With the development of big data and social computing,large-scale group decisionmaking(LGDM)is nowmerging with social networks.Using social network analysis(SNA),this study proposes an LGDM consensus model that consid...With the development of big data and social computing,large-scale group decisionmaking(LGDM)is nowmerging with social networks.Using social network analysis(SNA),this study proposes an LGDM consensus model that considers the trust relationship among decisionmakers(DMs).In the process of consensusmeasurement:the social network is constructed according to the social relationship among DMs,and the Louvain method is introduced to classify social networks to form subgroups.In this study,the weights of each decision maker and each subgroup are computed by comprehensive network weights and trust weights.In the process of consensus improvement:A feedback mechanism with four identification and two direction rules is designed to guide the consensus of the improvement process.Based on the trust relationship among DMs,the preferences are modified,and the corresponding social network is updated to accelerate the consensus.Compared with the previous research,the proposedmodel not only allows the subgroups to be reconstructed and updated during the adjustment process,but also improves the accuracy of the adjustment by the feedbackmechanism.Finally,an example analysis is conducted to verify the effectiveness and flexibility of the proposed method.Moreover,compared with previous studies,the superiority of the proposed method in solving the LGDM problem is highlighted.展开更多
The existing algorithms for solving multi-objective optimization problems fall into three main categories:Decomposition-based,dominance-based,and indicator-based.Traditional multi-objective optimization problemsmainly...The existing algorithms for solving multi-objective optimization problems fall into three main categories:Decomposition-based,dominance-based,and indicator-based.Traditional multi-objective optimization problemsmainly focus on objectives,treating decision variables as a total variable to solve the problem without consideringthe critical role of decision variables in objective optimization.As seen,a variety of decision variable groupingalgorithms have been proposed.However,these algorithms are relatively broad for the changes of most decisionvariables in the evolution process and are time-consuming in the process of finding the Pareto frontier.To solvethese problems,a multi-objective optimization algorithm for grouping decision variables based on extreme pointPareto frontier(MOEA-DV/EPF)is proposed.This algorithm adopts a preprocessing rule to solve the Paretooptimal solution set of extreme points generated by simultaneous evolution in various target directions,obtainsthe basic Pareto front surface to determine the convergence effect,and analyzes the convergence and distributioneffects of decision variables.In the later stages of algorithm optimization,different mutation strategies are adoptedaccording to the nature of the decision variables to speed up the rate of evolution to obtain excellent individuals,thusenhancing the performance of the algorithm.Evaluation validation of the test functions shows that this algorithmcan solve the multi-objective optimization problem more efficiently.展开更多
The large-scale multi-objective optimization algorithm(LSMOA),based on the grouping of decision variables,is an advanced method for handling high-dimensional decision variables.However,in practical problems,the intera...The large-scale multi-objective optimization algorithm(LSMOA),based on the grouping of decision variables,is an advanced method for handling high-dimensional decision variables.However,in practical problems,the interaction among decision variables is intricate,leading to large group sizes and suboptimal optimization effects;hence a large-scale multi-objective optimization algorithm based on weighted overlapping grouping of decision variables(MOEAWOD)is proposed in this paper.Initially,the decision variables are perturbed and categorized into convergence and diversity variables;subsequently,the convergence variables are subdivided into groups based on the interactions among different decision variables.If the size of a group surpasses the set threshold,that group undergoes a process of weighting and overlapping grouping.Specifically,the interaction strength is evaluated based on the interaction frequency and number of objectives among various decision variables.The decision variable with the highest interaction in the group is identified and disregarded,and the remaining variables are then reclassified into subgroups.Finally,the decision variable with the strongest interaction is added to each subgroup.MOEAWOD minimizes the interactivity between different groups and maximizes the interactivity of decision variables within groups,which contributed to the optimized direction of convergence and diversity exploration with different groups.MOEAWOD was subjected to testing on 18 benchmark large-scale optimization problems,and the experimental results demonstrate the effectiveness of our methods.Compared with the other algorithms,our method is still at an advantage.展开更多
Emergency decision-making problems usually involve many experts with different professional backgrounds and concerns,leading to non-cooperative behaviors during the consensus-reaching process.Many studies on noncooper...Emergency decision-making problems usually involve many experts with different professional backgrounds and concerns,leading to non-cooperative behaviors during the consensus-reaching process.Many studies on noncooperative behavior management assumed that the maximumdegree of cooperation of experts is to totally accept the revisions suggested by the moderator,which restricted individuals with altruistic behaviors to make more contributions in the agreement-reaching process.In addition,when grouping a large group into subgroups by clustering methods,existing studies were based on the similarity of evaluation values or trust relationships among experts separately but did not consider them simultaneously.In this study,we introduce a clustering method considering the similarity of evaluation values and the trust relations of experts and then develop a consensusmodel taking into account the altruistic behaviors of experts.First,we cluster experts into subgroups by a constrained Kmeans clustering algorithm according to the opinion similarity and trust relationship of experts.Then,we calculate the weights of experts and clusters based on the centrality degrees of experts.Next,to enhance the quality of consensus reaching,we identify three kinds of non-cooperative behaviors and propose corresponding feedback mechanisms relying on the altruistic behaviors of experts.A numerical example is given to show the effectiveness and practicality of the proposed method in emergency decision-making.The study finds that integrating altruistic behavior analysis in group decision-making can safeguard the interests of experts and ensure the integrity of decision-making information.展开更多
