Generally,Doppler fuze can only estimate actuation delay-time with a limited precision. As an improvement,imaging fuze can estimate actuation delay-time more precisely with the available two-dimensional image of the t...Generally,Doppler fuze can only estimate actuation delay-time with a limited precision. As an improvement,imaging fuze can estimate actuation delay-time more precisely with the available two-dimensional image of the target. In this paper,imprecision of actuation delay-time estimation with Doppler fuze is first analyzed theoretically in brief. Secondly,feasibility analysis and theoretical model of imaging fuze are described,in which a criterion is established for the actuation delay-time based on the image,and then an image based gray-value weighted least square( GWLS) algorithm is presented to calculate actuation delay-time of the imaging fuze. Finally,a simulation model of missiletarget near-field encounter is established. Simulation results indicate that actuation delay-time of the imaging fuze is estimated more precisely than by the Doppler fuze.展开更多
基金Supported by the Ministerial Level Advanced Research Foundation of China(9140A05030213HT25012)
文摘Generally,Doppler fuze can only estimate actuation delay-time with a limited precision. As an improvement,imaging fuze can estimate actuation delay-time more precisely with the available two-dimensional image of the target. In this paper,imprecision of actuation delay-time estimation with Doppler fuze is first analyzed theoretically in brief. Secondly,feasibility analysis and theoretical model of imaging fuze are described,in which a criterion is established for the actuation delay-time based on the image,and then an image based gray-value weighted least square( GWLS) algorithm is presented to calculate actuation delay-time of the imaging fuze. Finally,a simulation model of missiletarget near-field encounter is established. Simulation results indicate that actuation delay-time of the imaging fuze is estimated more precisely than by the Doppler fuze.