDLFDC)in the industrial environment. The presented GOAHDL-FDC technique initially applies continuous wavelettransform (CWT) for preprocessing the actual vibrational signals of the rotating machinery. Next, the residualnetwork (ResNet18) model was exploited for the extraction of features from the vibration signals which are thenfed into theHDLmodel for automated fault detection. Finally, theGOA-based hyperparameter tuning is performedtoadjust the parameter valuesof theHDLmodel accurately.The experimental result analysis of the GOAHDL-FD Calgorithm takes place using a series of simulations and the experimentation outcomes highlight the better resultsof the GOAHDL-FDC technique under different aspects.
基金Supported by the National Basic Research Program of China ("973" Program)the National Natural Science Foundation of China (60872112, 10805012)+1 种基金the Natural Science Foundation of Zhejiang Province(Z207588)the College Science Research Project of Anhui Province (KJ2008B268)~~
文摘The intelligent optimization of a multi-objective evolutionary algorithm is combined with a gradient algorithm. The hybrid multi-objective gradient algorithm is framed by the real number. Test functions are used to analyze the efficiency of the algorithm. In the simulation case of the water phantom, the algorithm is applied to an inverse planning process of intensity modulated radiation treatment (IMRT). The objective functions of planning target volume (PTV) and normal tissue (NT) are based on the average dose distribution. The obtained intensity profile shows that the hybrid multi-objective gradient algorithm saves the computational time and has good accuracy, thus meeting the requirements of practical applications.
文摘The basic principle of optimal method called “moving overlapping resolution mapping Method” to select the optimal binary mobile phase composition of multi-step linear gradient liquid chromatography is discussed with simultaneously considering effects of position of solute inside the column and mobile phase composition on peak resolution and retention value, then a BASIC program based on this principle is developed in IBM-PC computer. The validities of both principle of optimization and BASIC program are confirmed by separation of samples Containing bile acids and PAHs in RP-HPLC.
文摘We examine a simple averaging formula for the gradieni of linear finite elemelitsin Rd whose interpolation order in the Lq-norm is O(h2) for d < 2q and nonuniformtriangulations. For elliptic problems in R2 we derive an interior superconvergencefor the averaged gradient over quasiuniform triangulations. Local error estimatesup to a regular part of the boundary and the effect of numerical integration arealso investigated.
文摘Learning and self-adaptation ability is highly required to be integrated in path planning algorithm for underwater robot during navigation through an unspecified underwater environment. High frequency oscillations during underwater motion are responsible for nonlinearities in dynamic behavior of underwater robot as well as uncertainties in hydrodynamic coefficients. Reactive behaviors of underwater robot are designed considering the position and orientation of both target and nearest obstacle from robot s current position. Human like reasoning power and approximation based learning skill of neural based adaptive fuzzy inference system(ANFIS)has been found to be effective for underwater multivariable motion control. More than one ANFIS models are used here for achieving goal and obstacle avoidance while avoiding local minima situation in both horizontal and vertical plane of three dimensional workspace.An error gradient approach based on input-output training patterns for learning purpose has been promoted to spawn trajectory of underwater robot optimizing path length as well as time taken. The simulation and experimental results endorse sturdiness and viability of the proposed method in comparison with other navigational methodologies to negotiate with hectic conditions during motion of underwater mobile robot.
基金This study was funded by the Natural Science Foundation of China(NSFC 11871093 and 11901027)Postgraduate Teaching Research and Quality Improvement Project of BUCEA(J2021010)BUCEA Post Graduate Innovation Project(PG2022139)。
文摘China is one of the countries in the world carrying a heavy burden of tuberculosis.Due to the unbalanced economic development,the number of people working in other parts of country is huge,and the mobility of personnel has exacerbated the increase in tuberculosis cases.Most patients affected by this are in their middle and young ages.It is having a great impact among the family and society.Therefore,research on how to control this disease is absolutely necessary.The population is divided into two categories such as local population and the immigrant population.A pulmonary tuberculosis dynamic model with population heterogeneity is established.We calculate the basic reproductive number and the controlled reproductive number,and discuss the two types of population under the constraints given by the amount of vaccine and the optimal immunization ratio obtained is(0.118,0.107),which can reduce the effective reproduction number from 5.85 to 0.227.It is understood that immunizing the local population will control the spread of the epidemic to a large extent,and we simulate the final scale of infection after immunization under the optimal immunization ratio.It can take a minimum of at least 10 years to reduce the spread of this disease,but to eliminate it forever,it needs at least a minimum of 100 years.