To address the problem of web services selection based on quality, an approach of multi-attribute group decision making algorithm is proposed. Based on the Borda social choice function, the group decision making algor...To address the problem of web services selection based on quality, an approach of multi-attribute group decision making algorithm is proposed. Based on the Borda social choice function, the group decision making algorithm aggregates the results of multiple methods with different principles which are used to obtain constantly changing quality of service, thus increasing the confidence to select the most appropriate web service for a special task. The experimental results indicate that the proposed approach has better scalability and can be applied to large-scale distributed service computing environments. It is also shown that the proposed group decision making approach can effectively optimize the services selection and outperforms the random and robin policies. By using this approach, it can extend a method to obtain constantly changing quality of service and construct a synthetic information entity with multi-level knowledge, which guarantees the accuracy of services selection.展开更多
To study the fuzzy and grey information in the problems of multi-attribute group decision making, the basic concepts of both fuzzy grey numbers and grey interval numbers are given firstly, then a new model of fuzzy gr...To study the fuzzy and grey information in the problems of multi-attribute group decision making, the basic concepts of both fuzzy grey numbers and grey interval numbers are given firstly, then a new model of fuzzy grey multi-attribute group decision making based on the theories of fuzzy mathematics and grey system is presented. Furthermore, the grey interval relative degree and deviation degree is defined, and both the optimistic algorithm of the grey interval relational degree and the algorithm of deviation degree minimization for solving this new model are also given. Finally, a decision making example to demonstrate the feasibility and rationality of this new method is given, and the results by using these two algorithms are uniform.展开更多
Group decision making problems are investigated with uncertain multiplicative linguistic preference relations.An unbalanced multiplicative linguistic label set is introduced,which can be used by the experts to express...Group decision making problems are investigated with uncertain multiplicative linguistic preference relations.An unbalanced multiplicative linguistic label set is introduced,which can be used by the experts to express their linguistic preference information over alternatives.The uncertain linguistic weighted geometric mean operator is utilized to aggregate all the individual uncertain multiplicative linguistic preference relations into a collective one,and then a simple approach is developed to determine the experts' weights by utilizing the consensus degrees among the individual uncertain multiplicative linguistic preference relations and the collective uncertain multiplicative linguistic preference relations.Furthermore,a practical interactive procedure for group decision making is proposed based on uncertain multiplicative linguistic preference relations,in which a possibility degree formula and a complementary matrix are used to rank the given alternatives.Finally,the proposed procedure is applied to solve the group decision making problem of a manufacturing company searching the best global supplier for one of its most critical parts used in assembling process.展开更多
Based on linguistic evaluations, a linguistic threeway decision method is proposed. First, the alternatives are rated in linguistic forms and divided into acceptance, rejection and uncertainty regions. Secondly, the l...Based on linguistic evaluations, a linguistic threeway decision method is proposed. First, the alternatives are rated in linguistic forms and divided into acceptance, rejection and uncertainty regions. Secondly, the linguistic three-way group decision steps are provided. Specifically, the experts determine the lower bound and upper bound of the uncertainty region, respectively. When the evaluation is superior to the upper bound, the corresponding alternative is put into the acceptance region directly. Similarly, when the evaluation is inferior to the lower bound, the corresponding alternative is put into the rejection region directly, and the remaining alternatives are put into the uncertain region. Moreover, the objects in the uncertainty region are especially discussed. The linguistic terms are transformed into fuzzy numbers and then aggregated. Finally, a recommendation example is provided to illustrate the practicality and validity of the proposed method.展开更多
A simple decision method is proposed to solve the group decision making problems in which the weights of decision organizations are unknown and the preferences for alternatives are provided by double hesitant linguist...A simple decision method is proposed to solve the group decision making problems in which the weights of decision organizations are unknown and the preferences for alternatives are provided by double hesitant linguistic preference relations. First, double hesitant linguistic elements are defined as representing the uncertain assessment information in the process of group decision making accurately and comprehensively, and the double hesitant linguistic weighted averaging operator is developed based on the defined operational laws for double hesitant linguistic elements. Then, double hesitant linguistic preference relations are defined and a means to objectively determine the weights of decision organizations is put forward using the standard deviation of scores of preferences provided by the individual decision organization for altematives. Finally the correlation coefficient between the scores of preferences and the scores of preferences are provided by the other decision organizations. Accordingly, a group decision method based on double hesitant linguistic preference relations is proposed, and a practical example of the Jiudianxia reservoir operation alternative selection is used to illustrate the practicability and validity of the method. Finally, the proposed method is compared with the existing methods. Comparative results show that the proposed method can deal with the double hesitant linguistic preference information directly, does not need any information transformation, and can thus reduce the loss of original decision information.展开更多
This paper develops a fuzzy pattern recognition model for group decision making to solve the problem of lectotype optimization of offshore platforms. The lack of data and the inexact or incomplete information for crit...This paper develops a fuzzy pattern recognition model for group decision making to solve the problem of lectotype optimization of offshore platforms. The lack of data and the inexact or incomplete information for criteria are the main cause of uncertainty in the evaluation process, therefore it is necessary to integrate the judgments from different decision makers with different experience, knowledge and preference. This paper first uses a complementary principle based pairwise comparison method to obtain the subjective weight of the criteria from each decision maker. A fuzzy pattern recognition model is then developed to integrate the judgments from all the decision makers and the information from the criteria, under the supervision of the subjective weights. Finally a case study is given to show the efficiency and robustness of the proposed model.展开更多
A method is proposed to deal with the uncertain multiple attribute group decision making problems,where 2-dimension uncertain linguistic variables(2DULVs)are used as the reliable way for the experts to express their f...A method is proposed to deal with the uncertain multiple attribute group decision making problems,where 2-dimension uncertain linguistic variables(2DULVs)are used as the reliable way for the experts to express their fuzzy subjective evaluation information.Firstly,in order to measure the 2DULVs more accurately,a new method is proposed to compare two 2DULVs,called a score function,while a new function is defined to measure the distance between two 2DULVs.Secondly,two optimization models are established to determine the weight of experts and attributes based on the new distance formula and a weighted average operator is used to determine the comprehensive evaluation value of each alternative.Then,a score function is used to determine the ranking of the alternatives.Finally,the effectiveness of the proposed method is proved by an illustrated example.展开更多
A kind of multiple attribute group decision making (MAGDM) problem is discussed from the perspective of statistic decision-making. Firstly, on the basis of the stability theory, a new idea is proposed to solve this ...A kind of multiple attribute group decision making (MAGDM) problem is discussed from the perspective of statistic decision-making. Firstly, on the basis of the stability theory, a new idea is proposed to solve this kind of problem. Secondly, a con- crete method corresponding to this kind of problem is proposed. The main tool of our research is the technique o~ the jackknife method. The main advantage of the new method is that it can identify and determine the reliability degree of the existed decision making information. Finally, a traffic engineering example is given to show the effectiveness of the new method.展开更多
The VIKOR method is a multi-criteria decision making aid, which employs linear normalization to offer compromise solu- tions and has been successfully applied to various group decision making problems. However, the co...The VIKOR method is a multi-criteria decision making aid, which employs linear normalization to offer compromise solu- tions and has been successfully applied to various group decision making problems. However, the conventional VIKOR techniques used to integrate group judgments and the information loss arising from defuzzification are problematic and distort final outcomes. An improved integration method, which is optimization-based, is proposed. And it can handle fuzzy criteria values and weights. The precondition for accurately defuzzifying triangular fuzzy num- bers is identified. Several effective defuzzification procedures are proposed to improve the extant VIKOR, and a comprehensive evaluation framework is offered to aid multi-criteria group decision making. Finally, a numerical example is provided to illustrate the practicability of the proposed method.展开更多
This study aims to evaluate the crowdfunding alternatives regarding new service development process pathways of clean energy investment projects.In this framework,a new model has been generated by considering the cons...This study aims to evaluate the crowdfunding alternatives regarding new service development process pathways of clean energy investment projects.In this framework,a new model has been generated by considering the consensus-based group decisionmaking with incomplete preferences,Pythagorean fuzzy decision-making trial and evaluation laboratory(DEMATEL)and technique for order preference by similarity to ideal solution(TOPSIS).Moreover,a comparative evaluation has been performed with Vise Kriterijumska Optimizacija I.Kompromisno Resenje methodology and sensitivity analysis has been made by considering 4 different cases.The main contribution is to identify appropriate crowdfunding-based funding alternatives for the improvement of the clean energy investments with a novel MCDM model.By considering the iteration technique and consensus-based analysis,the missing parts in the evaluations can be completed and opposite opinion problems can be reduced.Furthermore,with the help of hybrid MCDM model by combining DEMATEL and TOPSIS,more objective results can be reached.It is concluded that the analysis results are coherent and reliable.The findings indicate that the full launch is the most significant criterion for equity and debt-based crowdfunding alternatives.On the other side,the analysis has the highest weight for reward and donation-based alternatives whereas design is the most essential item regarding the royalty-based alternative.Additionally,it is also defined that equity-based crowdfunding alternative is the most significant for the service development process of clean energy investment projects.In this way,it will be possible to provide a continuous resource for clean energy investment projects.On the other hand,by providing financing with equity,there will be no fixed financing cost for clean energy investors.If these investors make a profit,they distribute dividends with the decision of their authorized bodies.展开更多
Intuitionistic fuzzy preference relation(IFPR) is a suitable technique to express fuzzy preference information by decision makers(DMs). This paper aims to provide a group decision making method where DMs use the IFPRs...Intuitionistic fuzzy preference relation(IFPR) is a suitable technique to express fuzzy preference information by decision makers(DMs). This paper aims to provide a group decision making method where DMs use the IFPRs to indicate their preferences with uncertain weights. To begin with, a model to derive weight vectors of alternatives from IFPRs based on multiplicative consistency is presented. Specifically, for any IFPR,by minimizing its absolute deviation from the corresponding consistent IFPR, the weight vectors are generated. Secondly,a method to determine relative weights of DMs depending on preference information is developed. After that we prioritize alternatives based on the obtained weights considering the risk preference of DMs. Finally, this approach is applied to the problem of technical risks assessment of armored equipment to illustrate the applicability and superiority of the proposed method.展开更多
Real-life data introduce noise,uncertainty,and imprecision to statistical projects;it is advantageous to consider strategies to overcome these information expressions and processing problems.Neutrosophic(indeterminate...Real-life data introduce noise,uncertainty,and imprecision to statistical projects;it is advantageous to consider strategies to overcome these information expressions and processing problems.Neutrosophic(indeterminate)numbers can flexibly and conveniently represent the hybrid information of the partial determinacy and partial indeterminacy in an indeterminate setting,while a fuzzy multiset is a vital mathematical tool in the expression and processing of multi-valued fuzzy information with different and/or same fuzzy values.If neutrosophic numbers are introduced into fuzzy sequences in a fuzzy multiset,the introduced neutrosophic number sequences can be constructed as the neutrosophic number multiset or indeterminate fuzzy multiset.Motivated based on the idea,this study first proposes an indeterminate fuzzy multiset,where each element in a universe set can be repeated more than once with the different and/or identical indeterminate membership values.Then,we propose the parameterized correlation coefficients of indeterminate fuzzy multisets based on the de-neutrosophication of transforming indeterminate fuzzy multisets into the parameterized fuzzy multisets by a parameter(the parameterized de-neutrosophication method).Since indeterminate decision-making issues need to be handled by an indeterminate decision-making method,a group decision-making method using the weighted parameterized correlation coefficients of indeterminate fuzzy multisets is developed along with decision makers’different decision risks(small,moderate,and large risks)so as to handle multicriteria group decision-making problems in indeterminate fuzzy multiset setting.Finally,the developed group decision-making approach is used in an example on a selection problem of slope design schemes for an open-pit mine to demonstrate its usability and flexibility in the indeterminate group decision-making problem with indeterminate fuzzy multisets.展开更多
The group decision making problem with linguistic pref- erence relations is studied. The concept of additive consistent linguistic preference relation is defined, and then some properties of the additive consistent li...The group decision making problem with linguistic pref- erence relations is studied. The concept of additive consistent linguistic preference relation is defined, and then some properties of the additive consistent linguistic preference relation are studied. In order to rank the alternatives in the group decision making with the linguistic preference relations, the weighted average is first utilized to combine the group linguistic preference relations to one linguistic preference relation, and then the transformation function is proposed to transform the linguistic preference relation to the multiplicative preference relation, and thus the Saaty's eigenvec- tor method (EM) of multiplicative preference relation is utilized to rank the alternatives in group decision making with the linguistic preference relations. Finally, an illustrative numerical example is given to verify the proposed method. A comparative study to the linguistic ordered weighted averaging (LOWA) operator method is also demonstrated.展开更多
Uncertain and hesitant information, widely existing in the real-world qualitative decision making problems, brings great challenges to decision makers. Hesitant fuzzy linguistic term sets(HFLTSs), an effective linguis...Uncertain and hesitant information, widely existing in the real-world qualitative decision making problems, brings great challenges to decision makers. Hesitant fuzzy linguistic term sets(HFLTSs), an effective linguistic computational tool in modeling and eliciting such information, have hence aroused many scholars’ interests and some extensions have been introduced recently.However, these methods are based on the discrete linguistic term framework with the limited expression domain, which actually depict qualitative information using several single values. Therefore,it is hard to ensure the integrity of the semantics representation and the accuracy of the computation results. To deal with this problem, a semantics basis framework called complete linguistic term set(CLTS) is designed, which adopts a separation structure of linguistic scale and expression domain, enriching semantics representation of decision makers. On this basis the concept of fuzzy interval linguistic sets(FILSs) is put forward that employs the interval linguistic term with probability to increase the flexibility of eliciting and representing uncertain and hesitant qualitative information. For practical applications, a fuzzy interval linguistic technique for order preference by similarity to ideal solution(FILTOPSIS) method is developed to deal with multi-attribute group decision making(MAGDM) problems. Through the cases of movie and enterprise resource planning(ERP) system selection, the effectiveness and validity of the proposed method are illustrated.展开更多
The technique for order performance by similarity to ideal solution (TOPSIS) is one of the major techniques in dealing with multiple criteria decision making (MCDM) problems, and the belief structure (BS) model ...The technique for order performance by similarity to ideal solution (TOPSIS) is one of the major techniques in dealing with multiple criteria decision making (MCDM) problems, and the belief structure (BS) model has been used successfully for uncertain MCDM with incompleteness, impreciseness or ignorance. In this paper, the TOPSIS method with BS model is proposed to solve group belief MCDM problems. Firstly, the group belief MCDM problem is structured as a belief decision matrix in which the judgments of each decision maker are described as BS models, and then the evidential reasoning approach is used for aggregating the multiple decision makers' judgments. Subsequently, the positive and negative ideal belief solutions are defined with the principle of TOPSIS. To measure the separation from ideal solutions, the concept and algorithm of belief distance measure are defined, which can be used for comparing the difference between BS models. Finally, the relative closeness and ranking index are calculated for ranking the alternatives. A numerical example is given to illustrate the proposed method.展开更多
Group decision models that contemplate the particularities of the decision-making process help organizations pursue their strategic objectives.In the financial market,the primary interest of organizations consists in ...Group decision models that contemplate the particularities of the decision-making process help organizations pursue their strategic objectives.In the financial market,the primary interest of organizations consists in ensuring financial returns,which guarantee stability for the organization.This study identifies major problems in the current process of credit granting in the financial market and argues the need for automatizing the organizational decision process while respecting the autonomy of decision-makers.To this end,this study proposes a group decision model based on the Strategic Choice Approach(SCA)for granting credit in a financial market organization.The results show that the adoption of the proposed model offers considerable gains in terms of organizational goals,transparency of the decision-making process,security for decision-makers,and reduction of organizational conflicts.展开更多
基金The work was supported by Humanities and Social Sciences Fund of the Ministry of Education(No.22YJA630119)the National Natural Science Foundation of China(No.71971051)Natural Science Foundation of Hebei Province(No.G2021501004).
文摘With the development of big data and social computing,large-scale group decisionmaking(LGDM)is nowmerging with social networks.Using social network analysis(SNA),this study proposes an LGDM consensus model that considers the trust relationship among decisionmakers(DMs).In the process of consensusmeasurement:the social network is constructed according to the social relationship among DMs,and the Louvain method is introduced to classify social networks to form subgroups.In this study,the weights of each decision maker and each subgroup are computed by comprehensive network weights and trust weights.In the process of consensus improvement:A feedback mechanism with four identification and two direction rules is designed to guide the consensus of the improvement process.Based on the trust relationship among DMs,the preferences are modified,and the corresponding social network is updated to accelerate the consensus.Compared with the previous research,the proposedmodel not only allows the subgroups to be reconstructed and updated during the adjustment process,but also improves the accuracy of the adjustment by the feedbackmechanism.Finally,an example analysis is conducted to verify the effectiveness and flexibility of the proposed method.Moreover,compared with previous studies,the superiority of the proposed method in solving the LGDM problem is highlighted.
基金the Liaoning Province Nature Fundation Project(2022-MS-291)the National Programme for Foreign Expert Projects(G2022006008L)+2 种基金the Basic Research Projects of Liaoning Provincial Department of Education(LJKMZ20220781,LJKMZ20220783,LJKQZ20222457)King Saud University funded this study through theResearcher Support Program Number(RSPD2023R704)King Saud University,Riyadh,Saudi Arabia.
文摘The existing algorithms for solving multi-objective optimization problems fall into three main categories:Decomposition-based,dominance-based,and indicator-based.Traditional multi-objective optimization problemsmainly focus on objectives,treating decision variables as a total variable to solve the problem without consideringthe critical role of decision variables in objective optimization.As seen,a variety of decision variable groupingalgorithms have been proposed.However,these algorithms are relatively broad for the changes of most decisionvariables in the evolution process and are time-consuming in the process of finding the Pareto frontier.To solvethese problems,a multi-objective optimization algorithm for grouping decision variables based on extreme pointPareto frontier(MOEA-DV/EPF)is proposed.This algorithm adopts a preprocessing rule to solve the Paretooptimal solution set of extreme points generated by simultaneous evolution in various target directions,obtainsthe basic Pareto front surface to determine the convergence effect,and analyzes the convergence and distributioneffects of decision variables.In the later stages of algorithm optimization,different mutation strategies are adoptedaccording to the nature of the decision variables to speed up the rate of evolution to obtain excellent individuals,thusenhancing the performance of the algorithm.Evaluation validation of the test functions shows that this algorithmcan solve the multi-objective optimization problem more efficiently.
基金supported in part by the Central Government Guides Local Science and TechnologyDevelopment Funds(Grant No.YDZJSX2021A038)in part by theNational Natural Science Foundation of China under(Grant No.61806138)in part by the China University Industry-University-Research Collaborative Innovation Fund(Future Network Innovation Research and Application Project)(Grant 2021FNA04014).
文摘The large-scale multi-objective optimization algorithm(LSMOA),based on the grouping of decision variables,is an advanced method for handling high-dimensional decision variables.However,in practical problems,the interaction among decision variables is intricate,leading to large group sizes and suboptimal optimization effects;hence a large-scale multi-objective optimization algorithm based on weighted overlapping grouping of decision variables(MOEAWOD)is proposed in this paper.Initially,the decision variables are perturbed and categorized into convergence and diversity variables;subsequently,the convergence variables are subdivided into groups based on the interactions among different decision variables.If the size of a group surpasses the set threshold,that group undergoes a process of weighting and overlapping grouping.Specifically,the interaction strength is evaluated based on the interaction frequency and number of objectives among various decision variables.The decision variable with the highest interaction in the group is identified and disregarded,and the remaining variables are then reclassified into subgroups.Finally,the decision variable with the strongest interaction is added to each subgroup.MOEAWOD minimizes the interactivity between different groups and maximizes the interactivity of decision variables within groups,which contributed to the optimized direction of convergence and diversity exploration with different groups.MOEAWOD was subjected to testing on 18 benchmark large-scale optimization problems,and the experimental results demonstrate the effectiveness of our methods.Compared with the other algorithms,our method is still at an advantage.
基金supported by the National Natural Science Foundation of China (Nos.71771156,71971145,72171158).
文摘Emergency decision-making problems usually involve many experts with different professional backgrounds and concerns,leading to non-cooperative behaviors during the consensus-reaching process.Many studies on noncooperative behavior management assumed that the maximumdegree of cooperation of experts is to totally accept the revisions suggested by the moderator,which restricted individuals with altruistic behaviors to make more contributions in the agreement-reaching process.In addition,when grouping a large group into subgroups by clustering methods,existing studies were based on the similarity of evaluation values or trust relationships among experts separately but did not consider them simultaneously.In this study,we introduce a clustering method considering the similarity of evaluation values and the trust relations of experts and then develop a consensusmodel taking into account the altruistic behaviors of experts.First,we cluster experts into subgroups by a constrained Kmeans clustering algorithm according to the opinion similarity and trust relationship of experts.Then,we calculate the weights of experts and clusters based on the centrality degrees of experts.Next,to enhance the quality of consensus reaching,we identify three kinds of non-cooperative behaviors and propose corresponding feedback mechanisms relying on the altruistic behaviors of experts.A numerical example is given to show the effectiveness and practicality of the proposed method in emergency decision-making.The study finds that integrating altruistic behavior analysis in group decision-making can safeguard the interests of experts and ensure the integrity of decision-making information.
文摘To address the problem of web services selection based on quality, an approach of multi-attribute group decision making algorithm is proposed. Based on the Borda social choice function, the group decision making algorithm aggregates the results of multiple methods with different principles which are used to obtain constantly changing quality of service, thus increasing the confidence to select the most appropriate web service for a special task. The experimental results indicate that the proposed approach has better scalability and can be applied to large-scale distributed service computing environments. It is also shown that the proposed group decision making approach can effectively optimize the services selection and outperforms the random and robin policies. By using this approach, it can extend a method to obtain constantly changing quality of service and construct a synthetic information entity with multi-level knowledge, which guarantees the accuracy of services selection.
基金This project was supported by the National Natural Science Foundation of China (70671050 70471019)the Key Project of Hubei Provincial Department of Education (D200627005).
文摘To study the fuzzy and grey information in the problems of multi-attribute group decision making, the basic concepts of both fuzzy grey numbers and grey interval numbers are given firstly, then a new model of fuzzy grey multi-attribute group decision making based on the theories of fuzzy mathematics and grey system is presented. Furthermore, the grey interval relative degree and deviation degree is defined, and both the optimistic algorithm of the grey interval relational degree and the algorithm of deviation degree minimization for solving this new model are also given. Finally, a decision making example to demonstrate the feasibility and rationality of this new method is given, and the results by using these two algorithms are uniform.
基金supported by the National Natural Science Foundation of China (70571087)the National Science Fund for Distinguished Young Scholars of China (70625005)
文摘Group decision making problems are investigated with uncertain multiplicative linguistic preference relations.An unbalanced multiplicative linguistic label set is introduced,which can be used by the experts to express their linguistic preference information over alternatives.The uncertain linguistic weighted geometric mean operator is utilized to aggregate all the individual uncertain multiplicative linguistic preference relations into a collective one,and then a simple approach is developed to determine the experts' weights by utilizing the consensus degrees among the individual uncertain multiplicative linguistic preference relations and the collective uncertain multiplicative linguistic preference relations.Furthermore,a practical interactive procedure for group decision making is proposed based on uncertain multiplicative linguistic preference relations,in which a possibility degree formula and a complementary matrix are used to rank the given alternatives.Finally,the proposed procedure is applied to solve the group decision making problem of a manufacturing company searching the best global supplier for one of its most critical parts used in assembling process.
基金The National Natural Science Foundation of China(No.71171048,71371049)the Scientific Innovation Research of College Graduates in Jiangsu Province(No.KYLX15-0190)the Scientific Research Foundation of Graduate School of Southeast University(No.YBJJ1567)
文摘Based on linguistic evaluations, a linguistic threeway decision method is proposed. First, the alternatives are rated in linguistic forms and divided into acceptance, rejection and uncertainty regions. Secondly, the linguistic three-way group decision steps are provided. Specifically, the experts determine the lower bound and upper bound of the uncertainty region, respectively. When the evaluation is superior to the upper bound, the corresponding alternative is put into the acceptance region directly. Similarly, when the evaluation is inferior to the lower bound, the corresponding alternative is put into the rejection region directly, and the remaining alternatives are put into the uncertain region. Moreover, the objects in the uncertainty region are especially discussed. The linguistic terms are transformed into fuzzy numbers and then aggregated. Finally, a recommendation example is provided to illustrate the practicality and validity of the proposed method.
基金The National Natural Science Foundation of China(No.61273209,71571123)the Scientific Research Foundation of Graduate School of Southeast University(No.YBJJ1527)the Scientific Innovation Research of College Graduates in Jiangsu Province(No.KYLX_0207)
文摘A simple decision method is proposed to solve the group decision making problems in which the weights of decision organizations are unknown and the preferences for alternatives are provided by double hesitant linguistic preference relations. First, double hesitant linguistic elements are defined as representing the uncertain assessment information in the process of group decision making accurately and comprehensively, and the double hesitant linguistic weighted averaging operator is developed based on the defined operational laws for double hesitant linguistic elements. Then, double hesitant linguistic preference relations are defined and a means to objectively determine the weights of decision organizations is put forward using the standard deviation of scores of preferences provided by the individual decision organization for altematives. Finally the correlation coefficient between the scores of preferences and the scores of preferences are provided by the other decision organizations. Accordingly, a group decision method based on double hesitant linguistic preference relations is proposed, and a practical example of the Jiudianxia reservoir operation alternative selection is used to illustrate the practicability and validity of the method. Finally, the proposed method is compared with the existing methods. Comparative results show that the proposed method can deal with the double hesitant linguistic preference information directly, does not need any information transformation, and can thus reduce the loss of original decision information.
文摘This paper develops a fuzzy pattern recognition model for group decision making to solve the problem of lectotype optimization of offshore platforms. The lack of data and the inexact or incomplete information for criteria are the main cause of uncertainty in the evaluation process, therefore it is necessary to integrate the judgments from different decision makers with different experience, knowledge and preference. This paper first uses a complementary principle based pairwise comparison method to obtain the subjective weight of the criteria from each decision maker. A fuzzy pattern recognition model is then developed to integrate the judgments from all the decision makers and the information from the criteria, under the supervision of the subjective weights. Finally a case study is given to show the efficiency and robustness of the proposed model.
基金This work was supported by the Natural Science Foundation of Liaoning Province(2013020022).
文摘A method is proposed to deal with the uncertain multiple attribute group decision making problems,where 2-dimension uncertain linguistic variables(2DULVs)are used as the reliable way for the experts to express their fuzzy subjective evaluation information.Firstly,in order to measure the 2DULVs more accurately,a new method is proposed to compare two 2DULVs,called a score function,while a new function is defined to measure the distance between two 2DULVs.Secondly,two optimization models are established to determine the weight of experts and attributes based on the new distance formula and a weighted average operator is used to determine the comprehensive evaluation value of each alternative.Then,a score function is used to determine the ranking of the alternatives.Finally,the effectiveness of the proposed method is proved by an illustrated example.
基金supported by the National Key Basic Research Program of China(973 Program)(2012CB725402)the National High-Tech R&D Program of China(863 Program)(SS2014AA110303)the Science Foundation for Post-doctoral Scientists of Jiangsu Province(1301011A)
文摘A kind of multiple attribute group decision making (MAGDM) problem is discussed from the perspective of statistic decision-making. Firstly, on the basis of the stability theory, a new idea is proposed to solve this kind of problem. Secondly, a con- crete method corresponding to this kind of problem is proposed. The main tool of our research is the technique o~ the jackknife method. The main advantage of the new method is that it can identify and determine the reliability degree of the existed decision making information. Finally, a traffic engineering example is given to show the effectiveness of the new method.
基金supported by the National Natural Science Foundation of China(71271116)
文摘The VIKOR method is a multi-criteria decision making aid, which employs linear normalization to offer compromise solu- tions and has been successfully applied to various group decision making problems. However, the conventional VIKOR techniques used to integrate group judgments and the information loss arising from defuzzification are problematic and distort final outcomes. An improved integration method, which is optimization-based, is proposed. And it can handle fuzzy criteria values and weights. The precondition for accurately defuzzifying triangular fuzzy num- bers is identified. Several effective defuzzification procedures are proposed to improve the extant VIKOR, and a comprehensive evaluation framework is offered to aid multi-criteria group decision making. Finally, a numerical example is provided to illustrate the practicability of the proposed method.
基金This work is supported by the project of Sichuan county economic development research center of Sichuan provincial key research base of social sciences,"research on the coordination mechanism of county economic,ecological and social coupling development of giant panda national park"(xy2020034)the social science special research project of Sichuan agricultural university"research on innovation of modern urban agricultural development mode"(035/03571600).
文摘This study aims to evaluate the crowdfunding alternatives regarding new service development process pathways of clean energy investment projects.In this framework,a new model has been generated by considering the consensus-based group decisionmaking with incomplete preferences,Pythagorean fuzzy decision-making trial and evaluation laboratory(DEMATEL)and technique for order preference by similarity to ideal solution(TOPSIS).Moreover,a comparative evaluation has been performed with Vise Kriterijumska Optimizacija I.Kompromisno Resenje methodology and sensitivity analysis has been made by considering 4 different cases.The main contribution is to identify appropriate crowdfunding-based funding alternatives for the improvement of the clean energy investments with a novel MCDM model.By considering the iteration technique and consensus-based analysis,the missing parts in the evaluations can be completed and opposite opinion problems can be reduced.Furthermore,with the help of hybrid MCDM model by combining DEMATEL and TOPSIS,more objective results can be reached.It is concluded that the analysis results are coherent and reliable.The findings indicate that the full launch is the most significant criterion for equity and debt-based crowdfunding alternatives.On the other side,the analysis has the highest weight for reward and donation-based alternatives whereas design is the most essential item regarding the royalty-based alternative.Additionally,it is also defined that equity-based crowdfunding alternative is the most significant for the service development process of clean energy investment projects.In this way,it will be possible to provide a continuous resource for clean energy investment projects.On the other hand,by providing financing with equity,there will be no fixed financing cost for clean energy investors.If these investors make a profit,they distribute dividends with the decision of their authorized bodies.
基金partly supported by the National Natural Science Foundation of China(71371053)the Social Science Foundation of Fujian Province(FJ2015C111)
文摘Intuitionistic fuzzy preference relation(IFPR) is a suitable technique to express fuzzy preference information by decision makers(DMs). This paper aims to provide a group decision making method where DMs use the IFPRs to indicate their preferences with uncertain weights. To begin with, a model to derive weight vectors of alternatives from IFPRs based on multiplicative consistency is presented. Specifically, for any IFPR,by minimizing its absolute deviation from the corresponding consistent IFPR, the weight vectors are generated. Secondly,a method to determine relative weights of DMs depending on preference information is developed. After that we prioritize alternatives based on the obtained weights considering the risk preference of DMs. Finally, this approach is applied to the problem of technical risks assessment of armored equipment to illustrate the applicability and superiority of the proposed method.
文摘Real-life data introduce noise,uncertainty,and imprecision to statistical projects;it is advantageous to consider strategies to overcome these information expressions and processing problems.Neutrosophic(indeterminate)numbers can flexibly and conveniently represent the hybrid information of the partial determinacy and partial indeterminacy in an indeterminate setting,while a fuzzy multiset is a vital mathematical tool in the expression and processing of multi-valued fuzzy information with different and/or same fuzzy values.If neutrosophic numbers are introduced into fuzzy sequences in a fuzzy multiset,the introduced neutrosophic number sequences can be constructed as the neutrosophic number multiset or indeterminate fuzzy multiset.Motivated based on the idea,this study first proposes an indeterminate fuzzy multiset,where each element in a universe set can be repeated more than once with the different and/or identical indeterminate membership values.Then,we propose the parameterized correlation coefficients of indeterminate fuzzy multisets based on the de-neutrosophication of transforming indeterminate fuzzy multisets into the parameterized fuzzy multisets by a parameter(the parameterized de-neutrosophication method).Since indeterminate decision-making issues need to be handled by an indeterminate decision-making method,a group decision-making method using the weighted parameterized correlation coefficients of indeterminate fuzzy multisets is developed along with decision makers’different decision risks(small,moderate,and large risks)so as to handle multicriteria group decision-making problems in indeterminate fuzzy multiset setting.Finally,the developed group decision-making approach is used in an example on a selection problem of slope design schemes for an open-pit mine to demonstrate its usability and flexibility in the indeterminate group decision-making problem with indeterminate fuzzy multisets.
基金supported by the National Natural Science Foundation of China(70771025)Hohai University Central University Special Fund Basic Scientific Research and Operational Costs
文摘The group decision making problem with linguistic pref- erence relations is studied. The concept of additive consistent linguistic preference relation is defined, and then some properties of the additive consistent linguistic preference relation are studied. In order to rank the alternatives in the group decision making with the linguistic preference relations, the weighted average is first utilized to combine the group linguistic preference relations to one linguistic preference relation, and then the transformation function is proposed to transform the linguistic preference relation to the multiplicative preference relation, and thus the Saaty's eigenvec- tor method (EM) of multiplicative preference relation is utilized to rank the alternatives in group decision making with the linguistic preference relations. Finally, an illustrative numerical example is given to verify the proposed method. A comparative study to the linguistic ordered weighted averaging (LOWA) operator method is also demonstrated.
基金supported by the National Natural Science Foundation of China(61273275)
文摘Uncertain and hesitant information, widely existing in the real-world qualitative decision making problems, brings great challenges to decision makers. Hesitant fuzzy linguistic term sets(HFLTSs), an effective linguistic computational tool in modeling and eliciting such information, have hence aroused many scholars’ interests and some extensions have been introduced recently.However, these methods are based on the discrete linguistic term framework with the limited expression domain, which actually depict qualitative information using several single values. Therefore,it is hard to ensure the integrity of the semantics representation and the accuracy of the computation results. To deal with this problem, a semantics basis framework called complete linguistic term set(CLTS) is designed, which adopts a separation structure of linguistic scale and expression domain, enriching semantics representation of decision makers. On this basis the concept of fuzzy interval linguistic sets(FILSs) is put forward that employs the interval linguistic term with probability to increase the flexibility of eliciting and representing uncertain and hesitant qualitative information. For practical applications, a fuzzy interval linguistic technique for order preference by similarity to ideal solution(FILTOPSIS) method is developed to deal with multi-attribute group decision making(MAGDM) problems. Through the cases of movie and enterprise resource planning(ERP) system selection, the effectiveness and validity of the proposed method are illustrated.
基金supported by National Natural Science Foundation of China (No.70971131, 70901074)
文摘The technique for order performance by similarity to ideal solution (TOPSIS) is one of the major techniques in dealing with multiple criteria decision making (MCDM) problems, and the belief structure (BS) model has been used successfully for uncertain MCDM with incompleteness, impreciseness or ignorance. In this paper, the TOPSIS method with BS model is proposed to solve group belief MCDM problems. Firstly, the group belief MCDM problem is structured as a belief decision matrix in which the judgments of each decision maker are described as BS models, and then the evidential reasoning approach is used for aggregating the multiple decision makers' judgments. Subsequently, the positive and negative ideal belief solutions are defined with the principle of TOPSIS. To measure the separation from ideal solutions, the concept and algorithm of belief distance measure are defined, which can be used for comparing the difference between BS models. Finally, the relative closeness and ranking index are calculated for ranking the alternatives. A numerical example is given to illustrate the proposed method.
基金Brazilian Research Council(CNPq)-Process:309143/2014–4。
文摘Group decision models that contemplate the particularities of the decision-making process help organizations pursue their strategic objectives.In the financial market,the primary interest of organizations consists in ensuring financial returns,which guarantee stability for the organization.This study identifies major problems in the current process of credit granting in the financial market and argues the need for automatizing the organizational decision process while respecting the autonomy of decision-makers.To this end,this study proposes a group decision model based on the Strategic Choice Approach(SCA)for granting credit in a financial market organization.The results show that the adoption of the proposed model offers considerable gains in terms of organizational goals,transparency of the decision-making process,security for decision-makers,and reduction of organizational conflicts.